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Abstract: The reliability of aircraft control surfaces, constructed from thermoplastic materials, can
be affected by impacts from airborne particles. Recognizing the exact position of such impacts
is essential for correctly estimating the resulting damage. This research intended to address the
issue by introducing an innovative structural health monitoring solution capable of autonomously
detecting and localizing impacts using acoustic emission monitoring. The objective of this research is
to investigate the application of AE for the localization of impacts on aircraft elevators using machine
learning techniques, specifically regression algorithms. To achieve this goal, two algorithms, linear
regression, and random forest, were employed for predicting the impact locations based on AE
signals. The performance of each algorithm was validated on a thermoplastic composite aircraft
elevator. Results indicated that both linear regression and random forest models show high accuracy
in predicting the impact locations. The random forest model, with an R2 value of 0.98616 and an
RMSE of 0.6778, outperformed the linear regression model, which exhibited an R2 value of 0.9361
and an RMSE of 1.4614.

Keywords: thermoplastic composite; impacts; acoustic emission; structural health monitoring

1. Introduction

The occurrence of impacts from random objects, such as ice particles and debris,
presents a considerable obstacle in maintaining the structural integrity of composite com-
ponents for aircraft systems. Conventionally, C-Scan inspections have been utilized for the
appraisal of impact-induced damage [1–3]. However, this approach is prone to human inac-
curacies, is time-consuming, and does not provide real-time results, as assessments can only
be conducted between flight operations. The emergence of new sensor technologies and
advanced data processing methods enables the deployment of structural health monitoring
(SHM) systems [4–9]. Some SHM systems have the capacity to autonomously identify and
evaluate impact damage while continuously monitoring aircraft components during flight
operations [10–12]. As a result, reliance on labor-intensive and error-susceptible visual
examinations may be diminished. The automated detection and localization of impact
damage stemming from debris and hail through the incorporation of SHM systems offer a
more timely, accurate, and efficient evaluation approach.

In recent years, various methods have been applied for SHM in aircraft structures.
PZT sensors and vibration analysis are widely used due to their sensitivity to a broad
frequency range and their ability to detect different types of damage [13]. Ultrasonic
testing and guided wave techniques are also utilized due to their ability to inspect large
areas of a structure [14]. However, it is noteworthy that each of these methods has its
inherent limitations. For instance, the deployment of PZT sensors and the implementation
of vibration analysis may necessitate intricate signal processing and interpretation, which
may impose substantial complexity. Ultrasonic testing often demands direct contact with
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the structure, a requirement that may not be practicable for aircraft in service, thereby
restricting its usability in these contexts.

Acoustic emission (AE) monitoring is one SHM method worth investigating as it is a
passive technique, detecting the energy released by the structure itself when it undergoes a
change (e.g., impact or cracking) [15,16]. This allows for continuous, real-time monitoring
without the need for external excitation. AE sensors can be mounted on the surface of
the structure, making it a noninvasive and nondestructive method. Furthermore, AE has
shown high sensitivity to various types of damage and can provide information about the
damage’s location and severity [17–20]. Several studies have explored the use of AE in
monitoring damage to composites [21–26]. Barile et al. [23] utilized AE to identify the type
of damage in carbon fiber-reinforced polymer (CFRP) samples by decomposing the AE
signal using a Wavelet Packet Transform (WPT). Results showed that the signals could be
categorized based on the type of damage mechanism. Similarly, Xu et al. [24] applied AE to
unidirectional (UD) CFRP tendons and used Hilbert marginal energy spectrum (HMES)
and instantaneous energy spectrum (IES) to identify damage patterns and evolution during
tensioning. Mal et al. [25] studied the application of AE to assess the low-velocity impact
(LVI) on fiber composites by applying AE to graphite–epoxy composite plates. Results
showed that impact loads could be identified from the AE signals, and delamination could
be assessed by examining the waveform of the recorded signal. James et al. [26] placed four
AE sensors on CFRP specimens and conducted impact experiments. The AE waveforms
and their corresponding frequency domain spectrum were analyzed to distinguish between
different AE signatures, enabling the determination of whether the structure had been
damaged due to impact events.

While the use of AE in monitoring the impact on fiber composite materials has shown
promise, traditional methods of analyzing AE signals are often challenging, especially for
complex datasets, and require manual analysis based on expertise. Furthermore, environ-
mental restrictions during aircraft operations limit the number of AE sensors that can be
attached to the aircraft, adding complexity to data analysis. Considering these limitations,
developing approaches including machine learning are necessary to aid in the real-time
analysis of AE data from a minimal number of sensors, in this case, a single AE sensor, and
to discern impact locations.

Machine learning algorithms, such as support vector machines (SVM) [27], random
forests [28], and artificial neural networks (ANN) [29], have been employed to classify AE
signals into different classes and identify damage mechanisms and have demonstrated their
ability to handle complex datasets and achieve acceptable accuracy in damage identification
and damage localization in composite materials. For instance, Xu et al. [27] used SVM to
classify AE signals obtained from carbon fiber-reinforced polymers, demonstrating the
potential of machine learning in damage assessment. Wang et al. [28] employed random
forests to identify the type and severity of defects in composite materials by analyzing
AE signals. Ai et al. [29] investigated impact localizations on an aviation control surface.
The localization task was considered a classification problem. ANN, random forest, and
stacked autoencoder were used to classify AE data obtained from an impacted composite
specimen into different regions and achieved acceptable accuracy.

The application of machine learning techniques for AE signal analysis in the previous
literature highlighted the efficacy of these methods for the impact localization of aircraft
control surfaces. Notably, existing research on impact localization of aircraft control surfaces
using machine learning focuses on transforming impact localization into a classification
problem, where the impact is confined to a relatively broad area. However, there is a gap in
achieving accurate impact localization of aircraft control surfaces, specifically focusing on
localizing impacts with precision instead of within a broad area. To address this gap, this
paper presents a preliminary study that investigates the application of a single AE sensor for
localizing impact on aircraft control surfaces. In this preliminary study, the impact energy
is assumed to be constant. In contrast to treating localization as a classification issue, this
approach employs two regression algorithms, namely, linear regression and random forest,
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to accurately estimate the location of each impact event. Linear regression and random
forest were chosen due to their simplicity and interpretability. The two methods provide a
simple and effective way to model the relationship between the AE and impact locations.
Moreover, linear regression and random forest models are computationally efficient, which
is essential in a real-time SHM system. To assess the efficacy of the proposed method, an
impact experiment was carried out on a specimen of an aircraft elevator. The findings of
this research demonstrate that the proposed method effectively localizes impacts, thereby
substantiating the potential of regression algorithms in enhancing the precision of impact
localization for aircraft control surfaces.

2. Methods
2.1. Acoustic Emission Monitoring

Acoustic emission is a phenomenon that arises from the rapid release of energy within
materials, giving rise to transient stress waves [30]. By positioning AE sensors on the surface
of an object, it becomes possible to detect and gather acoustic emission (AE) signals [31].
The method of recording and processing AE signals to diagnose the health status of an
object is referred to as AE monitoring. Through the analysis of the AE signal, it is feasible
to extract various AE features. Schematic representations of commonly used AE features
such as “Amplitude”, “Counts”, “Counts to peak”, “Rise time”, and “Duration” are shown
in Figure 1.
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Figure 1. Acoustic emission monitoring (regenerated after [32]).

2.2. Impact Localization Using Linear Regression

Linear regression is a widely used technique for modeling the relationship between
a dependent variable and one or more independent variables [33–35]. In this study, the
dependent variable is the impact location, and the independent variables are features
extracted from the AE signals. Linear regression works by fitting a linear equation to the
observed data points in such a way that the sum of the squared differences between the
actual and predicted values (residuals) is minimized. This process is known as Ordinary
Least Squares (OLS) [36]. The linear equation can be expressed as follows:

y = β0 + β1 x1 + β2 x2 + . . . + βn xn (1)

where y refers to the dependent variable (impact location), β0 is the intercept (constant
term), and β1, β2, . . . , and βn are the coefficients of the independent variables x1, x2, . . . ,
and xn.

2.3. Impact Localization Using Random Forest

Random forest is an ensemble learning method for classification and regression
tasks [37]. It works by constructing multiple decision trees and combining their outputs
to improve predictive accuracy and reduce overfitting [38]. The random forest algorithm
consists of the following main steps: bootstrap sampling, tree construction, and aggrega-
tion [37].

In this study, both linear regression and random forest algorithms were applied to
predict impact locations based on AE features. The performance of each method was



Appl. Sci. 2023, 13, 6573 4 of 13

compared using various evaluation metrics, such as the coefficient of determination (R2)
and root-mean-squared error (RMSE) [39]. This comparison aids in the determination of
the most suitable model for prediction of impact locations in this specific context. Figure 2
presents the structure of a random forest regression model with 100 decision trees. The
color circles in the figure refers to the node of decision trees.
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3. Experiment
3.1. Specimen

To assess the efficacy of the impact localization methodologies delineated in this study,
an impact experiment was conducted on an aircraft elevator from Gulfstream G650 [40]. The
elevator was manufactured and provided by GKN Fokker. The elevator is a rib-stiffened
box. On the top surface of the elevator, the panels are constructed in between the ribs. The
elevator specimen was mounted on a 6.1 m long and 0.61 m high steel frame. The hinge
brackets situated on the elevator spar were securely fastened to the corresponding hinge
points on the frame. The elevator specimen is shown in Figure 3.
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3.2. Impact Experiment Setup

During the operation of aircraft, impacts may come from a range of sources, both
natural and man-made. Among the natural sources, bird strikes and hailstorms pose a
significant risk and are relatively frequent events in the aviation industry. These impacts
may result in significant damage [41]. In terms of man-made sources, debris on runways
also poses a significant risk. The debris can be propelled by the engines, causing potential
damage to the fuselage or wings [42]. Of these sources, certain types of runway debris may
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exhibit some degree of constant impact energy, assuming a degree of consistency between
the type of debris, its size, and the speed of the aircraft during take-off or landing [43,44].
However, it is important to note that the inherent randomness and unpredictability of these
phenomena often result in large variations in the associated impact energies. In order to
simplify the impact scenario, the present paper only locates impacts of constant energy.

The impact experiment setup is shown in Figure 3. An experimental setup involving a
steel sphere impacting the elevator specimen was employed to assess the proposed impact
localization system. The steel sphere, with a diameter of 0.013 m and a weight of 8.4 g, was
consistently positioned at 0.61 m from the elevator’s surface for all impacts. The impact
energy was maintained at 0.05 J, with all variables remaining constant except the impact
location. A guide tube was utilized to regulate the location and height of each impact. The
elevator featured 20 ribs, with one distinct impact point on each rib. An acoustic emission
(AE) sensor was affixed to the elevator’s spar near the location of the vertical stabilizer.
This location was chosen to minimize cabling in the aircraft. Each impact location was
subjected to 60 impacts, resulting in a total of 1200 impacts. AE signals were recorded by
an acquisition system throughout the experiment. The dimensions, material of the elevator,
and the locations of the sensor and impact are presented in Figure 4. It should be noted that
in the rest of the paper, “rib number” is used as the label for linear regression and random
forest models. This “rib numbering” refers to the listing of the ribs in Figure 4, starting
from left to right.
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In this study, the impact of aircraft elevator panels was not investigated. As an integral
part of the fuselage, the ribs are responsible for maintaining the aerodynamic shape of
the control surfaces. Damage to the ribs due to impact (e.g., gradual reduction in stiffness
due to repeated impacts) can therefore have serious aerodynamic and structural effects
that may endanger flight safety. This investigation, therefore, prioritizes the monitoring
of impacts to the ribs to facilitate a detailed understanding of their long-term structural
integrity under repeated low-velocity impacts.

3.3. Acoustic Emission Data Acquisition

The AE system was purchased from MISTRAS Group Inc. (Princeton Junction, NJ,
USA) and featured a PAC Micro-30 AE sensor with an operational frequency range of
150–400 kHz. The amplitude threshold was configured at 32 dB, with a sampling rate
of 5 MHz. A pre-trigger time of 256 µs was established to ensure the acquisition system
captured the complete signal initiation. The peak definition time (PDT), representing
the duration from threshold crossing to peak amplitude, was set at 200 µs. A signal
duration of 2000 µs was employed to identify the peak, while the hit definition time
(HDT)—governing the termination of impact recording—was configured at 400 µs. Signal
recording commenced when the voltage exceeded the threshold value and ceased when
the HDT parameter duration elapsed without additional threshold crossings. Notably, the
HDT is typically twice the PDT. Lastly, the hit lockout time (HLT) was established at 400 µs
to prevent the inclusion of reflected hits and late-arriving signals. All the parameters above
for the acquisition system were defined according to the criteria in [32].
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4. Results and Discussion
4.1. Acoustic Emission Data Preprocessing

As mentioned in the previous section, the AE signals for this study were obtained
from an AE acquisition system during steel sphere impact testing. Figure 5 presents
four typical AE signal waveforms recorded in the impact experiment. The difference in
the AE waveform pattern can be related to the difference in the impact location and the
distance between the sensors. AE signals were subsequently processed to extract relevant
features from the AE waveform. The purpose of extracting these features was to distill
the complex information embedded within the signal into a set of specific, representative
values that effectively capture the properties of the AE signal. In the present study, a total
of 15 key features, including count, signal strength, and reverberation frequency, were
derived from the initial signal. Count refers to the number of threshold crossings in the
AE signal. In simpler terms, it is a measure of how many times the signal goes beyond a
certain predefined limit, which can indicate the intensity of the emission. Signal strength
is essentially the integral of the rectified voltage signal over the waveform duration. It
provides a quantitative measure of the overall “energy” present in the AE signal. This
feature is essential in understanding the severity of the impact or event causing the emission.
Reverberation frequency is the frequency after the peak of the AE signal. Essentially, it is
the dominant frequency that persists after the initial, most intense portion of the signal has
passed. This feature can provide insights into the nature of the event causing the emission,
as different events can have different reverberation characteristics.
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A comprehensive list of all features, along with their descriptions, is provided in
Table 1. These 15 features were selected as they have shown the good performance of
source locations [17]. The linear regression and random forest models proposed in this
study were applied to an input dataset composed of 1200 samples, each encompassing all
15 extracted features.

Table 1. AE features and their descriptions.

Parametric Features Feature Descriptions

Amplitude The highest magnitude observed in the AE waveform.
Average signal level (ASL) The effective voltage with a characteristic time TASL.
Root mean square (RMS) The effective voltage with a characteristic time TRMS.
Energy Quantification of the electrical energy contained within an AE signal.
Signal strength The integral of the rectified voltage signal over the waveform duration.
Absolute energy The absolute magnitude of electrical energy measured in an AE signal.
Rise time The duration between the initial threshold crossing and the peak.
Duration The time span encompassing the first and last threshold crossings.
Count The count of instances where the signal crosses a predefined threshold.
Counts to peak (PCNTS) The number of threshold crossings from the first crossing to the peak.
Average frequency A parameter used to describe the overall frequency content of an AE signal.
Peak frequency The frequency at which the signal exhibits its highest contribution.
Frequency centroid A parameter used to characterize the overall frequency distribution or spectral content of an AE signal.
Reverberation frequency The dominant frequency that persists after the initial, most intense portion of the signal has passed.
Initial frequency The dominant frequency observed before the peak.
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4.2. Localization Results Using Linear Regression

Before inputting all 15 AE features into the linear regression model, feature analysis
was performed by computing the correlation coefficient. The correlation coefficient is a
numerical value that measures the strength and direction of a linear relationship between
two variables. It is a descriptive value that is used heavily in statistics to make conclusions
about data. The coefficient can range from −1 to 1, and the closer the coefficient is to either
−1 or 1, the stronger the relationship between variables. We utilized this technique to
identify potentially relevant features and subsequently plot a Pearson correlation heatmap
(Figure 6) for visualization purposes. Upon examining the correlations between the AE
feature and the impact location (rib number), several significant relationships are observed.
The strongest negative correlation is with amplitude (−0.9302), suggesting an inverse
relationship between it and the rib number. As amplitude increases, the rib number tends
to decrease, indicating that amplitude is a critical factor in determining the impact loca-
tion. Other features, such as duration (−0.7022), count (−0.6845), and average frequency
(−0.7199), also exhibit strong negative correlations with the rib number, highlighting their
potential correlation with the impact locations. Conversely, rise time (0.3463) demonstrates
a moderate positive correlation with rib number, implying that higher rise time values
correspond to higher rib number. When looking at the five frequency-related parame-
ters used (reverberation frequency, average frequency, peak frequency, initial frequency,
and frequency centroid), the reverberation frequency and the average frequency are the
parameters of more prominent relevance. The reverberation frequency is defined as the
frequency of a signal after reflection from various structural boundaries, and it conveys a
wealth of information about the geometry of the structure and the AE wave propagation
path. This information becomes indispensable when the task is to locate the AE source
with a single sensor [45,46]. The average frequency, another frequency parameter with high
correlation, contains the reverberation frequency. Thus, both the reverberation frequency
and the average frequency have a high correlation with the impact location. In contrast,
the peak and initial frequencies and frequency centroid contain no information about the
reverberation. These parameters encapsulate different sides of the AE signal and, unlike re-
verberant frequencies, have no propagation path or structural boundary effects. Therefore,
they have a much lower correlation with the impact location.
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The correlation coefficients presented between the features and the label offer critical
insights into the relationships that may be leveraged when selecting features for a linear
regression model. In developing an accurate and reliable model, it is essential to select
features that exhibit a strong correlation with the label, while minimizing multicollinearity
among the selected features. The absolute values of the correlation coefficients between the
impact location and the 15 AE features are shown in Figure 7. All correlation coefficients
are arranged in ascending order.
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For the linear regression model in this paper, the learning rate is set as 0.1, and the
max iteration is 1000. Following the ranking of features based on their correlations, a
backward elimination process was employed, iteratively removing the feature with the
lowest ranking, and subsequently utilizing the remaining features in the linear regression
model. The RMSE and R2 values were computed at each step to evaluate the performance
of the model. Tables 2 and 3 display the coefficients of all features used in constructing
the linear regression equation, as well as the corresponding R2 and RMSE values ob-
tained when each feature is sequentially deleted. Initially, the model demonstrated a high
R2 value of 0.9361 and a low RMSE of 1.4614. As features were progressively removed,
the R2 value gradually decreased, and the RMSE increased, indicating a reduction in the
model’s explanatory power and accuracy. It should be noted that the R2 value remained
stable until the ninth feature was removed, after which a more significant decline was
observed. This suggests that the first eight features removed had a comparatively limited
impact on the performance of the linear regression model, and the remaining features were
more influential in predicting the label. In summary, these findings suggest that all features
contribute to the prediction of the impact location and should be retained in the linear
regression model.
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Table 2. Coefficients of features used in the linear regression equation, and R2 and RMSE for
backward elimination.

Coefficients of
Variables Delete None Delete 1 Delete 2 Delete 3 Delete 4 Delete 5 Delete 6

Amplitude −0.38874 −0.40864 −0.40198 −0.43819 −0.4686 −0.47675 −0.47685
ASL −0.14194 −0.18554 −0.1897 −0.19827 −0.10552 −0.1097 −0.11016
Average
Frequency 0.054975 −0.28685 −0.30435 −0.02979 −0.02353 −0.02833 −0.02848

Reverberation
Frequency −0.0445 0.28347 0.296833 0.035397 0.033767 0.042611 0.042782

Duration 1.56 × 10−5 −6.00 × 10−6 −2.00 × 10−5 1.37 × 10−5 1.48 × 10−5 2.34 × 10−5 2.31 × 10−5

Count −0.00236 −0.00195 −0.00168 −0.00228 −0.00215 −0.00231 −0.00232
Signal Strength −6.30 × 10−6 −6.40 × 10−6 −7.50 × 10−6 −2.00 × 10−6 −4.70 × 10−6 −1.50 × 10−6 −1.50 × 10−6

Energy −0.66253 0.054989 0.060861 0.02966 0.043758 0.024108 0.024254
Frequency
Centroid −0.02227 −0.03006 −0.01738 −0.03135 −0.03521 −0.03764 −0.03763

Absolute
Energy −2.30 × 10−6 −9.00 × 10−7 −3.50 × 10−7 −1.10 × 10−6 8.92 × 10−8 5.72 × 10−8 /

Initial
Frequency 0.000384 −0.00117 −0.0014 −0.00319 −0.00323 / /

RMS 33.16985 65.97887 66.95417 50.09611 / / /
Rise Time 0.00504 0.001808 0.001882 / / / /
PCNTS 0.010839 0.014069 / / / / /
Peak
Frequency −0.05168 / / / / / /

Intercept 36.09853 39.63695 39.70405 43.43703 43.1448 43.42157 43.43426

R2 0.9361 0.9281 0.9255 0.9197 0.9187 0.9176 0.9176
RMSE 1.4614 1.5507 1.5784 1.6390 1.6485 1.6599 1.6599

Table 3. Continuation of Table 2.

Coefficients of
Variables Delete 7 Delete 8 Delete 9 Delete 10 Delete 11 Delete 12 Delete 13

Amplitude −0.53962 −0.53972 −0.54393 −0.58384 −0.60369 −0.60258 −0.59833
ASL −0.04556 −0.04548 0.201282 0.235985 0.230852 0.229102 0.228328
Average
Frequency 0.002124 0.002091 −0.0418 −0.03239 0.012376 0.004003 /

Reverberation
Frequency 0.019079 0.019156 0.017189 0.037602 −0.00845 / /

Duration 5.61 × 10−5 5.63 × 10−5 −0.00013 −3.50 × 10−5 / / /
Count −0.00284 −0.00284 0.001274 / / / /
Signal Strength −4.50 × 10−6 2.37 × 10−6 / / / / /
Energy 0.042939 / / / / / /
Frequency
Centroid / / / / / / /

Absolute
Energy / / / / / / /

Initial
Frequency / / / / / / /

RMS / / / / / / /
Rise Time / / / / / / /
PCNTS / / / / / / /
Peak
Frequency / / / / / / /

Intercept −0.53962 −0.53972 −0.54393 −0.58384 −0.60369 −0.60258 −0.59833

R2 0.9115 0.9115 0.8784 0.8774 0.8757 0.8757 0.8757
RMSE 1.7198 1.7199 2.0162 2.0247 2.0386 2.0387 2.0390

4.3. Localization Results Using Random Forest

For the random forest model in this paper, the base model is classification and regres-
sion trees (CART). The split criteria are mean square error MSE. The number of random
features to consider at each split is set as 5. Prior to employing the random forest model for
predicting impact locations, it is crucial to optimize the number of decision trees involved
in the model. In this study, an exploratory trial-and-error experiment was conducted to
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optimize the random forest model by incrementally increasing the number of decision
trees, ranging from 1 to 200, while examining the out-of-bag (OOB) error. The OOB error
serves as a valuable metric for evaluating the random forest model during the training
phase. For each decision tree within the random forest, a random subset of the training
data is selected and employed to construct the tree, while the remaining data points are
utilized for calculating the OOB error. The OOB error effectively measures the proportion
of misclassified samples among the OOB samples for a given decision tree.

For localization of impact, the OOB error is the ratio of accurately located impacts to
the total number of impacts. The random forest-predicted impact locations are rounded
and then compared to the actual impact locations. To enable a meaningful comparison
between the predicted impact locations and their actual counterparts, the random forest
model’s predictions are rounded to the nearest integer values. The OOB error analysis
revealed that the model attained the minimum OOB error (18.19%) when approximately
100 decision trees were incorporated. Consequently, a random forest model comprising
100 trees was selected for the remainder of this study. This optimization process ensures
that the model achieves a balance between complexity and generalizability, minimizing the
risk of overfitting while maximizing predictive performance.

Upon optimizing the number of decision trees, the AE dataset, consisting of 15 features,
was incorporated into the random forest model as input. The dataset was partitioned using
a 70/30 training/testing ratio to ensure a robust evaluation of the performance. The results
demonstrated a high level of accuracy, indicating that the model is well suited for the
given task. Figure 8 illustrates a comparison of the actual impact locations with their
corresponding predicted impact locations derived from the model. The R2 value, equal to
0.98616, signifies a good fit between the predictions and the actual labels. This suggests
that the model is adept at accurately capturing the underlying relationships between the
predictor variables and the response variable.
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Figure 9 presents a comparative analysis of the true impact locations and their re-
spective model-generated predictions. Upon closer examination, it is evident that the
discrepancies between the predicted values and the actual labels are minor, signifying a
high degree of accuracy in the performance. To quantify these errors more rigorously and
evaluate the reliability, the RMSE was calculated. In this case, the random forest model
boasts a notably low RMSE value of 0.6778, which further substantiates its accuracy and
precision. The findings of R2 and RMSE suggest that the predictions align closely with the
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actual impact locations, making the random forest model a dependable tool for locating
the impact location within the confines of this study.
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5. Conclusions

This study investigated the use of AE monitoring for impact localization on aircraft ele-
vators, employing two regression machine learning models—linear regression and random
forest—to analyze AE signals and predict impact locations. The study demonstrated the
efficacy of both models, with the random forest model outperforming the linear regression
model in terms of accuracy. The key findings and conclusions drawn are as follows:

1. AE monitoring has the potential to be an effective tool for detecting and localizing
impacts on aircraft elevators, offering a real-time and noninvasive monitoring solution
for improved aircraft safety and maintenance.

2. Both linear regression and random forest regression models demonstrated high accu-
racy in predicting impact locations, proving the effectiveness of regression algorithms
in analyzing AE signals for impact localization.

3. The Pearson correlation analysis demonstrated a strong correlation between amplitude
and impact location, suggesting that amplitude may be a critical factor in predicting
the impact location using linear regression.

4. The random forest model demonstrated better performance compared to the lin-
ear regression model, with a higher R2 value (0.98616) and a lower RMSE (0.6778),
indicating its potential for practical applications in the aviation industry.

The limitation of the current study is the difficulty with access to the labeled AE signals
for existing aircraft components. Future studies may address this issue by employing
transfer learning or involving simulation AE data in the training of machine learning
models. Future research could also explore other machine learning models and feature
extraction methods to further enhance the accuracy of impact localization on aircraft
elevators using AE monitoring, as well as investigate the scalability of these techniques
to other parts of the aircraft. By incorporating additional sensor data, such as strain and
temperature measurements, future research could also further improve the accuracy and
reliability of the impact localization system, providing a more holistic understanding of
structural health.
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