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Abstract: It is generally considered that the representation of a double layer supercapacitor (DLSC)
cannot be performed with the usual capacitance and resistance series connected, as it induces a
relatively high level of inaccuracy in the results. In multiple previous studies, more advanced models
have been developed with very different approaches: models with distributed parameter circuits,
based on artificial neural networks (ANNSs), fractional order, etc. A non-linear model, less complex
than the previous ones and whose behavior adequately represents the DLSCs, is the one formed by a
variable capacitance, dependent on its internal voltage. This paper presents a mathematical study
to obtain analytical expressions of all the electrical variables of DLSCs, voltage, current, dissipated
power and so on, by means of a previous model. This study is carried out considering that the
DLSC is charged and discharged through a voltage source and also discharged through a resistor.
In later sections, the operational conditions of the DLSC in numerous industrial applications are
presented. Finally, a comparative analysis is made between the results produced by the conventional
model, with constant capacitance, and the developed model. This analysis is finally followed by
the conclusions.

Keywords: conventional supercapacitors (SCs); double layer supercapacitors (DLSCs); analytical
model; industrial applications

1. Introduction
1.1. Summary of the Available Models for DLSCs

There are multiple models in scientific literature to represent SCs [1]. The most widely
used is the RC model, with constant capacitance C connected in series to its equivalent
resistance (ESR) [2-6]. This simple model has several advantages; on the one hand, both
capacitance and ESR are provided by the manufacturers in the cell data specifications. In
addition, both variables are obtained by standardized tests. On the other hand, this model
allows relatively simple analytical expressions to be obtained when using SCs in practically
all their operating modes, even when charging or discharging at constant power, something
that can be much more difficult when working with other more complex models [7]. This
electrical model is also used when studying the thermal behavior of the SC [8,9] or when
sizing the capacity of an SC bank for a particular application [10,11].

Despite all the above advantages, this is not the most suitable model for the analysis
of DLSCs, hence the existence of studies that develop more sophisticated models, based
on different mathematical approaches. Depending on the application in which the DLSC
is used, it may be necessary to include additional parameters. For example, the model
developed by V. Musolino et al. [12] allows for a complete electrical study when the DLSC
works with currents containing different frequency components. Furthermore, in order
to improve the dynamic response of the final model, it is possible to emulate DLSCs with
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several RC branches connected in parallel, each one with a different time constant [13], and
it is even possible to represent it as a transmission line, which fits excellently to the real
physical structure of this type of cell, with good dynamic behavior and accurate results [14].
These very complex models provide good results, although they have some drawbacks
which, on many occasions, force researchers to use simpler approaches. On the one hand,
due to their complexity, it is difficult to obtain analytical expressions from them, so in most
cases it is necessary to use numerical computation or simulation. In addition, the value of
the variables needed to correctly build them are not provided by the manufacturers, so the
only way to know them is by means of laboratory tests combined with complex estimation
algorithms. Some of them are not even circuit models, which makes it difficult to use them
with simulation tools, having to resort in many cases to numerical calculation methods.

The model of DLSC with variable capacitance, dependent on its internal voltage, has
been used with excellent results [15-18]. This model is more accurate than the constant
capacitance RC series model and does not present the complexity of other, much more so-
phisticated models. Due to their ease of use, one of these two models (constant capacitance
or variable capacitance) is often chosen in numerous industrial applications. Using one or
the other will depend on the precision needed in each particular case.

1.2. Main Modes of Operation of the DLSCs

When working with DLSCs, in most industrial applications, four modes of operation
are usual: charging/discharging at a constant current, constant voltage, constant power,
constant resistance or combinations of two or more of the above. A summary of the typical
applications for each case, emphasizing the charging/discharging through a voltage source
or discharging through a constant resistance, which is the most relevant to this study, are
presented below.

Full charging of an SC, using only a voltage source, is not usually performed in
industrial applications, since, if starting from zero voltage, the charging efficiency cannot
exceed 50% [19]. However, the higher the initial voltage of the SC, the higher the efficiency
when charging. In fact, if the SC starts charging from a voltage that is 50% of that which
provides the source, the charging efficiency rises to 75%. It is therefore common to split
the charge into two stages. The first stage is at a constant and high current, until the SC
is close to full charge. In the second stage, a voltage source is used, whose unloaded
voltage is the SC’s rated one. This ensures a full load up to the rated voltage of the SC with
very high efficiency. This procedure is known as the constant current—constant voltage
method (CC/CV) [20-22]. Constant current charging and discharging is also used by cell
manufacturers to obtain the electrical parameters of the constant capacity RC series model,
by applying standardized methods, and also to obtain the thermal parameters (resistance
and thermal capacity).

Recent studies have raised the possibility of integrating SCs into photovoltaic panels,
so that the panel itself includes an energy storage system [23-25]. This new concept can
have many applications for off-grid systems, such as uninterruptible power supply systems,
as a backup in case of power failure in mobile phone towers or as off-grid lighting systems.
In these applications, where DLSCs are directly connected to solar panels, over a wide
range of voltages, during the charging process of the SCs, the panel can be considered as
a real current source or as a real voltage source and, in both cases, it can be reduced to
the latter.

In many power conversion applications, both the load and the source can be modelled
as a system operating at a constant power [26-28], for example, in emergency lighting
systems and DC micro-grids. In other cases, the load can be represented as a constant value
resistor [29-31]. N. Kularatna et al. [29] proposed an instantaneous water heating system
for domestic use, based on SCs, where a low voltage storage accumulator is needed, for
safety reasons, but with the capacity to deliver the stored energy in a very short time. The
aim is to heat the cold water remaining in the pipes very quickly to avoid waste. In this
case, the SCs are discharged through a heating resistance that can be considered constant.
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The material used in their manufacturing is usually nichrome, an alloy whose resistivity is
practically invariant in a wide range of temperatures. In addition, the heat produced will be
quickly transferred to the water, for a very short time, causing the maximum temperature of
the material to remain not too high. As the resistance of the heating system is much higher
than the internal resistance of the SC bank itself, this application has a very high efficiency;
practically all the energy extracted from the SC is dissipated in the heating resistor.

A usual case where SCs can be considered to be discharged through a constant re-
sistance appears when studying the phenomenon of self-discharge. The cells discharge
their stored energy through their own leakage resistance, which can be considered constant
and of a high value [32]. Another industrial application of SCs in which they are used
as a capacitive voltage source is in welding guns [33,34], where a bank of SCs replaces
transformers. In this case, the discharge can be considered to take place through a resistor
that can be roughly modelled with a constant value.

In the last decade, SCs have started to be used in a very specific application called
Supercapacitor Assistant Surge Absorb, SCASA, [35-38], where they are used to absorb
transient overvoltage. The advantage they present in this case is their ability to withstand
transient voltage peaks of several kV. To analyze the ability of the SCs to endure these
transient surges, the voltage pulse is usually modelled as a high voltage constant source
and very short duration.

As has been shown, the number of industrial applications where DLSCs are charged
by a voltage source or discharged through a constant resistance is significant and growing.

1.3. Limitations of the Present Models

The existing models can be classified into three groups, depending on the possibility
to calculate from them simple analytical expressions of the different electrical quantities
(current, internal voltage, dissipated energy, etc.), for the four modes of operation described
above. The first group would consist of the constant capacitance RC series model. This
is the only model for which valid analytical expressions exist to study the four modes of
operation. This is the reason why it is the most widely used, even if the results are less
accurate than those obtained with more sophisticated approaches. In the second group
would be the series RC model, with capacitance linearly varying with voltage and a single
branch. For this model, only analytical studies of its operation at a constant current can be
found. In fact, the methods for the estimation of its parameters are based on the analytical
expressions for DLSC operation when discharged at a constant current. For this model,
there are no published analytical expressions when operating at a constant power, nor is
it possible to find studies when charging or discharging the cell through a voltage source
or discharging at constant resistance. The third group would be formed by the rest of the
models (models with several parallel RC branches, distributed parameter models, etc.),
which are more accurate but much more complex, making it very difficult, if not impossible,
to obtain simple analytical expressions that allow the calculation of the main electrical
variables when operating in any of the four operational modes. Therefore, their use is
usually restricted to numerical calculation or simulation.

Although numerical methods and the use of simulators are useful and, in certain cases,
they are the only way to analyze the behavior of DLSCs, having analytical expressions
is a great advantage, since they allow for a simple, fast and accurate analysis. Moreover,
conclusions can be drawn much faster from them than with other methods, which imply
multiple simulations and laboratory tests.

1.4. Objectives of the Study

Due to the interest of analyzing the behavior of a DLSC when it is charged or dis-
charged through a voltage source (or discharged through a constant resistance) and the
importance of having analytical expressions, the following section will develop the mathe-
matical formulae needed to calculate all the electrical quantities, using the variable capaci-
tance model. This will fill a small gap in the scientific literature on SCs.
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So far, it has been most common to use the constant capacitance RC series model, due
to its great simplicity. In this study, the analysis has been extended to a more accurate and
complex case, by using the variable capacitance model, which, in addition, is transformed
into the constant capacitance model by simply modifying only one parameter. It can be said
that this study is an extension of those carried out to date. In addition, a comparison of the
results produced by both models will be shown, so that researchers working in this field
can select the option that most interests them, depending on what they intend to analyze
and the precision they need.

The rest of this paper is arranged as follows: Section 2 will show the mathematical
study to obtain the electrical variables of a DLSC connected to a voltage source. The
equations obtained will be valid for both charging and discharging. In Section 3, several
examples will be presented, where the DLSC will be charged by a voltage source and the
solutions obtained will be compared with those of the RC series model and the variable
capacitance model. Finally, Section 4 will summarize the conclusions of the whole study.

2. Materials and Methods
2.1. Electrical Analysis of a DLSC Charged or Discharged with a Voltage Source

This section will show how to express the different electrical variables of a DLSC when
connected to a voltage source. The voltage source will be represented by a constant no load
voltage, E, and a series connected resistor, Rc. As mentioned above, the supercapacitor
model will be that of a capacitance linearly varying with its internal voltage. All the
obtained functions will be valid for charging and discharging with a voltage source or
discharging with a constant resistor. In the second case, it is sufficient to cancel the no-load
voltage, E = 0V, and the discharge resistance will be Rc. The internal resistance of the
DLSC will be denoted as R and its capacitance will vary with the internal voltage called
u. The external voltage of the DLSC is u., and will obviously coincide with the terminal
voltage of the voltage source (Figure 1).

Voltage source DLSC model
| Rc | i | R |
: NN ——O— :
i — E | Uco| | u|="—C —=C,(w)

Figure 1. Discharge of the DLSC through a voltage source.

The capacitance of the DLSC shall be modelled as the parallel association of two ca-
pacitances, one of constant value, Cy, called “Initial Capacitance”, which is the capacitance
when the DLSC is fully discharged, and the other which is proportional to the internal
voltage, Cq(u). The final capacitance of the cell, C(u), will be the parallel association of
the two.

C(u) =Cp+C1(u) = Co + ke-u. (1)

The values of Cj and k. are not specified in the datasheets of the cells provided by
the manufacturers but can be expressed as a function of the rated capacitance, Cy, and
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the rated voltage, Uy. In this way, the capacitance can be expressed as a function of the
internal voltage as follows:

C(u) =C0+UN~(1—éi)-uZCNko-‘—SI;-(l—ko)-u. 2)

The value of kg (dimensionless), which is the quotient of the initial capacitance and the
nominal capacitance, is known as the “Normalized Initial Capacitance”. In a conventional
capacitor, with constant capacitance, it is true that: kg = 1, k. = 0 and Cy = Cy. The constant
kg is also not usually specified in the datasheets, but in most families of SCs from different
manufacturers, kg presents values between 0.7 and 0.8. Considering a discharge process,
according to the definition of an electric current, this is equal to the time variation of charges
experienced by the device, i.e.,

d dq du
9 _ 99 du 3)

R TR A P

The negative sign indicates that the current represents a discharge. In both conven-
tional SCs and DLSCs, the capacitance establishes the well-known relationship between
electric charge and internal voltage:

q=C(u)-u. )

Considering the capacitance value in (1), the stored charge can be expressed as a
function of the internal voltage and the values of Cy and k:

q= Cou + ke ©)

By deriving the charge q with respect to the internal voltage:

d
o2k ©)
du
If the value of the derivative calculated in (6) is substituted in the expression for the
current, the relationship between the current and the internal voltage can be obtained:

dq du du
T s Gk g =G

Virtual Capacitance

i:

@)

The Cy value is called “Virtual Capacitance” or “Dynamic Capacitance”. When the
DLSC is discharged through a voltage source, the following must also be fulfilled:

Ueo = E+Reii=u—Rii. (8)
Therefore, the value of the current will be the following:

u—E

IZRC—}—R'

©)

Substituting in (9) the value of the current obtained in (7) gives the following first-order
differential equation of separate variables:

u—E du

R~ (Cot2ken) g (10)
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Assuming that at t = 0, the DLSC starts from a known internal voltage of value u
(t =0) = Up (in the case of the discharge, it is satisfied that Uy > E), and separating the two
variables of (10), it is given that:

/u Co+2-kc~u_du:/t_ dt
Uy u-—E 0 R.+R

(11)
By integrating (11), the following equality, where time is related to the value of internal
voltage, is obtained:

2-keu
CQ —|—2-kC-E

2-ke-Up B t
CO + 2'kc‘E (Rc + R)'(CO + 2'kc‘E)

Inju—E| + =In|Uy — E| + (12)

During a charging process (E > Uy), it will also be true that E > u, since the internal
voltage can never exceed the value of the voltage source, and (12) would be equally valid.
In order to simplify the mathematical development, two new constants, k; and kp, will

be defined:

2-ke
_ RS 1
ka Co+2°kE’ (13)
ko = ! (14)

(Re+ R)-(Cy + 2k E)’

k; is measured in V™! and k; in s~1. Both constants shall be considered positive. The
sign of the voltage source, E, cannot be negative since all SCs, such as electrolytic capacitors,
only admit one polarity. If E were negative, the SC could reach an internal voltage of u <0
which would irreversibly damage it.

By means of kj and kj, (12) can be simplified as follows:

ln\u—E|—0—k1~u:1n\U0—E|—I—k1~UO—k2~t. (15)

The equality obtained in (15) shows the relationship between the internal voltage, u,
and the time, t. From this equation, it is possible to obtain the internal voltage as a function
of time, u(t):

u(t) =E+ kiwo (k1~(U0 - E)~ek1'(U0—E>—k2'f), (16)
1

where Wy(x) represents the main or superior branch of the Lambert W function which will
be used in both charging (E > u) and discharging (E < u), as will be latter explained. E, k;
and Uy make it possible to define a new constant, k:

k3 = kq-(Ug — E)-ek1-(Uo—E) (17)

ks is dimensionless, positive at discharge (Up > E) and negative at charge (Up < E).
The internal voltage, expressed as a function of this new constant, is as follows:

— l o kot
u=E+ - Wo(k3e ) (18)

In order to further simplify the rest of the mathematical analysis, a new function called
g(t), measured in (V), will be defined with the following expression:

g(t) = kil-wO (kg.e*kz*). (19)

The internal voltage, u, expressed as a function of g, gives the following equation:

u=E+g (20)
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The expression of the variable g given in (19) is valid only for k. > 0 (kg < 1). To model
a conventional capacitor of constant capacity by using (20) and entering the value kg =1
would lead to an indeterminacy. However, it can be shown that the same function would
be obtained by using the classical formulas without more than taking into account that:
—t

lim g(t) — (UO — E).e(Rc+R)»C0 (21)

ko—1

By means of (9) and (20), the discharge current as a function of g is also obtained:

.8
"TRIR @2)

In the case of charging (E > u), it follows from (20) that the value of g will be negative,
while during discharging, (u > E), g will always be positive. As in (22), the expression for
the current supplied by the DLSC was presented, if E > u is satisfied, g will be negative,
therefore the current will be absorbed by the DLSC.

As mentioned above, only the main branch of the Lambert W function, Wy(x), can be
used. This restriction is caused by the fact that during a discharge, as time, t, increases, the
argument x of the function Wy(x), presented in (19), is positive (k3 > 0) and decreasing; for
positive values of x, only the main branch of the function is defined (Figure 2). In this case,
if time tends to infinity, the value of x will tend to zero; therefore, the value of g also tends
to zero, so the internal voltage, u, will converge to the value of the voltage source E. During
a charging process, since u < E, the argument of Wy(x) will be negative (k3 < 0) and its
absolute value will be decreasing. Consequently, as time increases, the absolute value | x|
tends to zero, as do the functions Wy(—1x 1) and g, and again, the internal voltage, u, will
converge to the value of E, which is what must happen. If the secondary or lower branch
of the Lambert W function, W_1(-1x 1), were taken as a solution, as | x| tends to zero, it
would tend to —oo, as would the function g and hence the internal voltage of the DLSC,
which would not make physical sense. Figure 2 shows the evolution of the variable g over
time, both in the charging and discharging processes. In both cases, for very large values of
time, t, the variable g will tend to zero, which will be its limiting value.

g(x) = (1/ky) - Wo(x)
Principal branch

Discharging
process l
-1/e x<0
| / = X
Charging
process 1 .
| -1/ Discharge: x = k; - exp(-kyt), k3> 0

Charge: x =k; - exp(-k;t), k3<0

e (k) W,4(9)
S Secondary
P branch

Figure 2. Evolution of the variable g over time, during charging and discharging processes.



Appl. Sci. 2023,13, 6714

8 of 18

On the other hand, from Equations (8) and (22), it is easy to deduce the value of the
external voltage as a function of the variable g:

R
U = E+ (R ;R> g (23)
C

The power dissipated as heat in the internal resistance R of the DLSC, p4, can also be
expressed as a function of the variable g in the following way:

R
=Ri’=————g% 24
P4 1 (RC+R)2 g ( )

Similarly, the power dissipated in the internal resistance of the voltage source, R,
presents the same function as pg4, changing R to R.; that is:

Re
= 2 25
Pdre R+ R)? g (25)

The power absorbed by the voltage source, E, representing the no-load voltage of the

voltage source is:
E
=Ei= g 2
PE= 21 (RC+R>g (26)

The output power of the DLSC, i.e., the power consumed by the voltage source, pout,
is obtained by simply multiplying the external voltage by the current; therefore:

. E R

The energy dissipated in the internal resistance, R, of the DLSC, ey, is obtained by
integrating the power loss, pq, obtained in (24). In doing so, it is considered that:

deq deq dg
——d _ "4 "5 28
Pa = g = dg at (28)
Deriving g(t) as a function of time, as presented in (19), after some simplifications, it is
obtained that:

dg —8
1= == . 29
The expression for g" in (29) is valid for both charging and discharging, without the
need to change the sign. If the value g’ obtained in (29) and the value of pq calculated in (24)
are substituted into (28), integrating both members of the obtained equation, the result is
the value of the energy dissipated in the resistance R, e4, depending on the variable g:

4= T (R +R) (go g)+3-(RC+R) (go & ) (30)

In the expression given in (30), g is the value of g evaluated in t = 0 that, according
to (20), results in gy = Uy — E. The energy dissipated in R, e4r, follows the same evolution
as eq, by only changing the value of R that appears in the numerators by R, i.e.,

€dRc = 2~(RC+R) '(gO _g)+3'(RC+R).<gO _g)' (31)
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Another variable that is important to consider is the instantaneous energy stored in the
DLSC. This energy depends on the constants Cp, k. and the internal voltage, u, according
to the following equation:

1 4 1
€stored = E <CO + 3‘kC'u> 'u2 = E'CE'uz' (32)

The Cg, value is called “Energetic Capacitance”, as it is used to obtain the energy stored
in a variable capacitance DLSC, with an equation similar to that used in a conventional
capacitor. This, as with the dynamic capacitance, also depends on the internal voltage. By
substituting the former (20) in (32), the instantaneous stored energy as a function of g is
finally obtained:

1 2
estored = 5°Co (E+8)" + Sk (E+8)°. (33)

If the DLSC starts from an initial internal voltage, Uy, and after a time, t, reaches an
internal voltage, u, the discharged energy, e4., will be:

1 2 2 3
eaen = 5Co- (U3 — (B +8)) + S ke (UD - (E+8)°). (34)

On the other hand, the energy consumed by the voltage source, E, e, can be also
obtained by integration, bearing in mind that:

- deE o deE%

PE="q ~ dg av’ (35)

Replacing in (35) the value of pg as a function of g, obtained in (26), and the value of
the derivative of g(t) with respect to time, calculated in (29), and integrating the energy
consumed or generated, depending on whether it is a charge or discharge of the DLSC can
be obtained:

e = E-(Co + 2:ke E)- (g — 8) + ke'E- (8% — 82)- (36)

Finally, it is necessary to develop an equation that expresses time as a function of g.
The variable g as a function of time was calculated earlier in (19). From the definition of the
Lambert W function itself, it must be satisfied that:

ki-g-ek1'8 = kz-e ko, (37)
Taking neperian logarithms on both sides of (37), the function t(g) is obtained:

1 ks ) Ky
f= —n ) S 38
ky <k1~g ky & (38)

By replacing ki, ky and k3, previously and respectively calculated in (13), (14) and (17)
in (38), the time, t, can be expressed as a function of g and other known variables:

t = 2:ke-(Re + R)- KZCIS +E)-1n<UOg_E> + Uy —E—g}. (39)

As can be deduced from (39), for g to reach a zero value, the time, t, should tend
to infinity. As in first-order circuits with conventional capacitors that are charged or
discharged through a voltage source, the time constant, T, can be defined as the elapsed
time for the following equality to be satisfied, valid for both charging and discharging (e
being the Euler’s number):

u—E=(Uy—E)e L. (40)
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Considering the value of t obtained in (39) and the relationship between g, u and E
from (20), the “time constant” of the circuit, T, can be determined by the following equation:

T= (RC+R)-<C0+2-kC-(UO+E_eUO>>. (41)

In contrast to conventional capacitors, the time constant is not only dependent on the
passive elements but is also a function of the initial voltage of the DLSC, Uy and the no-load
voltage, E, of the source. This result is congruent, since for this model, the capacitance
of the DLSC is a function with linear dependence on its internal voltage, whereas in a
conventional capacitor, the capacitance remains invariant.

2.2. Mathematical Expresion of g as a Function of the Electrical Variables
Once a set of equations has been obtained with the main electrical variables and time
as a function of the variable g, the complementary equations of g, as a function of the
current, voltage, power and so on, will be calculated. In this way, the development of
analytical equations will be completed, obtaining a set of functions where any variable
can be expressed as a function of the others. The variable g as a function of time has
already been found in Equation (19). The calculation of g as a function of internal voltage is
immediate if (20) is used:
g=u—E. (42)

The calculation of g as a function of the current is straightforward from (22):
g =1(Rc +R). (43)
Similarly, g can also be obtained as a function of the external voltage by simply
using (23):
R
g = (1+ R)-(uCO—E). (44)
C

By means of (24), g can be expressed as a function of the power dissipated in the
internal resistance of the DLSC, pq.

5= (R + 1) [P, )

As in (45), the value of g as a function of the power dissipated in the resistance of the
voltage source R¢, pqre, has the same form but replaces the value of R by Rg; thus:

— . [PdRe
g=(Rc+R)-/ R (46)

The expression for g as a function of the power consumed by E, pg, is also directly
obtained from (26):

g= (Rc+R)-(pr)- (47)

To express g as a function of the DLSC output power, poyt, it is necessary to solve the
second-degree equation shown in (27). Of the two possible solutions, the positive one must
be chosen both in the charging and discharging cases:

_ELe Ry 4Re-Poyt
g_2<1+Rc>(1+ e ) )
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The equation of g as a function of the energy dissipated by the source, E, eg, is obtained
in almost the same way, by solving the second-degree equation obtained in (36) and also
choosing the positive solution:

o C() 1 C() 2 4-eE
g = ke t3 \/(kcH (E+g0)> Ei (49)

Obtaining expressions of g as a function of e4ch, €stored, €4 aNd egrc is more complex,
since all four are cubic functions of g. They have therefore been omitted from this study,
since, in addition, the set of analytical expressions already shown and their combinations
allow practically all possible alternatives to be covered. For example, if the value of the
internal voltage of the DLSC, u, as a function of the power consumed by the voltage
source E, pg, is to be calculated, it would be sufficient to combine (20), where u(g) is
defined, with (47), which presents the equation of g(py). The equation of u(pg), would be
directly obtained:

u:E+(RC+R)-(%E). (50)

If the objective was to calculate the time it would take for the external voltage, uco,
to reach a certain value, i.e., to obtain the function t(uc.), the combination of (39), which
defines t(g), and (44) which shows g(uco), would directly yield t(uco):

Co Rc Up—E R
t =2-ke (Re +R)- E|-l . Uy — —(E— 51
R (B (e =) Ut (B G
As in the previous two examples, the process can be repeated with any two electrical
variables (it is possible to include time, t) and to obtain an analytical expression of the
associated function.

3. Results and Discussion

This section will show a case study in which a DLSC, modelled as a capacitance
linearly varying with the internal voltage, will be charged through a voltage source. The
evolution of the electrical variables will be studied using the set of analytical expressions
of Section 2, and simulations will be carried out to analyze their variation with different
values of the constant kg. Subsequently, the results obtained will be compared with the
same DLSC, considering it as a constant capacitance with its equivalent series resistance.
Table 1 shows its rated data together with the no-load voltage of the voltage source, E.

Table 1. Rated values of the selected DLSC.

E (V) Un (V) Up (V) R (mQ) Cn (B
2.7 2.7 0 25 25

The wiring diagram of the case study is presented in Figure 3.

To study the time evolution of the different variables, three values will be considered
for the variable kg = [0.65, 0.85, 1] and four different values will be chosen for the internal
resistance of the voltage source, R. ((?) = [0.5, 1, 3, 5]. From the obtained results, the
constants Cy, k¢, ki, ky and k3 as defined in Equations (2), (13), (14) and (17) will be,
respectively, calculated together with the value of the time constant, T, according to (41),
which, in this study, is the time taken for the internal voltage to reach 1.7067 V. All the
above values are shown in Table 2.
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' 2.7
Figure 3. Wiring diagram of the case study.
Table 2. Constants C, ke, ki, ky, k3 and Tt for different values of kj and R..
ke kq ks
Case ko Co (F) F-V-1) R. () (V-1 (s-1) ks T (s)
1 0.5 0.0564 11.911
4 1 0.0289 23.255
v 0.65 16.25 3.2407 3 0.1920 0.0098 —0.3087 68.631
10 5 0.0059 114.07
2 0.5 0.0663 12.605
5 1 0.0339 24.609
8 0.85 21.25 1.3889 3 0.0966 0.0115 -0.2010 72 627
11 5 0.0069 120.64
3 0.5 0.0762 13.125
6 1 0.0390 25.625
9 ! 2 0 3 O omzz 0 75625
12 5 0.0080 125.62

Figure 4 shows the evolution of the DLSC internal voltage, u(t), for different values
of the constant ky and various values of the internal resistance of the voltage source, R..
As can be appreciated from it, for the three models of different ko, there is a coincidence
in three values of the internal voltage, u(t). Two of them are obvious, since they are the
initial value (they all start from the same Up) and the final value, which converge to the
no-load voltage of the voltage source E = Uy = 2.7 V. The third one corresponds to a specific
value of the g variable. This value, which will be denoted as gs, ensures that whatever the
value of kg and the resistance, R, it will be the same in all models. The value of g5 can be
calculated as follows:

Un Up—E Up—E
gS:(E—2>-WO<E_UzN-exp<E_UZI\I>>. (52)

As shown in (52), gs only depends on E, the rated voltage of the cell, Uy and its
initial voltage, Uy, but is independent of all other variables, including R.. In the case
study presented, gs = —0.5486 V. If this value of g is replaced in (20), where u(g) was
calculated, the internal voltage at which all the models coincide is 2.1514 V, as can be
appreciated from Figure 4. Below this voltage, the variable capacitance model (ko < 1)
produces higher internal voltages than the conventional model, while beyond this point,
the trend is reversed. By substituting this value of g5 in (39), the result is the time instant at
which, for any value of ky, all the internal voltages cross at a common point. This instant
does depend on the value of R..
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Internal Voltage, u (V)

0.54

u, (Re =0.50, k;; = 0.65)
u, (Re =0.50, k; = 0.85)
uy (Re =050, ky=1)

uy (Re =1Q, ky = 0.65)

us (Re = 10Q, ky = 0.85)
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40.84 96 120.52 144 200.2 240

Time (s)

Figure 4. Evolution of the internal voltage of the DLSC, u(t), for different values of ky and Rc. The
points marked with a rhombus indicate the value of the internal voltage that is equal for all values of
ko and R..

Table 3 shows the times at which, with all the models, the same internal voltage is
reached as a function of the values of R.. The value of the current at those instants is
also displayed.

Table 3. Time instants at which the internal voltage u = 2.1514 V is the same for different values of kg
and R, and current values, i(t) (A), at those instants.

R¢ ()
0.5 1 3 5
t(s) 20.92 40.84 120.52 200.2
i(A) -1.0449 —0.5352 -0.1814 -0.1092

Figure 5 shows the difference between the calculation of the internal voltage with
variable capacitance, kg = [0.65, 0.85], and the conventional model with constant capacitance,
ko =1, for different values of R.. As can be seen, the maximum difference is independent of
the value taken by R, which only affects the instant at which it appears. In this example, the
maximum discrepancy between the conventional DLSC model and the one with ko = 0.65
is 0.1738 V.

Figure 6 shows the evolution of the instantaneous current of the circuit, i(t), calculated
with the three values of the constant ky and for different values of R.. In the same instants
in which the internal voltage, u, coincides, the current also coincides, whatever the value
of ko, although in this case, the values of the current are different for each Rc value, since
i(t) depends on this resistance, as was earlier indicated by means of expression (9). It can
be observed how, in the calculation of the current, the difference between modelling the
DLSC with variable capacitance and with constant capacitance is minimal. It can therefore
be concluded that the usual RC series model is perfectly valid for i(t) calculation.
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Figure 5. Differences of the internal voltage, u(t), displayed in absolute value, between the model
with variable capacitance, kg = [0.65, 0.85], and the conventional capacitor with constant capacitance,
ko =1, and considering different values of R..
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-4.1143 40.84 | m—=i, (Re=50), ky=1)
-5.1429
20.92  40.84 96 120.52 144 200.2 240

Time (s)
Figure 6. Instantaneous current, i(t) (A), for different values of ky and Rc.

Figure 7 shows the difference between the current obtained with variable capacitance,
ko =[0.65, 0.85], and the conventional model with constant capacitance, kg = 1, for different
values of R.. As can be appreciated, the higher the value of R, the less difference there is
between considering the model with variable capacitance and the RC series model with
constant capacitance.

Figure 8 shows the time evolution of the energy dissipated in the internal resistance of
the DLSC, e4(t), presented in (30) and calculated with the three values of the constant kg
and different values of R.. The higher the value of the constant k, at any instant of time,
the higher the energy dissipated. Furthermore, the larger the value of R the smaller the
difference between models with different kg values. Finally, Figure 9 shows the difference
in the energy dissipated in the DLSC, e4(t), displayed in absolute value, between the model
with variable capacitance, kg = [0.65, 0.85], and conventional capacitor, kg = 1, considering
different values of R..
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Figure 7. Differences of the current, i(t), displayed in absolute value, between the model with variable
capacitance, kg = [0.65, 0.85], and the conventional capacitor with constant capacitance, kg =1, and
considering different values of Rc.
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Figure 8. Evolution of the energy dissipated in the DLSC, e4(t) (J), for different values of ky and R..
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Figure 9. Differences in the energy dissipated in the DLSC, e4(t), displayed in absolute value,
between the model with variable capacitance, ko = [0.65, 0.85], and the conventional capacitor, kg =1,
considering different values of R..
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4. Conclusions

The main electrical variables of a DLSC, modelled as a capacitance linearly varying
with the internal voltage, when charged or discharged through a voltage source, have
been obtained. The set of analytical expressions presented is equally useful for the case
in which the DLSC is discharged through a constant resistance, as occurs in industrial
applications such as instantaneous heaters, or if it is desired to analyze the self-discharge
process. Furthermore, from the new set of equations, the time constant of the DLSC has been
defined by resemblance to conventional, constant capacitance capacitors. Unlike other more
sophisticated models, which are valuable and very accurate, even in the representation
of the physical structure of the DLSC, the set of analytical equations presented here is not
restricted to the use of numerical calculation tools. It also allows analytical solutions to be
easily obtained without the complexity involved in the models mentioned, where complex
tools, from distributed parameter circuits to artificial neural networks, are used.

It is often claimed that the series RC model does not accurately model the behavior of
a DLSC. Therefore, in this paper, a comparative study between the model with variable
capacitance (kg < 1) and the conventional model with constant capacitance (kg = 1) has
been carried out and several conclusions have been drawn. It can be finally concluded that
when a DLSC is connected to a voltage source, the differences between the models with
ko <1 and with kg = 1 are not too relevant, and the traditional RC series model, which is
simpler and more widely used, provides, in most cases, sufficiently good values so that it
is not necessary to treat it as a variable capacitance SC. In the case of needing to improve
accuracy and/or perform direct analytical calculations, the new set of analytical equations
developed here can be applied in a straightforward and very simple way.
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Glossary

Rc Internal resistance of the voltage source [(2].

E No-load voltage of the voltage source [V].

i Circuit current (A).

Uco External voltage of the DLSC and the voltage source [V].
u Internal voltage of the DLSC [V].

Uyp Initial internal voltage of the DLSC [V].

R Internal resistance of the DLSC [Q)].
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C Capacitance of the DLSC [F].

Co Initial capacitance of the DLSC [F].

C Capacitance of the DLSC that linearly varies with internal voltage [F].
ke Constant for the DKSC [F-V—1].

CN Rated capacitance of the DLSC [F].

Un Rated voltage of the DLSC [V].

ko Initial normalized capacitance (dimensionless).

q Elecrical charge stored in the DLSC [C].

Cy Virtual or dynamic capacitance of the DLSC [F].

Cg Energetic capacitance of the DLSC [F].

ki, ko, k3 Constants.

g Function defined as u-E [V].

Pd Power dissipated at the internal resistance of the DLSC [W].

PdRe Power dissipated at the internal resistance of the voltage source [W].
Pg Power absorbed by the no-load voltage source E [W].

eg Energy absorbed by the no-load voltage source E [J].

eq Energy dissipated at the internal resistance of the DLSC [J].

€dRe Energy dissipated at the internal resistance, R, of the voltage source [J].
€stored Energy stored in the DLSC []].

€dch Energy discharged from the DLSC [J].

t Time [s].

Wo(x) Main branch of the Lambert W function.
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