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Featured Application: Electromagnetic imaging. Featured applications include military mea-
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Abstract: In the past, many conventional algorithms, such as self-adaptive dynamic differential
evolution and asynchronous particle swarm optimization, were used to reconstruct buried objects
in the frequency domain; these were unfortunately time-consuming during the iterative, repeated
computing process of the scattered field. Consequently, we propose an innovative deep convolutional
neural network approach to solve the electromagnetic inverse scattering problem for buried conduc-
tors in this paper. Different shapes of conductors are buried in one half-space and the electromagnetic
wave from the other half-space is incident. The shape of the conductor can be reconstructed promptly
by inputting the received scattered fields measured from the upper half-space into the deep convolu-
tional neural network module, which avoids the computational complexity of Green’s function for
training. Numerical results show that the root mean square error for differently shaped—circular,
elliptical, arrow, peanut, four-petal, and three-petal—reconstructed images are, respectively, 2.95%,
3.11%, 17.81%, 15.10%, 14.14%, and 15.24%. Briefly speaking, not only can circular and elliptical
buried conductors be reconstructed; some irregular shapes can be reconstructed well. On the con-
trary, the reconstruction result by U-Net for buried objects is worse since it is not able to obtain a
good preliminary image by processing only the upper scattered field—that is, rather than the full
space. In other words, our proposed deep convolutional neural network can efficiently solve the
electromagnetic inverse scattering problem of buried conductors and provide a novel method for
the microwave imaging of the buried conductors. This is the first successful attempt at using deep
convolutional neural networks for buried conductors in the frequency domain, which may be useful
for practical applications in various fields such as the medical, military, or industrial fields, including
magnetic resonance imaging, mine detection and clearance, non-destructive testing, gas or wire
pipeline detection, etc.

Keywords: perfect conductor; electromagnetic scattering; inverse problems; deep convolution neural
network; real-time

1. Introduction

Electromagnetic inverse scattering (EMIS) is an important research subject, involving
the physical phenomenology and mathematical modeling of electromagnetic wave signals
reflected, scattered, and transmitted from the surface of a target object. The uncertainty
of electromagnetic inverse scattering could be a major issue since the accurate description
of the targeted shapes is essential for object identification and localization. However,
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in actual practice, target shapes are often unknown, uncertain, or even composed of
multiple sub-targets. In order to overcome this barrier, more sophisticated techniques had
to be introduced; the object was located wither in free space or half-space. The methods
for solving inverse problems in free space can further be categorized into conventional
iterative algorithms and deep learning (DL) methods. In the iterative algorithms method,
Zheng proposed discrete dipole approximation to solve the inverse scattering problem
for conductors according to the equivalence principle. The equivalent surface currents
comprised numerous discrete dipole moments. The simulation results indicated that better
imaging results, a circularly polarized wave was superior [1]. In 2022, Ye proposed an
Iterative multiscaling approach, a subspace-based optimization method, and an inversion
method for buried conductors’ image reconstruction. Note that he had considered both
synthetic and experimental data in assessing the reconstruction accuracy [2].

In recent years, deep learning neural networks have developed rapidly in various
fields. In 2015, Ronneberger proposed U-Net, which consists of a contracting path to capture
context and a symmetric expanding path to enable precise localization on biomedical image
segmentation applications [3]. There have been many successful applications, including
electromagnetic calculations. To overcome the shortcut in nonlinear electromagnetic inverse
scattering problems for dielectric objects in free space, in 2019, Wei proposed three training
schemes, including direct inversion, backpropagation, and dominant current schemes,
to calculate the initial image and then input it to U-Net to reconstruct the image [4]. In
2020, Guo applied an image translation network, named the complex-valued pix2pix,
which included two parts: a generator and a discriminator. Results show that the complex-
valued pix2pix could learn the mapping from the initial contrast to the real contrast in
microwave imaging models [5]. In 2021, end-to-end scalable cascaded convolutional neural
networks were proposed to solve ISP. High-resolution images could be obtained directly
from the scattered field with the guiding of the multiresolution labels in the cascaded
blocks [6]. In 2022, Chiu proposed the dominant current scheme and backpropagation
scheme to calculate the preliminary permittivity distribution and then combine with U-Net
to reconstruct the uniaxial objects [7]. However, these methods need the preliminary image;
the reconstruction result by U-Net for buried objects is worse since it is not able to obtain
good preliminary images by processing only the upper scattered field—that is, rather than
the full space.

For buried objects under the frequency domain, most researchers applied conventional
algorithms to solve the electromagnetic inverse scattering problems. In 2015, Lee proposed
to use asynchronous particle swarm optimization to reconstruct permittivity of the two-
dimensional inhomogeneous dielectric cylinder [8]. In 2019, Chiu proposed to use a self-
adaptive dynamic differential evolution method to reconstruct the periodic homogeneous
dielectric object buried in rough surfaces [9]. However, these methods will spend a lot of
time in iterative calculation of the complex Green’s function. In 2020, Fan proposed an
accurate and robust method to reconstruct buried objects for half-space scenarios. First,
the linear sampling method (LSM) was employed to estimate the targets. A relaxed error
threshold was defined for LSM to ensure all real targets had been included. Second,
differential evolution optimization was used to refine the LSM results [10]. In 2022, Ren
proposed a method for reconstructing media objects buried in three layers of media by
using 2D projection as well as the shadow projections of 3D images. The proposed method
could reconstruct the size and dimension of uniform objects significantly but could not
identify the material of the object [11]. For neural network mechanisms, in 2021, Wan
provided a robust and efficient data-based strategy for underground metal target detection
on portable devices with limited computing capability and energy supply applications.
This cross-combination strategy of dimensionality reduction methods and machine learning
models provided a means to find the optimal machine learning model for underground
target detection [12]. Nevertheless, it could not reconstruct the shape of the object.

One of the studies in half-space is using ground penetrating radar (GPR) to detect
buried objects and earth layers by transmitting the electromagnetic wave time domain
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pulses of different frequencies. This also demonstrates that electromagnetic backscattering
can be used in a wide range of applications such as military surveys, medical imaging, and
industrial applications such as underground gas or electrical pipelines. In GPR, Lameri
proposed a pipeline for buried landmine detection based on the convolutional neural
network (CNN) and GPR images. The validation of the presented system was carried out on
real GPR acquisitions, and it was possible to reach 95% of detection accuracy in 2017 [13]. In
2018, Sonoda and Kimoto developed a method for identifying subsurface objects from GPR
images using deep neural networks in the time domain. In this study, features of subsurface
objects were extracted and learned from generated GPR images by a 9-layer convolutional
neural network. The results showed that the CNN could identify different materials with
approximately 80% accuracy in heterogeneous subsurface media [14]. Ozkaya proposed a
novel multilevel deep learning-based algorithm for GPR B-scan by buried object detection.
An efficient layer-by-layer training approach was formulated to learn the deep dictionaries
and different classifiers of types of shapes of buried objects [15]. However, it could not
reconstruct the arbitrary shape of metal. In 2021, Ambrosanio investigated the recovery
performance of a specific and unconventional contactless multistatic GPR system for the
subsurface imaging of antitank and antipersonnel plastic mines [16]. In GPR application,
Barkataki proposed a CNN model for predicting the size of buried objects from the GPR
B-Scan. This method demonstrated good performance in predicting buried object sizes
in 2022 [17]. In the above articles, only the position or size of the objects were being
reconstructed, not the shape of the objects. In brief, GPR transmits time domain pulses of
electromagnetic waves at various frequencies for buried objects and soil layers. Compared
with GPR, we apply the time-harmonic field, which has only a single frequency, to transmit
the electromagnetic waves. This implies that it would be more difficult to reconstruct the
object in the frequency domain.

In this paper, we propose a seep convolutional neural network (DCNN) to solve the
buried conductor in the frequency domain. We use the measured scattered fields as the
input data to the DCNN for training. Different shapes of conductors are buried in one
half-space and the electromagnetic is incident from the other half-space is incident. By
inputting the received scattered fields measured from the upper half-space into the deep
convolutional neural network module for training, the shape of the conductor can be
reconstructed promptly. Most of the published articles in free-space apply U-Net, which
requires an initial guess in the training process to reconstruct the image. However, since
the object is buried in half-space, the performance of U-Net is poor because the lower part
of the object cannot be measured. Numerical results present that our proposed method is
efficient as well as timely compared with conventional methods. Since DCNN can avoid
the computational complexity of the Green’s function, real-time imaging can be achieved in
time as soon as the module is trained. To the best of our knowledge, DCNN implementation
on buried conductors in the frequency domain is the first to be rolled out. In addition, we
believe that it would have various beneficial practical applications in medical and military
or industrial fields, including magnetic resonance imaging, mine detection and clearance,
non-destructive testing, gas or wire pipeline detection, etc.

2. Forward Problem

Consider a perfect conductor buried in a lossy half-space, as shown in Figure 1. The
permittivity and conductivity in Region I and Region II are (ε1, σ1) and (ε2, σ2), respectively.
In each region, the permeability of free space is set to µ0; that is, only non-magnetic
substances are considered. Let the scatterer be a cylindrical conductor extending infinitely
in the z-axis. Its cross-sectional area in the xy-plane can be expressed by the equation
ρ = F(θ). The time-varying relation of the incident wave is set to ejωt and its incident angle
is ∅1, as depicted in Figure 1.
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Figure 1. Schematic diagram of a two-dimensional perfect buried conductor in half-space.

For simplicity, the direction of the incident electric field is assumed to be parallel to
the z-axis, which is the TM polarization wave direction. Using Ei to represent the electric
field distribution when the conductor is not present, Ei can then be expressed as follows:

→
E i(
→
r ) = Ei(x, y)ẑ, (1)

where

Ei(x, y) =

{
E1(x, y) = e−jk1[xsin∅1+(y+A)cos∅1] + R1e−jk1[xsin∅1−(y+A)cos∅1] , y ≤ −A

E2(x, y) = Te−jk2[xsin∅2+(y+A)cos∅2] , y > −A
(2)

R1 =
1− n
1 + n

, T =
2

1 + n
, n =

cos∅2

cos∅1

√
ε2 − jσ2/ω

ε1 − jσ1/ω
(3)

k1sin∅1 = k2sin∅2 (4)

k2
i = ω2ε1µ0 − jwµ0σi, i = 1, 2 Im(ki) ≤ 0. (5)

The first term, E1(x, y), is the so-called incident field Einc. If Region I and Region II
are the lossless media, then ∅1 and ∅2 represent the angle of incidence and refraction,
respectively. On the contrary, if Region I and Region II are the lossy media, then ∅1 and ∅2
become more complex. The wave form will be very complicated. Its propagation direction
will be different with the decay direction. The total electric field at any point in the space
can be tabulated as follows:

E(x, y) =
{

E1(x, y) + Es(x, y) , y ≤ −A
E2(x, y) + Es(x, y) , y > −A

, (6)

where Es(x, y) is the scattered field. Since the size of our interested object is about one
wavelength (i.e., in the resonance region), the scattered field will have a severe diffraction
effect. In order to solve for a correct scattered field, we must first carefully calculate the
Green’s function G(x, y; x′, y′) for this half-space problem. This can be generated by a
line current source at (x′, y′) and the scattered field at (x, y). Via the Fourier transform
technique, G(x, y; x′, y′) can be expressed as follows:

G
(

x, y; x′, y′
)
=

{
G1(x, y; x′, y′) , y ≤ −A

G2(x, y; x′, y′) = G f (x, y; x′, y′) + Gs(x, y; x′, y′) , y > −A (7)
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G1
(

x, y; x′, y′
)
=

1
2π

∫ ∞

−∞

j
γ1 + γ2

ejγ1(y+A)e−jγ2(y′+A)e−jα(x−x′)dα. (8)

The Green’s function matrix can be expressed as follows:

G f
(
x, y; x′, y′

)
=

j
4

H(2)
0

[
k2

√
(x− x′)2 + (y− y′)2

]
(8a)

Gs
(

x, y; x′, y′
)
=

1
2π

∫ ∞

−∞

j
2γ2

(
γ2 − γ1

γ2 + γ1

)
e−jγ2(y+2A+y′)e−jα(x−x′)dα (8b)

γ2
i = k2

i − α2, i = 1, 2, Im(γi) ≤ 0, y′ > A. (9)

Conceptually, the scattered field ES(x, y) can be regarded as the surface induced cur-
rent Js on the conductor radiating in the half-space. By means of and the two-dimensional
Green’s function, the scattered field outside the conductor can be expressed as follows:

Es =

{
−
∫ 2π

0 G1(
⇀
r ; F(θ′), θ)J(θ′)dθ′ , y ≤ −A

−
∫ 2π

0 G2(
⇀
r ; F(θ′), θ)J(θ′)dθ′ , y > −A

, (10)

where
⇀
r = (x, y), J(θ) = −jωµ0

√
F2(θ) + F′2(θ)Js(θ). (11)

The boundary condition for a perfect conductor is that the total electric field in the
tangential direction on the surface of the conductor is zero. According to this boundary
condition, we can obtain the integral equation of J(θ):

E2(F(θ), θ) =
∫ 2π

0
G2
(

F(θ), θ; F
(
θ′
)
, θ′
)

J
(
θ′
)
dθ′. (12)

The scattered field in Region I is as follows:

Es(x, y) = −
∫ 2π

0 G1(x, y; F(θ′), θ′)J(θ′)dθ′, y ≤ −A. (13)

3. Deep Convolutional Neural Network (DCNN) and Inverse Problem

DCNN is a DL method in machine learning, as shown in Figure 2. By imitating the
mathematical model of the biological nervous system, multiple calculations and trainings
of different levels and structures are performed to seek the optimal and most effective
DL model. In contract to the past, where rules must be pre-defined by human beings for
machine learning, DCNN only requires the finetuning of the training data and parameters
in the designed neural network. The machine is capable of learning by itself to discriminate
the features and then calculate the best result. The key to develop DCNN is to continuously
provide high-quality data and perform computational training to produce better DCNN
models. In order to accelerate the training process, advanced hardware platforms, such as
the GPU (graphics processing unit), and improved software have been introduced. DCNN
training can be regarded as a “heterogeneous” process that transfers the measured scattered
field into a preliminary contrast of the object domain. The input in the DCNN framework
consists of the real and imaginary parts of the objective contrast. The convolutional layer is
a special neural layer used to extract features in the image. It converts each part of the image
into a smaller feature vector by sliding a small matrix called a convolutional kernel over the
image. The main advantage of the convolutional layer is that it can capture local patterns
and textures in the image and can classify objects in the image regardless of their location.
The activation layer is a layer that performs non-linear transformation of the feature vectors
extracted from the convolutional layer to increase the representational power of the neural
network. It usually uses the ReLU (rectified linear unit) function, which sets the negative
values to 0 and keeps the positive values. This choice is made because ReLU can effectively
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prevent the gradient disappearance problem while maintaining computational efficiency.
Finally, these feature vectors are fed into a fully-connected layer for the final classification
or regression operation. This layer usually consists of multiple neurons, each of which is
connected to some feature vectors in the preceding convolutional and activation layers.
Through this combination, the neural network can learn to make associations between the
extracted features and the desired output classes or values for reconstructing the image.
We also try to use the most popular U-Net to reconstruct our images. As U-Net requires a
preliminary image, the direct sampling method is utilized. However, in our experience, the
initial preliminary image obtained solely from the upper scattered field, i.e., rather than
from the full space of U-Net, would be bad. This is why we propose DCNN to reconstruct
the buried conductor in this research.

Figure 2. DCNN architecture.

We employed the measured scattered fields Es as the input data and put it into
the DCNN module for training. The Mi × Mr × 2 matrix comprises the input data
transformed from the scattered fields using Es. Mi represents the number of incident fields,
Mr represents the number of receivers, and the real and imaginary parts of Es will be
split into two channels, as shown in Figure 2. Briefly speaking, comparing with the past
conventional methods, using Es as the input value for the DCNN can cope with the EMIS
problem efficiently.

The mean square error (MSE) is used as a loss function for training the DCNN model;
it is the mean of the square differences between our target and predicted values and is
defined as follows:

Loss = 0.5×∑WHC
n=1 (ỹn − yn)

2, (14)

where W, H, and C denote the width, height, and number of channels of the output,
respectively, and n presents the transmit number indexing, linearly, into each element of ỹn
and yn.

If the activation function is not used in the neural network, the input linear combina-
tion of the upper layer will be used as the output of this layer. In addition, the output and
input are still inseparable from the linear relationship. In this way, we use the activation
function to solve the nonlinearity issue. wi and bi represent the weights and bias in the
layer, while δ(x) represents the activation function, which is the rectified linear unit (ReLU)
described as follows:

δ(x) =
{

0 f or x < 0
x f or x ≥ 0

. (15)
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Figure 3 presents the flowchart of the complete experimental process. First, we place
the conductors in a simulated environment. Then, the electromagnetic wave illuminates
the buried conductors. Scattered field information with training and test data is inputted
into DCNN for training. Upon DCNN training, test data are put into the trained DCNN for
image reconstruction.

Figure 3. Flowchart of the experimental process.

4. Numerical Result

In this section, a simulation environment in half-space (Figure 1) is designed to nu-
merically analyze the inverse scattering problem of perfect conductors. The frequency
of the incident wave is 3 GHz. The buried depth, A, is set to a wavelength (0.1 m). The
background substance in Region 1 is air with ε1 = ε0 and σ1 = 0; while the background
substance in Region 2 is the soil with ε2 = 2.56, ε0 and σ2 = 0. TM-polarized plane waves
are emitted to illuminate the scatterers. As much as 5% Gaussian noises are added to the
environment, and 32 receivers from θ = 195

◦
to 350

◦
, with radius 3 m, and 32 transmitters

from ∅1 = −80
◦

to 80
◦

with 5
◦

intervals are deployed. In short, a total of 32 receivers
and 32 transmitters are placed in our simulated environment. We aim to utilize the re-
ceived scattered field collected from various incident angles and input it to the DCNN to
reconstruct the object.

In our simulated environment, we place the scatterer in the 32 × 32 pixel area. We
assume that the scatterer has different sizes which can be located at any places within
the measurement area. We simulate different shapes for various random positions. We
then illuminate each profile with 32 different incident angles. The total number of dataset
images is about 2000. They are split into two parts, in which 80% of the data is used for
training and 20% for testing.

The high computational performance of GPU parallelization is well suited for training
because each training is independent during the process. In the training option, we choose
adaptive moment estimation (Adam) because it is commonly used in practice. Intuitively,
Adam is a fusion of the adaptive gradient algorithm (Adagrad) and momentum; it has the
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advantage of bias correction so as to limit the learning rate for each iteration, allowing the
parameters to be updated more smoothly. Meanwhile, we set the initial learning rate at
10−5 and drop the learning rate by half at every 70 epochs. The momentum parameter is
set at 0.99, the batch size is 32, and the max epoch is 200. We will shuffle the data upon each
epoch trained in the DCNN training process. This is due to the strong fitting capability of
DCNN. In other words, the order of the samples may be cached if the same combination of
batches appears repeatedly, which could affect the generalization outcome.

In order to calculate the performance of each scheme, we define the root mean square
error (RMSE) formula as follows:

RMSE =
1
M ∑M

i=1 ‖Y−Yi‖F/‖Y‖F, (16)

where Y and Yi denote the true shape and the reconstructed shape, respectively, M is the
total number of tests, and F is the Frobenius norm.

In order to compare the reconstruction results of each graph trained by the neural-like
network, we define the structural similarity index measure (SSIM) as follows:

SSIM =
(2µỹµy + C1)(2σỹy + C2)

(µ2
ỹ + µ2

y + C1)(σ
2
ỹ + σ2

y + C2)
. (17)

For SSIM details, please refer to reference [7].
We reconstruct the images by using DCNN. As much as 5% noise is added to the

scattered field to take care of the interference of external factors that may be encountered in
reality and input the scattered field information into DCNN for training. Figure 4a,b shows
the ground truth circular shape and the reconstructed shape by DCNN, respectively. It is
seen that the reconstructed shape has a slight depression in the left half and a slight bulge
in the upper half of the shape. In general, the reconstructed result is quite good. The RMSE
and SSIM are 2.95% and 95.91%, respectively, as listed in Table 1.

Figure 4. Reconstructed image of case 1: (a) ground truth; (b) DCNN.
Figure 5a,b shows the ground truth elliptical shape and the reconstructed shape by

DCNN, respectively. It is seen that the reconstructed shape has a slight depression in
the upper right half and slightly protrudes in the upper half of the reconstructed shape.
Generally, the reconstructed result is also perfect. The RMSE and SSIM are 3.11% and
94.18%, respectively, as listed in Table 1.
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Figure 5. Reconstructed image of case 2: (a) ground truth; (b) DCNN.

Figure 6a,b shows the ground truth arrow figure shape and the reconstructed shape
by DCNN, respectively. It is seen that the reconstructed shape has some missing portions
on the upper and right parts. In general, the reconstructed result is not perfect enough,
though the size and position of the shape can still be recognized. The RMSE and SSIM are
17.81% and 80.01%, respectively, as listed in Table 1.

Figure 6. Reconstructed image of case 3: (a) ground truth; (b) DCNN.

Figure 7a,b shows the ground truth peanut shape and the reconstructed shape by
DCNN, respectively. It is seen that the reconstructed shape’s contour is slightly protruding.
Generally, the reconstructed result is not good enough, though the size and position of the
shape can still be recognized. The RMSE and SSIM are 15.10% and 83.82%, respectively, as
listed in Table 1.

Figure 7. Reconstructed image of case 4: (a) ground truth; (b) DCNN.
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Figure 8a,b shows the ground truth four-petal shape and the reconstructed shape by
DCNN, respectively. It is seen that the reconstructed shape’s petal appearance has little
protrusions around it due to its relatively irregular shape, ensuring harder reconstruction.
The RMSE and SSIM are 14.14% and 89.27%, respectively, as listed in Table 1.

Figure 8. Reconstructed image of case 5: (a) ground truth; (b) DCNN.

Figure 9a,b shows the ground truth three-petal shape and the reconstructed shape by
DCNN, respectively. It is seen that the reconstructed shape has a little protrusion on the
upper part, but the size and position of the shape can still be recognized. The RMSE and
SSIM are 15.24% and 86.73%, respectively, as listed in Table 1.

Figure 9. Reconstructed image of case 6: (a) ground truth; (b) DCNN.

Above numerical results are given in Table 1. The average RMSE and SSIM of the entire
testing set are 14.45% and 82.63%, respectively. Summarizing the above results, we can
conclude that irregular conductor shapes, such as the arrow figure, peanut shape, and triple
and quadruple petals, are more difficult to reconstruct than round and elliptical shapes.
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Table 1. RMSE and SSIM reconstructed images for case 1 to case 6.

Example
Method

RMSE SSIM

Case 1 2.95% 95.91%

Case 2 3.11% 94.18%

Case 3 17.81% 80.01%

Case 4 15.10% 83.82%

Case 5 14.14% 89.27%

Case 6 15.24% 86.73%

Figure 10 highlights the effectiveness of the training process by plotting the loss results
with respect to the number of epochs. In the beginning, the loss decreases very rapidly
in the first 10 epochs. It decreases significantly between 10 and 20 epochs and decreases
slowly between 20 and 80 epochs. It decreases very slowly between 80 and 140 epochs, and
then slowly converges.

Figure 10. The train losses versus epoch.

5. Conclusions

We have presented the two-dimensional inverse scattering reconstruction for perfect
conductors buried in half-space via DCNN. We use the scattered field for the initial estima-
tion. DCNN is employed in the frequency domain for reconstructing the accurate size and
position of the shapes. According to our numerical simulation results, DCNN is highly reli-
able for reconstructing the perfect conductors. Based on our testing and training processes,
the validation range of the DCNN could be determined. In addition, DCNN can recover
better reconstruction results even when 5% noise is added to the scattered field. The method
proposed here neither requires any regularization procedure such as direct methods or the
traditional iterative method nor requires any initial guesses, which may be a big bottleneck
for some algorithms, especially those that based on Newton iteration or backpropagation.
Furthermore, the image can be reconstructed in just a few seconds once the training pro-
cedure is completed. It is also worth highlighting that the method is quite efficient, even
under noise environments. Although simple images are being investigated in this paper,
one future goal is to reconstruct images with complex dielectric distributions. Meanwhile,
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we will also try to innovate different neural network architectures simultaneously so that
more accurate electromagnetic images can be reconstructed promptly.
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