
Citation: Sun, N.; Li, J.; Zhang, Y.

Dynamic Transaction Confirmation

Sharding Protocol For Alliance Chain.

Appl. Sci. 2023, 13, 6911. https://

doi.org/10.3390/app13126911

Academic Editors: Shancang Li,

Konstantinos Demertzis and Hui Li

Received: 3 May 2023

Revised: 30 May 2023

Accepted: 6 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Dynamic Transaction Confirmation Sharding Protocol For
Alliance Chain
Nigang Sun 1, Junlong Li 2,* and Yuanyi Zhang 2

1 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213000, China;
ngsun@cczu.edu.cn

2 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213000, China;
revanton@icloud.com

* Correspondence: wddygyys@163.com

Abstract: Alliance chain has gained widespread popularity in industrial and commercial fields due
to its multi-centralization and node manageability. Current implementations of the alliance chain
suffer from scalability obstacles, such as communication congestion and throughput drop, when the
number of nodes increases. In this paper, a novel dynamic transaction confirmation sharding protocol
is proposed, which improves transaction processing efficiency by partitioning nodes and assigning
different transactions to different shards. It utilizes dynamic transaction confirmation consensus
as a sharding intra-consensus mechanism to minimize message size and package transactions into
microblocks, which modifies communication content during transaction propagation among shards
and reduces network congestion and shard reconfigure cost. The protocol leverages a review system
and reputation model to identify and punish malicious nodes and also incorporates a verifiable
random function for node configuration, which ensures a sufficient number of honest nodes within
the shard and prevents repeated consensus processes. Simulation results show that the proposed
protocol outperforms mainstream used permissioned chain sharding protocols Attested HyperLedger
and Sharper, achieving a throughput improvement of at least 20%. This protocol is suitable for
scenarios requiring high throughput and reliability in industrial and commercial fields such as finance,
logistics, and supply chain management. Even if the number of alliance chain nodes increases to the
usual maximum, or there are some faulty nodes, the protocol can still maintain stable performance.

Keywords: blockchain; alliance chain; scalability; blockchain scaling; sharding protocol

1. Introduction

Alliance chain is a type of blockchain that provides decentralization and node manage-
ability, making it widely used in industries including finance, supply chain management,
and healthcare [1]. However, as the number of nodes increases, communication congestion
and throughput drop become significant scalability obstacles for alliance chain [2]. This
situation arises because all transactions within the blockchain structure require nodes to
utilize their computational and storage resources [3,4], resulting in substantial wastage of
time and space [5]. The manifestation is the bottleneck of low throughput and high latency
caused by the blockchain’s difficulty bearing the cost of consensus process and ledger
storage [6]. Researchers have suggested various strategies to tackle performance issues and
fulfill the practical requirement of enhancing blockchain resources to manage the rising
volume of transactions [7]. Existing solutions to achieve blockchain scaling are classified
into two categories: off-chain and on-chain [8]. Off-chain solutions adopt a layered system
to simplify the blockchain architecture by aggregating the transfer of resources generated
by fine-grained payments managed separately in multiple asynchronous subsystems. Only
the net result is stored in the blockchain, thus avoiding the high computational cost of
traditional blockchain systems [9]. In practical applications, the off-chain payment network

Appl. Sci. 2023, 13, 6911. https://doi.org/10.3390/app13126911 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13126911
https://doi.org/10.3390/app13126911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6913-9145
https://doi.org/10.3390/app13126911
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13126911?type=check_update&version=1


Appl. Sci. 2023, 13, 6911 2 of 17

requires frequent opening and closing channels to achieve consensus on all completed trans-
actions on the blockchain [10,11]. This process appreciably impacts the throughput of the
blockchain, thus limiting the advantages provided by off-chain solutions [12,13]. On-chain
solutions enhance the functionality and data processing capabilities of the blockchain by im-
proving its protocols and mechanisms [14]. Increasing the block size is typical of on-chain
solutions, as it allows for higher transfer limits and reduces costs associated with transfers
compared to traditional methods [8]. This approach can have negative implications for
block propagation efficiency in terms of time and increase the risk of blockchain forks,
leading to a higher probability of orphan blocks and increased maintenance costs [15]. The
inefficiency of consensus protocols is the primary cause of blockchain scalability issues [16].
The research community has made significant efforts to address this problem by exploring
various innovative consensus methods, yielding remarkable results [17–19]. There is no
need to coordinate or manage various subsystems, and the recording, verifying, and retain-
ing all transactions are characteristics of on-chain solutions. These features make on-chain
solutions a mainstream choice for scaling blockchain in environments with varying network
bandwidth and computing resources [20].

Sharding protocol is commonly used in distributed databases and cloud infrastruc-
tures, which can divide an enormous database into small data fragments and store these
fragments on different servers for fast and efficient data management [21]. Elastico [22]
pioneered the combination of the sharding protocol with the blockchain in 2016, avoiding
the mandatory duplication of communication and computing overhead for each partici-
pating node. The sharding protocol has been comprehensively researched and verified in
academic papers [23–29], confirming its effectiveness in enhancing throughput, reducing
costs, and preserving decentralization. It has emerged as a prevailing solution for on-chain
scaling [30]. During the initial stage of the sharding protocol’s development in blockchain,
it effectively addressed the resource-intensive challenges public blockchain face [31]. As
alliance chain encountered scalability challenges similar to public blockchain in the use
process [32], researchers applied sharding protocol to alliance chain, offering valuable assis-
tance in achieving efficient transaction processing [33]. The Atomix protocol and ByzCoinX
in OmniLedger [34] enhance cross-shard and intra-shard communication and resource
management. Nevertheless, client dependency of OmniLedger cause communication
overhead to become the limiting factor [29]. RapidChain [35] utilizes a lightweight recon-
struction protocol and reduces the data transmitted in each transaction, which mitigates
the bottleneck issue of transaction communication overhead in early sharding protocols.
Dang proposed AHL (Attested HyperLedger) [36] to promote the sharding protocol to
applications in permissioned environments beyond cryptocurrencies. The optimization
of BFT (Byzantine Fault Tolerance) consensus in AHL reduces the maximum number of
nodes required for a single shard to improve the throughput of large-scale permissioned
chains, but the actual application is limited by insufficient scalability and an unbalanced
workload [37]. Amiri proposes Sharper [7], which uses a hash-based sharding strategy and
a BFT-based algorithm to ensure fast transaction distribution processing and process cross-
shard transactions through non-overlapping committees in parallel computing, showing
excellent scalability and load balancing. Sharper still faces challenges in the complexity of
node election and consensus algorithms and issues related to data access efficiency [38].
FleetChain [39] utilizes FBFT (Fast byzantine fault tolerance) to improve communication
and processing efficiency and employs RSTP (Responsive sharded transaction processing)
for improved cross-shard consensus via multi-signature aggregation. Sharding protocol has
improved the scalability of the alliance chain, but there are still insufficient performance
problems in transaction verification and consensus processing. As the number of members
increases, the communication bandwidth and time required for broadcasting and message
collection consume a significant amount of resources, thereby reducing protocol efficiency.

This paper proposes a dynamic sharding protocol for transaction confirmation. Dur-
ing the shard configuration phase, a random function is utilized to elect a Master node to
preside over the epoch, ensuring the impartiality of the consensus process. Subsequently,



Appl. Sci. 2023, 13, 6911 3 of 17

each node is randomly assigned to a specific committee based on its identity information.
The protocol employs a dynamic transaction confirmation consensus mechanism, which en-
hances the efficiency of consensus within the shard, appreciably improving the performance
of the alliance chain system. Once consensus within the shard is achieved, the Leader node
encapsulates the microblocks to reduce communication overhead. The protocol includes
a review mechanism and a reputation model to constrain node behavior. In general, the
protocol markedly improves the performance and scalability of the alliance chain.

Simulation results show that in the alliance chain with the same number of nodes, the
proposed protocol increases the transaction throughput by 20% compared with the current
mainstream permissioned chain sharding protocol and exceeds the high-performance
Fleetchain by 19%. As the network scale expands, the alliance chain system based on the
protocol maintains a constant performance advantage.

2. Related Concepts
2.1. Alliance Chain

Alliance chain is a permissioned blockchain network involving authorized entities
collaborating to manage and maintain data and transactions [40]. Unlike public blockchain,
participants in alliance chain establish a cooperative relationship to make decisions and
manage the chain’s operations collectively.

The primary purpose of alliance chain is to create a trusted collaboration platform
within a specific industry or organization. It can be utilized for various purposes, such
as payment and settlement between financial institutions, supply chain management,
sharing of medical records, and data exchange between government agencies [41]. By
providing decentralized, transparent, traceable, and secure transaction records, alliance
chain enhances trust among participants and enables efficient data sharing and automation
of business processes [42].

While the security of an alliance chain is relatively high due to the authorized entities
involved, there is still a degree of centralization risk compared to the fully decentralized
public blockchain [43]. Additionally, the scalability of an alliance chain is restricted due to
the limited number of participants and transaction volume, resulting in lower throughput
when compared to public blockchain [44]. Furthermore, the governance and consensus
mechanisms of alliance chain require participants to reach a consensus, which can lead to a
slower and more complex decision-making process [45]. Despite these limitations, alliance
chain remains a valuable blockchain solution in specific cooperation scenarios. It offers
trusted data sharing and efficient management of business processes, making it suitable for
industries and organizations that prioritize security, collaboration, and data integrity [45].

2.2. Practical Byzantine Fault Tolerance

PBFT(Practical Byzantine Fault Tolerance) algorithm, proposed by Castro in 1999, has
a communication complexity of O(n2) (n refers to the size of the data scale, which is related
to the number of nodes participating in the algorithm) and is used to build Byzantine
fault-tolerant distributed systems. The PBFT algorithm is implemented by two types of
nodes: master node and consensus node. The identity of the master node (denoted by p) is
determined by the view number (v) and the number of nodes (R). The following Equation
represents the election mechanism for the master node.

p = v mod R (1)

The PBFT consensus process includes the following steps: request, pre-prepare, pre-
pare, commit, and reply. After receiving a request message from a client, the master node
creates a pre-prepare message and sends it to all consensus nodes. Upon receiving and
validating the pre-prepare message, the consensus nodes send prepare messages to all
nodes. When a consensus node receives more than 2f + 1 (f is the number of Byzantine
fault nodes in the system) valid prepare messages from non-self nodes, it sends a commit
message to other nodes. When a node receives 2f + 1 valid commit messages from different



Appl. Sci. 2023, 13, 6911 4 of 17

nodes, it aggregates all the commit messages and sends a reply to the client. The consensus
process concludes when the client receives reply messages from f + 1 different nodes.

Most instant sharding blockchains use PBFT or its variants as their intra-shard consen-
sus protocol [20]. These variants [23,27,34] adjust the validation content and propagation
method to increase tolerance to node inflation and Byzantine failures.

2.3. Sharding Protocol

Network sharding, transaction sharding, and state sharding are the state-of-the-art
mechanisms that perform blockchain sharding protocol in the modern world [46]. Network
sharding divides the entire blockchain network into several shards so that different shards
can process part of the transactions in the entire blockchain at the same time. Transaction
sharding assigns transactions to different shards and allows them to be executed concur-
rently. State sharding separates and saves the entire ledger in shards, which can reduce the
storage burden of network nodes.

Sharding protocol can be decomposed into the following stages: shard configuration,
intra-shard consensus, cross-shard protocol, and reconfiguration [31]. The shard config-
uration stage determines the shards to which the nodes belong and the transactions that
each shard will process [22,34,36]. After completing the previous step, the validator nodes
in the same shard pass messages according to the internal consensus protocol to reach a
consensus on the entire shard. Researchers divide intra-shard consensus into two types:
PoW-based [28,29] and BFT-based [7,22,34,35]. The cross-shard protocol uses transaction-
related shards as the basic unit for processing cross-shard transactions to generate blocks
that contain cross-shard transaction state transitions [34,35]. The reassignment step shuts
down validator nodes after one shard epoch and swaps to other shards to maintain the
integrity of each shard and avoid attacks from adversaries that slowly adapt [22,35].

Although experimental setups or methodologies for validating different technolo-
gies may vary, throughput and latency remain common metrics for evaluating protocol
performance [31].

3. Dynamic Transaction Confirmation Sharding Protocol

The protocol adopts a dynamic transaction confirmation algorithm to achieve consen-
sus on transactions within shards. It utilizes microblocks to transfer transaction information
between shards, thereby directly improving the transaction verification efficiency of the
alliance chain. Additionally, random node selection and shard configuration are imple-
mented along with a review system and reputation model to drive nodes to maintain the
validity of consensus processes.

3.1. Network Infrastructure

The protocol design incorporates three types of validator nodes: consensus, Leader,
and Master nodes. Each subcommittee comprises all consensus nodes and Leader nodes in
a single shard, and the only consensus committee comprises all Leader nodes and Master
nodes. Consensus nodes validate transactions and submit the final consensus result to
the Leader node within their respective subcommittee. The Leader node packages the
transactions completed in consensus into microblock and submits microblock to the unique
Master node for each epoch. The Master node organizes the validation of microblocks
within the consensus committee and packages the validated microblocks for upload to the
alliance chain. After the status of all validator nodes is synchronized, each Leader node will
randomly generate a string. The Master node merges this set of strings, adds the latest block
hash, and finally performs a secure hash algorithm(i.e., SHA256) calculation on the result to
get epochRandomness. The Master node broadcasts the obtained epochRandomness to the
whole network, and then the system executes the view replacement protocol to transition
to the next epoch.

At the beginning of the epoch, all nodes combine the (IP, PK) identity information
group (representing their internet protocol address and public key respectively) and the



Appl. Sci. 2023, 13, 6911 5 of 17

epochRandomness sent by the system to calculate their identity ID. The calculation method
is provided in Equation (2).

ID = SHA256(IP + PK + epochRandomness) (2)

Each node in the system executes a modulo operation using its ID and the total number
of shards. The result of this modulo operation corresponds to the number of the committee
to which the node belongs (in the range of [0, 1, 2, . . . , (total number of shards)-1]). In each
subcommittee, the node with the smallest ID will become the Leader node. Each Leader
node uses the private key (hereinafter referred to as SK) as input to execute VRF (verifiable
random function), judges whether it is the Master node according to the output result, and
broadcasts verifiable selection information contained in the result if it judges itself as the
Master node. Node state transitions are depicted in Figure 1. Algorithm 1 describes the
node assignment and selection algorithm step-by-step using pseudocode.

Figure 1. State transition of node. A node obtains an ID and determines its shard membership by
performing a modulo operation. The node enters the shard and actively participates in the subsequent
selection process for selecting the Leader node. If a node becomes a Leader node, it also participates
in the selection process for selecting the Master node.

It is crucial to record node information in the shard during the implementation process.
This information is directly linked to subsequent node selection and message sending.
Figure 2 shows the key codes.

Figure 2. The C++ codes for retrieving the shard and other node information after the node enters
the shard. Subsequent node communication relies on this information.



Appl. Sci. 2023, 13, 6911 6 of 17

Algorithm 1 Node assignment and selection

Input: IP, PK, SK
Output: Node_ID, Node_shard, Node_state

1: k = total number of shards
2: Shard_number ∈ [0, k− 1]
3: Identity computing:
4: Node receives the epochRandomness broadcast
5: Node_ID = SHA256(IP + PK + epochRandomness)
6: Node assignment:
7: Node_shard = Node_ID mod k
8: Node selection:
9: if Node_ID is the smallest in the shard then

10: result = VRF(SK)
11: if rusult = yes then
12: Node_state = Master node
13: broadcast result
14: else
15: Node_state = Leader node
16: end if
17: else
18: Node_state = consensus node
19: end if
20: return Node_ID, Node_shard, Node_state

3.2. Transaction Consensus and Review Mechanism

The client broadcasts the transaction request message to the entire nodes. The remain-
der r obtained by the node according to the hash value of the transaction modulo k (the
number of shards) is the serial number of the shard that processes the transaction. The
Leader node sends the transaction confirmation threshold (hereinafter referred to as Tct) to
the consensus nodes in the shard.

The consensus node verifies the transaction information, adds the correct transaction
to the transaction pool, and broadcasts a confirmation message. After the Leader node
receives Tct confirmation messages, it queues the transaction into the encapsulation queue.
When the epoch time is reached, the Leader node will encapsulate the transactions in the
queue into a microblock and send the microblock information to the Master node. Figure 3
depicts the intra-shard consensus.

After receiving a microblock, the Master node will verify the microblock and its
internal transactions with all Leader nodes using the PBFT algorithm. On the premise that
the consensus of k microblocks is completed, the whole network nodes adopt the bigblock
synchronization state composed of all microblocks. Algorithm 2 uses pseudocode to
describe the consensus steps of transactions in the subcommittee and consensus committee.

The validator nodes receive a bigblock sent by the Master node and compare the
content of the bigblock with the already verified transactions through their local transaction
pool. If a validator node discovers a transaction submitted by a Leader node but has not
been verified, the validator node will send a challenge message (including the microblock
information to be reviewed and the position of the transaction to be reviewed ) to the
Master node. The Master node forwards the received challenge message to the other k − 1
shards (excluding the initially processed shard) for verification. The Master node reaches
a consensus on the verification results of the k − 1 shards in the consensus committee. If
more than 2k

3 of the shards in the verification result consider the transaction incorrect, the
Master node packages the challenge message and review result into a block and uploads
the block to the alliance chain. During the implementation process, it is crucial for nodes to
monitor the messages and blocks within the alliance chain network. This function plays a
critical role in transaction consensus and on-chain blockchain operations. Figure 4 shows
these key codes.



Appl. Sci. 2023, 13, 6911 7 of 17

Algorithm 2 Transaction consensus

Input: transaction
Output: bigblock

1: consensus nodes← Leader node sends Tct
2: if consensus node is not to receive← Tct message then
3: broadcast Tct-no message
4: while Tct-no messages >2 do
5: Replace the Leader node
6: Leader node sends Tct
7: Node that has not received Tct broadcast Tct-no message
8: end while
9: end if

10: Client sends transaction
11: transaction assignment:
12: r = Hash(transaction) mod k
13: the r shard←transaction
14: nodes within the shard receive and verify transaction
15: if veri f ication result = true then
16: forward con f irmation message
17: transaction pool← transaction
18: end if
19: if Leadernode = true then
20: if con f irmation>=Tct then
21: transaction queue← con f irmation messages and transaction
22: transaction pool← transaction
23: end if
24: if end of epoch time then
25: microblock← transaction queue
26: Master node← microblock
27: end if
28: end if
29: Leader nodes←Master node broadcasts microblock
30: if Leader node receives microblock then
31: Leader nodes← Prepare massage
32: end if
33: if Prepare>= 2k

3 then
34: Leader nodes← Commit massage
35: end if
36: if Commit>= 2k

3 + 1 then
37: bigblock← microblock
38: if num o f microblock = k then
39: all nodes← bigblock
40: end if
41: end if
42: return bigblock



Appl. Sci. 2023, 13, 6911 8 of 17

Figure 3. Flow chart of dynamic transaction confirmation consensus mechanism. There are four
consensus stages: Tct release, transaction send, transaction confirmation, the Leader node sends
microblocks to the Master node.

Figure 4. The C++ codes for multiple nodes monitor the network simultaneously, querying whether
messages and blocks are sent to themselves in the network.

3.3. Reputation Model

In the PBFT-based intra-shard consensus, the consistency of the alliance chain is
ensured through the two state synchronizations. The intra-shard consensus of the dynamic
transaction confirmation sharding protocol only performs state synchronization once.
Therefore, in addition to the confirmation mechanism, a reputation model must be used
to force nodes to maintain system security jointly and distinguish malicious nodes from
normal nodes. Alliance chain nodes can have a one-to-one mapping relationship with
enterprise entities, so economic games can be used to motivate all nodes to maintain system
security. Reputation is obtained by recording and calculating behavioral information, which
is used to evaluate the reliability of nodes and verify their right to speak. The reputation
incentive and penalty model is shown in Figure 5.

In order to increase the cost of malicious behavior, a node malfeasance counter is
used in the model. Nodes are assigned a reputation score of S when they join the system,
which will be subject to changes and retained throughout subsequent activities. When
a node actively maintains system security, it receives an incentive reputation score of P.
Conversely, if a node’s malicious behavior is detected, its reputation score will be deducted



Appl. Sci. 2023, 13, 6911 9 of 17

by an amount represented as Q. The relationship between reputation S, incentive cases P,
deduction cases Q, and the number of misoperations T is shown in Equation (3).

S = S + P−QT (3)

For example, a Leader node has an initial reputation score S of 100 (nodes below this
reputation score will be removed from the network). In each epoch, completing a normal
transaction consensus will get an incentive reputation score P of 100, while an incorrect
consensus and sending a transaction whose verification does not meet the Tct (Hereinafter
referred to as failed transaction) will deduct a reputation score Q of 50 and 30, respectively.

In the first epoch, the node completes the consensus, T = 0, S = 100 + 100 = 200.
In the second epoch, the node completed the consensus but sent a failed transaction,

T = 1, S = 200 + 100− 30 ∗ 1 = 270.
In the third epoch, the node had a incorrect consensus, T = 2, S = 270− 50 ∗ 2 = 170,

and sent failed transaction, T = 3, S = 170− 30 ∗ 3 = 80 < 100. Therefore, the node is
removed from the network. The amount of reputation lost for doing evil is proportional to
the number of times doing evil. When a node’s reputation drops below a specified value,
the node will be removed from the network.

Figure 5. Reputation incentive and punishment model. The different types of nodes exhibit vari-
ations in incentives and penalties, and they can be integrated with enterprise management and
economic systems.

3.4. Adjustment Of Transaction Confirmation Threshold

In the intra-shard transaction consensus stage, the transactions confirmed by Tct
consensus nodes will be encapsulated into microblocks and delivered to the consensus
committee. Therefore, the time and security of transaction confirmation are directly affected
by Tct. Increasing Tct will improve the required degree of consensus and security for
transaction completion. However, if the node is unable to send confirmation messages in
unstable network conditions, it will cause network congestion and eventually fail to reach
consensus. Declining Tct reduces the number of validators needed to confirm fraudulent
transactions. Even if the fraudulent transaction is challenged, it will harm the alliance
chain throughput, communication, and storage. The dynamically adjusted Tct can balance
the performance, security, and stability of the alliance chain, providing flexibility to meet
different application scenarios.



Appl. Sci. 2023, 13, 6911 10 of 17

The modification of Tct by the Leader node will affect the alliance chain’s attributes,
which gives the Leader node higher authority than the consensus node. The reputation
model has no direct precautions to prevent the leader node from changing Tct in reverse.

The protocol sets Tct to be adjustable only once during the tenure of any Leader node,
and there is a configurable range for this adjustment. An attacker would require multiple
consecutive malicious Leader nodes to impact the system negatively, thus increasing the
cost of malicious operations.

4. Correctness Argument
4.1. Performance Analysis

There are n
k nodes in the shard, the time for a node to process a message is fixed

at t1, and the message delivery time is fixed at t2. T is the time required to complete
the intra-shard consensus process in this protocol. According to the dynamic transaction
confirmation consensus process, there are four stages of message transmission. Nodes must
process a Tct message, a transaction message, and Tct confirmation messages. The time
complexity for achieving consensus is calculated in Equation (4).

T = 4t2 + (Tct + 2)t1 (4)

Set T′ as the time required to complete consensus in the PBFT. The PBFT consensus
process has a total of 5 stages of message transmission. Nodes in a shard need to process a
request message, a pre-prepare message, 2n

3k prepare messages, and 2n
3k +1 commit messages.

The time complexity of achieving consensus is calculated as shown in Equation (5).

T′ = 5t2 + (
4n
3k

+ 3)t1 (5)

Equation (6) is obtained from (4) and (5).

T′ − T = t2 + (
4n
3k

+ 1− Tct)t1 (6)

In the intra-shard transaction consensus phase, the dynamic transaction confirmation
consensus outperforms PBFT in terms of efficiency. The specific value of the improvement
is jointly determined by t1, t2, n

k , and Tct.
The values of Tct are set to Tct1 and Tct2, and the difference in message confirmation

completion time is equal to the reduced transaction confirmation latency4T as shown in
Equation (7).

4T = |Tct1 − Tct2|t1 (7)

If the Tct in the dynamic transaction confirmation consensus changes, the transaction
latency will also change. t1 is usually measured in milliseconds, so Tct has little impact
on system throughput. T0 is the time for the consensus committee to reach a PBFT con-
sensus after a Leader node submits the microblock. The number of shards affects both the
microblock verification and bigblock packaging time, as shown in Equation (8).

T0 = 5t2 + (
4k
3

+ 3)t1 (8)

4.2. Stability and Safety

In this protocol, the Leader node broadcasts Tct messages (a total of n
k − 1 messages)

in the shard. The client segment sends transaction information to each node in the shard
(a total of n

k messages), and each node will broadcast a confirmation message (a total
of n

k ∗ [
n
k − 1] messages). The number of messages S required to complete transaction

confirmation in a shard is shown in Equation (9).

S = (
n
k
− 1)2 +

3n
k
− 2 (9)



Appl. Sci. 2023, 13, 6911 11 of 17

According to the PBFT process, the client sends a request message to the Leader node,
which broadcasts a pre-prepare message to each consensus node (total of n

k − 1 messages).
Each node broadcasts a prepare message (total of [ n

k − 1]2 messages) and a commit message
(total of n

k ∗ [
n
k − 1] messages). The number of messages required to achieve consensus in a

shard with the same configuration is shown in Equation (10).

S′ = 2(
n
k
− 1)2 +

2n
k
− 1 (10)

The intra-shard consensus of the protocol requires only about half the number of
messages required by PBFT to achieve consensus. Under the same computer and network
conditions, the consensus of this protocol is less negatively affected by the increase of
nodes than PBFT. This protocol has better stability and can also reduce the consumption
of network resources and storage space. If multiple verifications of the system are due
to mishandling of transactions by validator nodes or wrong transaction messages, the
alliance chain will not return to normal until the malicious nodes are removed. Malicious
verification nodes or wrong transactions can cause Tct to affect stability.

The existing protocols for selecting a Master node have certain characteristics. One
approach involves selecting a different node as a Master node in each epoch or round
according to the rotation rules, which introduces latency and additional communication
overhead and allows an attacker to control the rotation order [7,35]. Another approach is
staking-based selections, which incentivize nodes to follow the rules and maintain normal
behavior [47]. Over time this could lead to centralization within the system. Performance-
based selection can improve system efficiency but can cause some nodes to become masters,
continually reducing the utilization of others [34]. The protocol design utilizes locally
generated verifiable and unpredictable random values for selections. This approach has
several advantages, such as protection against attacks and falsification of lottery result, and
maintaining low energy consumption and uniqueness of result.

Regarding node assignment, methods based on node properties (such as liveness
and performance) have centralization risks [22,35], while free-choice assignment methods
are less resistant to malicious behavior [28]. In the protocol design, the identification ID
for node assignment calculation considers how nodes can manipulate their IP addresses
using proxies or other methods. The node assignment is achieved through cryptographic
calculations of various parameters, incorporating the public key and the epochRandomness
involving the participation of multiple nodes. While not eliminating the possibility of
manipulating individual parameters, this guarantees a robust and manipulation-resistant
identity generation process.

Consensus nodes are responsible for the duties of validating transactions and sending
challenge messages. Both wrong verification and challenge failure will reduce the rep-
utation of the consensus node. Leader node is responsible for adjusting the transaction
confirmation threshold, counting the number of confirmation messages, and generating
microblocks. If the Leader node sends different values of Tct to each consensus node or
does not send to some consensus nodes, the consensus node will replace the Leader node
due to inconsistent status. If the consensus node finds that the Tct and voting information in
the microblock are wrong, it will consider the Leader node malicious and send a challenge
message to the Master node. The access mechanism of the alliance chain combined with
the adjustment upper limit of Tct makes it very expensive for the Leader node to adjust Tct
reversely. Master node have the responsibility to process challenge messages. If the Master
node does not process the challenge message in time, the consensus node will broadcast
the proposal to replace the Master node to all nodes. After the Master node is replaced, the
new Master node will process unprocessed challenge messages. It can be concluded from
the above that the protocol is safe and practical.



Appl. Sci. 2023, 13, 6911 12 of 17

5. Experimental Design

The experiment involves comparing the performance of the sharding protocol with
mainstream sharding protocols in the alliance chain and testing the impact of the transaction
confirmation threshold and block size on system performance. The simulated alliance chain
has a consistent system architecture and network model, and any differences are controlled
within the scope of the protocol as much as possible.

5.1. Experiment and Configuration

The clients and nodes are simulated using a simulation system written in C++ and
utilizing multi-threading technology. Transactions are transmitted by the clients in this test,
and each shard consists of multiple consensus nodes and a Leader node. The system is
divided into the transaction module and the consensus module. The system’s performance
and scalability will be evaluated based on its throughput and transaction latency. The
detailed configuration is shown in Table 1.

Table 1. Software and hardware environment configuration.

Software and Hardware Environment Configure

CPU 2.40 GHz Intel Core i5-9300H
RAM 16 GB 2667 MHz DDR4

System Windows 11

5.2. Experimental Testing

The performance compares the throughput and transaction confirmation latency of
different sharding protocols for one epoch in the alliance chain with a shard configuration
of 4 or 6 nodes. The performance expands the alliance chain by increasing the number of
shards from 4 to 8 to evaluate the impact of different network sizes on protocol performance.

According to the data in Figures 6a and 7a, this protocol has a throughput difference of
more than 66% compared to traditional Elastico. Compared to Sharper and AHL sharding
protocols for permissioned chain, this protocol increases throughput by 20% and 27%,
respectively. Compared with high-performance Fleetchain, the throughput of this protocol
has increased by 19%. With the expansion of network scale, this protocol maintains
performance advantages compared with other sharding protocols, highlighting its superior
scalability. Figures 6b and 7b describe the transaction confirmation latency comparison
between this protocol and mainstream sharding protocols as the number of nodes in each
shard increases. Although the performance gap between this protocol and Fleetchain has
narrowed, it still achieves a 12% reduction in latency over the latter. An overview of the
above results shows that the system performance advantage of this protocol remains stable
as the number of shards increases.

(a) Number of nodes in a shard is 4. (b) Number of nodes in a shard is 6.

Figure 6. System throughput averages comparison for shard counts ranging from {4, 5, . . . , 8}. Other
factors (Tct = 3, block size = 800 transactions) are the same except for the sharding configuration.



Appl. Sci. 2023, 13, 6911 13 of 17

(a) Number of nodes in a shard is 4. (b) Number of nodes in a shard is 6.

Figure 7. System latency averages comparison for shard counts ranging from {4, 5, . . . , 8}. Other
factors (Tct = 3, block size = 800 transactions) are the same except for the sharding configuration.

Next, test whether Tct affects system performance. Set up a client to send transactions
to alliance chain with different shard configurations (4 shards, each with 8 or 9 nodes) and
adjust Tct simultaneously. Measure the performance of the alliance chain under different
Tct and average the results, as shown in the Figures 8 and 9.

Experimental results show that Tct does not affect the system throughput or transaction
confirmation latency in the absence of erroneous transactions. Therefore, at the initial stage
of system operation, Tct should be set within the range of 1

3 to 2
3 of the number of shard

nodes to ensure stability.

Figure 8. System throughput averages comparison for different Tct values from {2, 3, . . . , 6}.
Experiments are conducted in two shard configurations, where the number of shards is 4, but the
number of nodes within the shards is 8 and 9 (the total number of nodes is 32 and 36), respectively.

This experiment tests the effect of the total amount of transactions in an epoch on the
performance of the protocol. Control the shard configuration and Tct, only adjust the size
of the bigblock, and take the average value of the performance of multiple measurement
systems, as shown in Figure 10.



Appl. Sci. 2023, 13, 6911 14 of 17

Figure 9. System latency averages comparison for different Tct values from {2, 3, . . . , 6}. Experiments
are conducted in two shard configurations, where the number of shards is 4, but the number of nodes
within the shards is 8 and 9 (the total number of nodes is 32 and 36), respectively.

Figure 10. Performance averages of the system for different block sizes from {400, 800, . . . , 2000}.
Experiments are conducted in two shard configurations, where the number of shards is 4, but the
number of nodes within the shards is 5 and 6 (the total number of nodes is 20 and 24), respectively.

Increasing the block size can achieve the goal of enhancing the throughput but will
result in longer block times. Therefore, when setting the block size in practice, it is necessary
to consider the requirements of the application scenario for throughput and transaction
confirmation latency.

While the simulations may not perfectly reflect the complexities of real distributed
environments, they allow researchers to examine and evaluate the protocol’s behavior under
controlled conditions. The experiments aim to understand the overall process and evaluate
the scalability improvement provided by the protocol compared to existing methods.

Additionally, there may be differences when applying the protocol to a real distributed
environment. It is important to note that these differences do not hinder the implementa-
tion of the protocol process in a distributed environment or undermine the potential for
enhanced scalability and advantages over other protocols.

6. Conclusions

This paper proposes a dynamic transaction confirmation consensus sharding protocol
specially designed for alliance chain systems. The protocol implements dynamic trans-



Appl. Sci. 2023, 13, 6911 15 of 17

action confirmation consensus as an intra-shard consensus and uses parallel processing
of microblocks and submission of sequential proposals on different shards to achieve
this. In addition, the protocol also includes node assignment, review mechanism, and
reputation model to prevent attackers from centralizing their controlled nodes into shards,
thereby reducing system latency and duplicate message propagation caused by attacks.
Experimental results show that the proposed sharding protocol prominently improves the
scalability of alliance chain compared to other methods. In order to ensure that users can
frequently access the alliance chain and use a considerable number of non-faulty nodes
under a smooth network environment, it is necessary to adjust the dynamic confirmation
threshold and block capacity. In addition, the protocol can also be applied to networks with
the subpar performance of node facilities.

This protocol utilizes epochRandomness in calculating the identity ID to prevent
high-computing power nodes from monopolizing the position of the Leader node for an
extended period. This approach consumes much computing power to establish identities
instead of verifying and reviewing transactions. To balance system resource consumption
and ensure fairness, future work considers extending the epoch cycle, increasing the block
capacity, and adopting different selection methods to facilitate node role rotation when
appropriate. By improving the practicability of the protocol, researchers can expand the
application scenarios from alliance chain to various blockchains.

Author Contributions: Conceptualization, N.S. and J.L.; methodology, N.S.; validation, N.S. and
J.L.; formal analysis, N.S., J.L. and Y.Z.; investigation, J.L.; resources, N.S.; data curation, J.L.; writ-
ing—original draft preparation, J.L.; writing—review and editing, N.S. and Y.Z.; visualization, J.L.;
supervision, N.S.; project administration, N.S.; funding acquisition, N.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Postgraduate Research & Practice Innovation Program of
Jiangsu Province: KYCX22_3059.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Postgraduate Research & Practice Innovation
Program of Jiangsu Province for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Qiao, L.; Lv, Z. An optimized byzantine fault tolerance algorithm for consortium blockchain. Peer -Peer Netw. Appl. 2021,

14, 2826–2839. [CrossRef]
2. Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains.

In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–17 May 2017;
pp. 1085–1100.

3. Li, C.; Zhang, J.; Yang, X.; Youlong, L. Lightweight blockchain consensus mechanism and storage optimization for resource-
constrained IoT devices. Inf. Process. Manag. 2021, 58, 102602. [CrossRef]

4. Du, Z.; Qian, H.f.; Pang, X. Partitionchain: A scalable and reliable data storage strategy for permissioned blockchain. IEEE Trans.
Knowl. Data Eng. 2021, 35, 4124–4136. [CrossRef]

5. Qi, X.; Zhang, Z.; Jin, C.; Zhou, A. BFT-Store: Storage partition for permissioned blockchain via erasure coding. In Proceedings of
the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1926–1929.

6. Antwi, R.; Gadze, J.D.; Tchao, E.T.; Sikora, A.; Nunoo-Mensah, H.; Agbemenu, A.S.; Obour Agyekum, K.O.B.; Agyemang, J.O.;
Welte, D.; Keelson, E. A survey on network optimization techniques for blockchain systems. Algorithms 2022, 15, 193. [CrossRef]

7. Amiri, M.J.; Agrawal, D.; El Abbadi, A. Sharper: Sharding permissioned blockchains over network clusters. In Proceedings of
the 2021 International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 76–88.

8. Kim, S.; Kwon, Y.; Cho, S. A survey of scalability solutions on blockchain. In Proceedings of the 2018 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 1204–1207.

9. Xu, C.; Zhang, C.; Xu, J.; Pei, J. Slimchain: Scaling blockchain transactions through off-chain storage and parallel processing. Proc.
Vldb Endow. 2021, 14, 2314–2326. [CrossRef]

http://doi.org/10.1007/s12083-021-01103-8
http://dx.doi.org/10.1016/j.ipm.2021.102602
http://dx.doi.org/10.1109/TKDE.2021.3136556
http://dx.doi.org/10.3390/a15060193
http://dx.doi.org/10.14778/3476249.3476283


Appl. Sci. 2023, 13, 6911 16 of 17

10. Decker, C.; Wattenhofer, R. A fast and scalable payment network with bitcoin duplex micropayment channels. In Proceedings of
the Stabilization, Safety, and Security of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton, AB, Canada,
18–21 August 2015; Proceedings 17; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–18.

11. Khalil, R.; Gervais, A. Revive: Rebalancing off-blockchain payment networks. In Proceedings of the 2017 Acm Sigsac Conference
on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 439–453.

12. Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 the 2nd International
Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 1–6.

13. Pawar, M.K.; Patil, P.; Hiremath, P. A study on blockchain scalability. In Proceedings of the ICT Systems and Sustainability: Proceedings
of ICT4SD 2020; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 307–316.

14. Cai, T.; Chen, W.; Psannis, K.E.; Goudos, S.K.; Yu, Y.; Zheng, Z.; Wan, S. Scalable On-Chain and Off-Chain Blockchain for Sharing
Economy in Large-Scale Wireless Networks. IEEE Wirel. Commun. 2022, 29, 32–38. [CrossRef]

15. Garzik, J. Block size increase to 2MB. Bitcoin Improv. Propos. 2015, 102, 28.
16. Du, M.; Chen, Q.; Ma, X. MBFT: A new consensus algorithm for consortium blockchain. IEEE Access 2020, 8, 87665–87675.

[CrossRef]
17. Singh, A.; Kumar, G.; Saha, R.; Conti, M.; Alazab, M.; Thomas, R. A survey and taxonomy of consensus protocols for blockchains.

J. Syst. Archit. 2022, 127, 102503. [CrossRef]
18. Milutinovic, M.; He, W.; Wu, H.; Kanwal, M. Proof of luck: An efficient blockchain consensus protocol. In Proceedings of the 1st

Workshop on System Software for Trusted Execution, Trento, Italy, 12–16 December 2016; pp. 1–6.
19. Ismail, L.; Materwala, H. A review of blockchain architecture and consensus protocols: Use cases, challenges, and solutions.

Symmetry 2019, 11, 1198. [CrossRef]
20. Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems:

Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [CrossRef]
21. Yu, G.; Wang, X.; Yu, K.; Ni, W.; Zhang, J.A.; Liu, R.P. Survey: Sharding in blockchains. IEEE Access 2020, 8, 14155–14181.

[CrossRef]
22. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A secure sharding protocol for open blockchains. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016;
pp. 17–30.

23. Al-Bassam, M.; Sonnino, A.; Bano, S.; Hrycyszyn, D.; Danezis, G. Chainspace: A sharded smart contracts platform. arXiv 2017,
arXiv:1708.03778.

24. Hong, Z.; Guo, S.; Li, P.; Chen, W. Pyramid: A layered sharding blockchain system. In Proceedings of the IEEE INFOCOM
2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10.

25. Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. BrokerChain: A Cross-Shard Blockchain Protocol for
Account/Balance-based State Sharding. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communica-
tions, London, UK, 2–5 May 2022.

26. Hellings, J.; Sadoghi, M. Byshard: Sharding in a byzantine environment. Proc. VLDB Endow. 2021, 14, 2230–2243. [CrossRef]
27. Secure, A. The Zilliqa Project: A Secure, Scalable Blockchain Platform; Zilliqa: Singapore, 2018.
28. Chen, H.; Wang, Y. Sschain: A full sharding protocol for public blockchain without data migration overhead. Pervasive Mob.

Comput. 2019, 59, 101055. [CrossRef]
29. Wang, J.; Wang, H. Monoxide: Scale out blockchains with asynchronous consensus zones. In Proceedings of the 16th USENIX

Symposium on Networked SYSTEMS design and Implementation (NSDI 19), Boston, MA, USA, 27–28 February 2019; pp. 95–112.
30. Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Gün Sirer, E.; et al. On scaling

decentralized blockchains. In Proceedings of the International Conference on Financial Cryptography and Data Security, Christ Church,
Barbados, 22–26 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106–125.

31. Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, Zurich, Switzerland, 21–23 October 2019; pp. 41–61.

32. Mao, C.; Golab, W. Sharding techniques in the era of blockchain. In Proceedings of the 2021 40th International Symposium on
Reliable Distributed Systems (SRDS), Chicago, IL, USA, 20–23 September 2021; pp. 343–344.

33. Qi, X. S-Store: A Scalable Data Store towards Permissioned Blockchain Sharding. In Proceedings of the IEEE INFOCOM
2022-IEEE Conference on Computer Communications, London, UK, 2–5 May 2022; pp. 1978–1987.

34. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018;
pp. 583–598.

35. Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 931–948.

36. Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019;
pp. 123–140.

37. Asgaonkar, A. Scaling Blockchains and the Case for Ethereum. In Handbook on Blockchain; Springer: Berlin/Heidelberg, Germany,
2022; pp. 197–213.

http://dx.doi.org/10.1109/MWC.004.2100616
http://dx.doi.org/10.1109/ACCESS.2020.2993759
http://dx.doi.org/10.1016/j.sysarc.2022.102503
http://dx.doi.org/10.3390/sym11101198
http://dx.doi.org/10.1016/j.cosrev.2022.100513
http://dx.doi.org/10.1109/ACCESS.2020.2965147
http://dx.doi.org/10.14778/3476249.3476275
http://dx.doi.org/10.1016/j.pmcj.2019.101055


Appl. Sci. 2023, 13, 6911 17 of 17

38. Hashim, F.; Shuaib, K.; Zaki, N. Sharding for Scalable Blockchain Networks. SN Comput. Sci. 2023, 4, 1–17. [CrossRef]
39. Liu, Y.; Liu, J.; Li, D.; Yu, H.; Wu, Q. Fleetchain: A secure scalable and responsive blockchain achieving optimal sharding. In

Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, New York, NY, USA,
2–4 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 409–425.

40. Li, X.; Lv, F.; Xiang, F.; Sun, Z.; Sun, Z. Research on key technologies of logistics information traceability model based on
consortium chain. IEEE Access 2020, 8, 69754–69762. [CrossRef]

41. Yang, J.; Wang, J.; Wong, C.W.; Lai, K.H. Relational stability and alliance performance in supply chain. Omega 2008, 36, 600–608.
[CrossRef]

42. Stuart, T.E.; Ozdemir, S.Z.; Ding, W.W. Vertical alliance networks: The case of university–biotechnology–pharmaceutical alliance
chains. Res. Policy 2007, 36, 477–498. [CrossRef]

43. Zhu, L.; Yu, H.; Zhan, S.X.; Qiu, W.W.; Li, Q.L. Research on high-performance consortium blockchain technology. J. Softw. 2019,
30, 1577–1593.

44. Chen, Y.; Li, M.; Zhu, X.; Fang, K.; Ren, Q.; Guo, T.; Chen, X.; Li, C.; Zou, Z.; Deng, Y. An improved algorithm for practical
byzantine fault tolerance to large-scale consortium chain. Inf. Process. Manag. 2022, 59, 102884. [CrossRef]

45. Wang, F.; Ji, Y.; Liu, M.; Li, Y.; Li, X.; Zhang, X.; Shi, X. An optimization strategy for PBFT consensus mechanism based on
consortium blockchain. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure,
Hong Kong, China, 7–11 June 2021; pp. 71–76.

46. Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455.
[CrossRef]

47. Fitzi, M.; Gaži, P.; Kiayias, A.; Russell, A. Proof-of-stake blockchain protocols with near-optimal throughput. Cryptology ePrint
Archive 2020. Available online: https://eprint.iacr.org/2020/037 (accessed on 15 January 2020) .

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42979-022-01435-z
http://dx.doi.org/10.1109/ACCESS.2020.2986220
http://dx.doi.org/10.1016/j.omega.2007.01.008
http://dx.doi.org/10.1016/j.respol.2007.02.016
http://dx.doi.org/10.1016/j.ipm.2022.102884
http://dx.doi.org/10.1109/ACCESS.2020.2967218
https://eprint.iacr.org/2020/037

	Introduction
	Related Concepts
	Alliance Chain
	Practical Byzantine Fault Tolerance
	Sharding Protocol

	Dynamic Transaction Confirmation Sharding Protocol
	Network Infrastructure
	Transaction Consensus and Review Mechanism
	Reputation Model
	Adjustment Of Transaction Confirmation Threshold

	Correctness Argument
	Performance Analysis
	Stability and Safety

	Experimental Design
	Experiment and Configuration
	Experimental Testing

	Conclusions
	References

