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Abstract: The major challenges for medical image segmentation tasks are complex backgrounds and
fuzzy boundaries. In order to reduce their negative impacts on medical image segmentation tasks,
we propose an enhanced feature extraction network (EFEN), which is based on U-Net. Our network
is designed with the structure of feature re-extraction to strengthen the feature extraction ability. In
the process of decoding, we use improved skip-connection, which includes positional encoding and a
cross-attention mechanism. By embedding positional information, absolute information and relative
information between organs can be captured. Meanwhile, useful information will be strengthened
and useless information will be weakened by using the cross-attention mechanism. Our network can
finely identify the features of each skip-connection and cause the features in the process of decoding to
have less noise in order to reduce the effect of fuzzy object boundaries in medical images. Experiments
on the CVC-ClinicDB, the task1 from ISIC-2018, and the 2018 Data Science Bowl challenge dataset
demonstrate that EFEN outperforms U-Net and some recent networks. For example, our method
obtains 5.23% and 2.46% DSC improvements compared to U-Net on CVC-ClinicDB and ISIC-2018,
respectively. Compared with recent works, such as DoubleU-Net, we obtain 0.65% and 0.3% DSC
improvements on CVC-ClinicDB and ISIC-2018, respectively.

Keywords: medical image segmentation; convolutional neural network; deep learning;
attention mechanism

1. Introduction

Medical image segmentation is an important task in medical image processing and
analysis. It has great application and research value in medical research [1], clinical diagno-
sis, pathological analysis, surgical planning, computer-assisted surgery [2], and so on. The
purpose of the medical image segmentation task is to extract and segment special features,
such as lesions, and to provide a reliable basis for clinical diagnosis and pathological
research. The main challenges of medical image segmentation are as follows: first, it is
very difficult to construct a database of medical images, because the medical images them-
selves are extremely unbalanced, with many normal samples and few and variable lesion
samples, which leads to insufficient well-labeled training samples [3]. There are still some
problems, such as limited image quality, an absence of universally adopted segmentation
protocols, and significant inter-patient variations in image characteristics [4]. In addition,
medical images generally have a lot of noise and artifacts in imaging. The quantification of
segmentation accuracy and uncertainty is critical for estimating its performance in other
applications [5]. There are many types of medical images, including computed tomography,
X-ray, magnetic resonance imaging, and positron emission computed tomography im-
ages. Medical image segmentation mainly includes methods based on thresholds, regions,
deformation models, and fuzzy and neural networks.

In recent years, deep learning technology has played an important role in the field
of computer vision, and it is rapidly being applied to other fields, especially in the field
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of medicine. FCN [6] stands out as one of the initial deep learning architectures specifi-
cally designed for end-to-end training, which enables pixel-wise predictions in semantic
segmentation tasks. U-Net [7] is a network with an end-to-end encoder–decoder struc-
ture, and it overcomes the shortcoming that FCN cannot keep some pixel spatial position
information and context information, which leads to the loss of local features and global
features. Liu et al. [8] proposed that the U-shaped end-to-end network is the best medical
image segmentation architecture. The U-Net structure includes two stages: the first stage
is the down-sampling process, which is mainly responsible for feature extraction, and the
second stage is the up-sampling process based on the first stage, which is responsible for
outputting the feature map with the same size as the original sample. Because the features
obtained in the first stage comprise highly compressed feature information, and the task
of image segmentation needs to classify each pixel in the image, it cannot completely rely
on up-sampling features, and it needs to be supplemented with the information in the
down-sampling process. The skip-connection operation is used in U-Net. On the basis of
U-Net, many people have improved this network. For example, Zhou et al. [9] proposed
U-Net++. This network changes the original U-Net layers, redesigns the skip-connection
in the original network, and adds depth supervision to different segmentation tasks to
achieve a good segmentation result. Because of the excellent performance of U-Net in
medical image segmentation tasks, this framework is widely used for lesion segmentation
in organs, such as the eyes, heart, liver, brain, skin, prostate, and breast. Li et al. [10]
proposed ANU-Net for the organ cancer segmentation task. The network has achieved
good segmentation results on the LiTS (liver tumor segmentation) dataset and the CHAOS
(combined healthy abdominal organ segmentation) dataset with dense skip-connection
and an attention mechanism. Zhang et al. [11] proposed DIU-Net, which integrates the
inception module and the dense skip-connection module into U-Net to increase its width
and depth. This network is used to segment the brain tumors of MRI images and com-
puted tomography images of lungs and retinal blood vessels, and it achieves good results.
Jha et al. [12] proposed DoubleU-Net, which is a combination of two U-Net structures. The
first U-Net uses pre-trained VGG-19 as the encoding network, and the second U-Net uses
ASPP to capture context information. It achieves better segmentation results than U-Net in
colonoscopy, dermatoscope, and microscope images.

In addition, due to the good performance of U-Net in the field of medical image
analysis, many scholars combine it with other models to further improve its performance.
Li Jianfei et al. [13] proposed an image fusion algorithm based on dual-tree complex wavelet
transform (DTCWT) and frequency domain U-Net, which improves the accuracy of tumor
segmentation. Zhang Tianqi et al. [14] combined the local difference method with U-Net.
Yang et al. [15] proposed a method for combining level set and U-Net. Zhang et al. [16]
presented a combination of random walk and U-Net. Liu et al. [17] proposed a combination
of the graph partition method and U-Net. Man et al. [18] proposed a combination of deep
reinforcement learning and U-Net.

Semantic segmentation tasks and medical image segmentation tasks are used to
classify each pixel in the image. All segmentation tasks face two problems. The first
problem is how to improve the feature extraction ability of the network. If the feature
extraction ability is improved by increasing the depth of the network blindly, a lot of
detailed information will be lost, and detailed information is extremely important for
image segmentation. Second, most methods based on U-Net using skip-connection add the
features extracted by the encoder to the output of the corresponding layer of the decoder
indiscriminately, and this will inevitably introduce noise information, thus interfering with
the subsequent segmentation results. Almost all network improvements are essentially
designed to address these two problems. Promoting the feature extraction ability of the
network and compensating for lost information to the greatest extent is very important for
the segmentation of medical images. The main contributions of this paper are:

1. Based on U-Net, we propose an improved network EFEN, which further enhances
the feature extraction ability of the network by adding feature extraction processes.
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2. In this paper, the skip-connection is improved. Each skip-connection uses positional
encoding and a cross-attention mechanism. By embedding positional information,
absolute information and relative information between organs can be captured. Each
skip-connection uses a cross-attention mechanism to select information so that the net-
work can automatically give useful features a larger weight while suppressing useless
information. Then, the target boundaries or small targets can be better segmented.

3. For medical image segmentation tasks, the proportion of target pixels in the whole
image may be much less than that of background pixels, thus causing a class imbalance
problem. In this paper, we adopt binary cross-entropy and dice loss to jointly optimize
the training learning.

2. Related Works

Ronneberger et al. [7] proposed a network that is called U-Net because its shape is a
“U.” It is an encoder–decoder symmetric network that is composed of convolution, down-
sampling, up-sampling, and skip-connection. Down-sampling is the process of feature
extraction, and it will inevitably lead to the high compression of features and information
loss. Up-sampling is the process of restoring a feature map to the same size as the input
image for subsequent classification of each pixel. Up-sampling cannot fully restore the
original image details. This is because it is performed on the output of down-sampling,
and down-sampling is an irreversible process. In order to reduce the training cost, the
encoder of VGG-19 is often used as the encoder of U-Net, so that the pre-trained encoder
parameters can be used. VGG-19 was originally designed for image classification, so
its structure is not symmetrical, which is different from U-Net. However, both image
classification and image segmentation require feature extract processing, and the trained
encoder parameters of VGG-19 are often used to initialize the encoder parameters of U-
Net. Skip-connection is an important application in U-Net that alleviates the problem of
gradient disappearance. It can compensate for the information loss in the process of feature
extraction to a certain extent. However, this skip-connection will add information from
the encoder to the features obtained by the decoder indiscriminately, which will introduce
noise. This is very unfavorable for image segmentation.

The end-to-end network with a “U” shape performs best in medical image segmenta-
tion tasks, and many scholars have made improvements to it, such as Y-Net [19], Ψ-Net [20],
and multi-path dense U-Net [21]. All three of these networks increase the number of
encoders for different tasks to promote the feature extraction ability. Y-Net is composed
of two encoders and one decoder to extract more features. Ψ-Net uses three encoders in
the encoding stage to further improve the feature extraction ability, but the three encoders
have to process three slices, respectively. At the same time, the self-attention block and the
context attention block are used in the encoding stage and the decoding stage, respectively.
However, the relationship between encoders in these networks is not explored, and there
is a lack of constraints between encoders, which may increase the number of parameters
in the network but improve its limited performance. Multi-path dense U-Net is a multi-
modal segmentation model proposed by Dolz et al. Aiming to analyze images of ischemic
stroke, its multiple input images include diffusion-weighted imaging (DWI), cerebral blood
volume (CBV), CT perfusion imaging (CTP), and mean transit time (MTT). This network
mainly alleviates the effect of gradient disappearance and over-fitting. However, the model
is limited to specific tasks and needs additional multimodal data, which is unfavorable in
the case of scarce medical data.

Xia and Kulis et al. [22] proposed W-Net for image segmentation tasks. Xu et al. [23]
and Das et al. [24] proposed DW-Net and WRC-Net, respectively. DW-Net adds dilated
convolution on the basis of W-net, which can increase the ability to obtain multiscale context
information. The first U-Net of the WRC-Net is employed for boundary prediction, while
the second U-Net is utilized to generate the image segmentation result. However, it is
important to note that these two U-Nets operate independently of each other. Tang et al. [25]
proposed CU-Net (Coupled U-Net), which is the combination of dense U-Net and stacked
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U-Net, and it improves the efficiency of stacked U-Net. Kang et al. [26] proposed CMU-Net
(cascading modular U-Nets). In this method, pre-trained U-Nets are modularized and
cascaded to binarize images, which solves the problem of too few samples. In addition,
many scholars combine U-Net in parallel, assigning distinct functions to each U-Net. For
example, Zhao et al. [27] proposed triple U-Net for nuclear segmentation in pathological
cancer. Lee et al. [28] proposed Multi-scale U-Net (Mu-Net), which incorporates multiple
U-Nets operating at different scales in parallel and each U-Net handles images at different
scales. All of the aforementioned approaches enhance U-Net. However, they all ignore the
impact of the relationship between network structures on specific tasks.

In this paper, a cross-attention mechanism is used to select the features of skip-
connection. SeNet [29] compresses each feature map in different channels into a single value
to induct the network to learn a set of weights that reflect the importance of each feature map
in their channel. The authors proposing GSoP-Net [30] and FcaNet [31] argued that using
only global average pooling is insufficient, as it limits the modeling ability of the attention
mechanism. GSoP-Net improves the squeeze module in SeNet and a global second-order
pooling (GSOP) block is proposed to model high-order statistics while collecting global
information. FcaNet reconsiders the global information captured from the perspective
of compression, and analyzes the global average pooling in the frequency domain. The
authors of these studies proved that the global average pooling is a special case of a discrete
cosine transform. Building upon this insight, they proposed a novel multi-spectral channel
attention. SRM (Style-based Recycling Module) [32] improves the squeeze module and
excitement module by incorporating the mean and standard deviation of input features,
thereby enhancing the network’s capability to capture global information. It also uses a
lightweight channel full connection layer (CFC) instead of the original full connection layer
(FC) to reduce the computing requirements. GCT [33] comprises a general transformation
unit for visual recognition tasks, which uses interpretable variables to visualize and model
channel correlation. These variables determine the competitive or cooperative relationship
between neurons and can be jointly trained with network parameters. ECANet [34] replaces
the fully connection layer in SENet with one-dimensional convolution, which can replace
the SE block well without adding additional parameters, and can also exceed the original
performance of SE. Inspired by SENet, EncNet [35] contains a context encoding module,
which is combined with the semantic encoding loss to model the relationship between the
scene context and the probability of object categories, and then uses the global scene context
information for semantic segmentation. There are many ways to combine an attention
mechanism with U-Net. For example, Jin et al. [36] proposed RA-UNet for segmenting CT
images of liver tumors. This model obtains multi-scale attention information through the
network to fuse shallow and deep features. In addition, Ding et al. [37] proposed category
attention boosting U-Net (CAB U-Net). Hariyani et al. [38] proposed dual attention CapNet
(DA-CapNet). In this paper, we use a cross-attention mechanism to filter out the noise
from the encoder information as much as possible. This mechanism aims to enhance the
network’s ability to accurately identify the category of each pixel. Compared with the above
methods, the cross-attention mechanism has a better ability to consider global information.
Therefore, it can reduce the negative impact of complex backgrounds, fuzzy boundaries
and small objects in medical image segmentation tasks.

To sum up, deep CNN algorithms are widely used in the field of medical image
segmentation tasks and have made great achievements. However, artificial intelligence
in medicine image analysis is still a new field. The main challenges in the medical image
analysis field are the lack of datasets and the imbalance of datasets. In this field, accurate
auxiliary diagnosis is often crucial, as a wrong or inaccurate diagnosis can lead to delays
in treatment or even exacerbate the illness. This paper presents an enhanced network
derived from U-Net for medical image segmentation tasks. The network takes into account
the influence of network structures, resulting in improved feature extraction capabilities
compared to traditional U-Net. Furthermore, it fully considers the impact of valuable
information within the shallow network on segmentation results.
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3. Proposed Method

In this section, we will present the details of the EFEN proposed in our work and
explain the role of each part. In this paper, two key issues in the tasks of medical image
segmentation are considered when designing the network: first, whether the feature extrac-
tion capability of the network can be improved, and second, whether the highly extracted
features can be compensated by useful information, and whether the compensation infor-
mation can avoid noise or useless details as much as possible. Since the U-Net performs
best in the medical image segmentation tasks, we design the network on the basis of U-Net.
Figure 1 shows an overview of the designed network architecture on the basis of U-Net. In
Figure 1, U-Net is used as the basic network for the feature extraction of the first stage, and
during up sampling the improved skip-connection with a cross-attention mechanism is
used to supervise the information from the encoder. After obtaining the outputs of the base
U-Net, we merge them with the inputs of the feature re-extraction network to further extract
features. In the up-sampling process of the feature re-extraction network, we also use the
cross-attention mechanism to supervise the information of the skip-connection. It is worth
noting that the information of the skip-connection only comes from the corresponding
layer features which are extracted in the down-sampling process of U-Net. In this way,
not only can the ability of the network to extract features be improved, but also more
accurate boundary features can be obtained. Finally, because we perform medical image
segmentation, in order to further enhance the feature extraction ability, we adopt binary
cross-entropy and dice loss to jointly optimize the training learning. Section 3.1 introduces
the structure of proposed EFEN. Section 3.2 introduces the improved skip-connection.
Section 3.3 introduces the loss function.
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3.1. Structure of EFEN

Compared with traditional medical image analysis methods, using fully convolutional
networks can achieve better performance. Fully convolutional networks are more accurate
and robust in tasks such as cardiac MR [39], brain tumors [40] and abdominal CT [41,42]
image segmentation. Among them, the fully convolutional network U-Net has been proved
to be the best performing medical image segmentation architecture. The network proposed
in this paper improves the structure on the basis of U-Net. The encoder of VGG-19 is used
as a sub-network of our encoder, and a symmetrical decoder is designed. The decoding
part of U-Net adopts an improved skip-connection for feature compensation, which can
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supervise the compensation information and reduce noise or interference effectively. Given
an input image I ∈ R3×H×W , I is mapped to a set of feature maps FE1

i . The process can be
formulated as follows:

FE1
i = ΦE1

(
FE1

i−1

∣∣∣WE1
i

)
, (1)

where i is the ith stage in the processes of feature extraction and E1 refers to the first

encoding process. FE1
i ∈ RCi× H

2i ×
W
2i , where Ci is the channel number of the ith stage during

encoding. H and W are the number of pixels along the height and width of the feature
map, respectively. When i = 1, FE1

0 is the input image I. WE1
i refers to the weights of the

convolutional network during encoding. ΦE1 refers to the operations of mapping feature
maps FE1

i−1 to FE1
i during the encoding process, which usually includes convolution, pooling,

and ReLu, etc. The decoding process begins when we obtain the features from the deepest
layer, and it can be formulated as follows:

FD1
j = ΨD1

(
ΦD1

(
FD1

j−1

)
, RD1

j

(
FE1

i , FD1
j

))
, (2)

where j is the jth stage in the process of decoding and D1 refers to the first decoding process.
FD1

j refers to the feature map in the jth stage during decoding process. ΦD1 refers to the

operation of transposed convolution. RD1
j is the operation of improved skip-connection

and is described in detail in Section 3.2. ΨD1 includes two layers of 3× 3 convolution and
one layer of 1× 1 convolution.

First, we discard the last 1× 1 convolution layer of the U-Net decoder, and then fuse its
outputs with the inputs of the encoder using improved skip-connection. The fused features
have both semantic information and shallow information. After that, we continue to build
a feature extraction network to enhance the feature extraction capability, and features in
each stage in the second feature extraction process are fused with the corresponding layer
features which are extracted in the down-sampling process of U-Net. This process can be
formulated as follows:

FE2
k = opE2

k ( ΦE2
(

FE2
k−1

∣∣∣WE2
k

)
, FD1

j

)
, (3)

where k is the kth stage in the process of feature extraction, E2 refers to the feature re-

extraction process, and FE2
k ∈ RCk× H

2k ×
W
2k . ΦE2 refers to the operations of mapping fea-

ture maps FE2
k−1 using the weights of WE2

k , which usually include convolution, pooling,
and ReLu, etc. The size of FD1

j is the same as the outputs of ΦE2. opE2
k is the fusion

method which includes the operations of two layers of 3× 3 convolution and one layer of
1× 1 convolution. The inputs of opE2

k consist of two parts: one part comes from the features
obtained at each encoding stage in the feature re-extraction process, and the other part
comes from the features of each corresponding stage in U-Net decoder. It should be noted
that the features in each stage of the U-Net decoding part includes the information of the
corresponding stage in the encoder because improved skip-connection is used. Therefore,
the process of opE2

k will further improve the feature extraction capability of the entire
network.

Like the decoding part of U-Net, we perform up-sampling to complete the final
per-pixel classification task. We describe this process as follows:

FD2
l = opD2

l

(
ΦD2

(
FD2

l−1

)
, RD2

l

(
FE1

k , FD2
l

))
, (4)

where l is the lth stage in the process of decoding and D2 refers to the second decoding pro-
cess. ΦD2 refers to the operation of transposed convolution in the second decoding process.
The outputs of ΦD2

(
FD2

l−1

)
can be the inputs of ΦD2(FD2

l
)

and can also be used to generate

the weights for the cross-attention mechanism. RD2
l is the operation of improved skip-
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connection and it is detailed in Section 3.2. opD2
l includes two layers of 3× 3 convolution

and one layer of 1× 1 convolution.

3.2. Improved Skip-Connection

In the encoding process of U-Net, higher dimensional features are extracted by process-
ing local information layer by layer. In general, the process of feature extraction requires
filters to convolve the inputs of each layer. The size of the convolution kernels can vary,
including sizes such as 1× 1, 3× 3, 5× 5, and 7× 7. Among them, kernels with a size of
3× 3 are used most commonly. Each stage of the encoder in U-Net consists of several layers
of convolutional, pooling, and activation. Among them, the pooling layer can keep fea-
ture invariance, and to some extent, it can also prevent overfitting, reduce dimensionality,
remove redundant information, compress features, simplify network complexity, reduce
the amount of computation, reduce memory consumption, etc. Since the pooling layer
compresses the features, it inevitably leads to the loss of some information, which is an
irreversible process. This operation is beneficial for feature extraction, but is not suitable
for pixel classification in the final stage. Because end-to-end image segmentation tasks in
the deep learning field are ultimately tasks of pixel classification, they will inevitably lead
to inaccurate pixel classification of this part if the lost information cannot be recovered, so
an information compensation operation is required.

Skip-connection was originally designed to solve the problem of gradient vanishing.
Neural networks use the method of gradient descent to calculate gradient value layer by
layer in the direction from the output layer back to the input layer of the network when
updating the parameters. However, the gradient is usually a value smaller than 1. The more
layers there are in the network, the smaller the gradient value will be. When the gradient
value is infinitely close to 0, the network cannot update its parameters. The skip-connection
operation involves adding shallow information to the deeper layers of the network, provid-
ing a shortcut for gradient backpropagation. This prevents the network from encountering
the issue of gradient vanishing, ensuring that parameter updates continue throughout the
network. In addition, in the process of continuous feature extraction, details including edge
information and small-target information will gradually be lost. However, this detailed
information is crucial to the classification of pixels for the segmentation tasks. In each stage
of decoding, features from the encoding process are used to fuse with the features from the
decoder of the same size. Although the feature maps obtained by such up-sampling cannot
completely restore the original features, the features are compensated to a certain extent.
However, the information used to compensate for the decoding features also creates noise
or interference, and the shallower the layer of the compensation information, the more
noise it contains.

Therefore, it is necessary to improve the skip-connection. In this paper, our improved
skip-connection includes two aspects, namely positional embedding and cross-attention.
Positional embedding is crucial for medical image segmentation tasks because different
tissue structures are in different fixed positions in the image. Cross-attention enables the
network to obtain a set of weights, allowing it to capture the most important features in
skip-connections and effectively incorporate the absolute and relative information between
organs. The network strengthens target features by assigning larger weights to the features
that are beneficial for segmentation tasks, while reducing the weights of features that are
less relevant to segmentation, thus reducing noise and interference. Through continuous
forward propagation and back-propagation, the network can improve its ability to identify
categories. In this paper, each skip-connection is embedded with positional information
and cross-attention mechanism to minimize the impact of information such as noise or inter-
ference on medical image segmentation tasks. The improved skip-connection R

(
FE′ , FD′

)
can be formulated as follows:

R
(

FE′ , FD′
)
= concat

(
FE′ � op2(AV), op3

(
FD′

))
, (5)
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The skip-connection R
(

FE′ , FD′
)

is related to the encoder and decoder. The final
output of improved skip-connection is the result of concat(•), which includes the output
of cross attention and the result of op3

(
FD′

)
. FE′ is the input of the skip-connection

and it comes from the encoder feature FE. FD′ is another input of the skip-connection
which comes from the decoder feature FD. � represents the pixel-wise multiplication
operation. op2(•) includes operations such as conv1× 1, batch normalization, Relu and
up-sampling. op3(•) involves up-sampling, one layer of conv3× 3, one layer of conv1× 1,
batch normalization and Relu. AV establishes a correlation between each pixel of the input
image. A is so f tmax(•), which comes from the output features of each stage of the decoder
part. The output features from the decoder are more purified, and it is more instructive to
use the signal generated by those features to supervise the signal of skip-connection. In
fact, A is the weights of cross-attention. FE′ , FD′ , A and V are obtained according to the
following formulas:

FE′ = FE + P
(

FE
)

, (6)

FD′ = FD + P
(

FD
)

, (7)

A = so f tmax
(

QKT

dk

)
, (8)

V = op1
(

FE′
)

WV , (9)

where P(•) in Equations (6) and (7) is the operation of positional encoding. Q and K in
Equation (8) are calculated from FD, and they are obtained by multiplying FD with the
learnable parameters WQ and WK in the matrix, respectively. Of course, we also need some
necessary dimensional transformation. dk is the channel number of V. WV in Equation
(9) is also a set of learnable parameters, op1(•) includes max-pooling, conv1× 1, batch
normalization and Relu, so the output feature map size of the op1 will be halved. Each
variable is shown in Figure 2.
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In order to provide a detailed explanation of the contents, Box 1 presents the pseu-
docode for position encoding, while Box 2 presents the pseudocode for cross-attention. In
Box 1, sequence_length represents the length of the input sequence, and d_model represents
the hidden dimension of the model. This function returns a position coding matrix with the
shape of (sequence_length, d_model). The position coding uses sine and cosine functions to
generate coded values for each position in the sequence. The coded value for each dimen-
sion is generated using both a sine function and a cosine function, and the frequency and
offset are calculated by div_term. Then, according to the parity of position and dimension,
the sine coding value and cosine coding value are assigned to the corresponding positions
of the position coding matrix, respectively. The position coding matrix can be added to the
embedding vector of the input sequence to combine positional and semantic information.
In this way, the model can better understand the relevance and importance of different
positions in the sequence through the self-attention mechanism. The query and key in
Box 2 are derived from the same tensor and are multiplied to calculate the similarity. The
model can assign a weight corresponding to the key to each query and use these weights to
sum the value to obtain the final representation. By using this method, the network can
obtain important information from each stage of the encoder when using skip-connection.

Box 1. Pseudocode of position encoding.

function positional_encoding(sequence_length, d_model):

position = torch.arange(sequence_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * − (math.log(10000.0)/d_model))
positional_encoding = torch.zeros(sequence_length, d_model)
positional_encoding[:, 0::2] = torch.sin(position * div_term)
positional_encoding[:, 1::2] = torch.cos(position * div_term)

return positional_encoding

Box 2. Pseudocode of cross-attention.

function cross_attention(query, key, value, mask = None):

scores = dot_product(query, key)
if mask is not None:
scores = apply_mask(scores, mask)
attention_weights = softmax(scores)
output = elementwise_multiply(attention_weights, value)

return output

By using this method to solve the medical image segmentation tasks, the essence
of the task, pixel-wise classification, is considered. As the cross-attention mechanism
selects compensative information, it effectively suppresses the noise or interference in
medical images, thereby reducing the risk of misdiagnosis or inaccurate segmentation. This
connection method is also used in the second decoding stage, and no noisy information is
arbitrarily added to any stage of the entire network, which makes the segmentation results
of medical images more accurate.

3.3. Loss Function

Our network is an end-to-end deep learning system. The image segmentation task
turns into a classification task for each pixel in the image eventually. Compared with the
natural image segmentation, the medical image segmentation task is relatively simple,
and it is mostly a two-class problem. It only needs to segment the background and target
pixels. However, the proportion of target pixels in the whole image may be much less than
that of background pixels, thus causing a class imbalance problem. The most commonly
used loss function is cross-entropy, but it may not be the best choice for class imbalance
problems. Dice loss can alleviate the class-imbalance problem because it is insensitive
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to the number of foreground or background pixels. However, dice loss will affect back
propagation adversely and can make training unstable. In this paper, binary cross-entropy
and dice loss are adopted to jointly optimize the training learning. Under the constraint
of improved loss function, our network updates the neuron parameters through gradient
descent, and the parameters of the network are optimized through continuous forward
propagation and back propagation. Our loss function is formulated as follows:

L(p, g) = Lbce(p, g) + Ldice(p, g), (10)

where p ∈ RH×W denotes the predicted image and g ∈ RH×W denotes the corresponding
ground-truth. Lbce is the binary cross-entropy loss and Ldice is the dice loss. Ldice is given as
follows:

Ldice(p, g) = 1− ∑H×W
i 2pigi + θ

∑H×W
i

(
pi
)2

+ ∑H×W
i

(
gi
)2

+ θ
, (11)

where θ is a Laplace smoothing item to avoid the case where the denominator is 0 during
division. In this paper, we set θ = 1. i is the position of the ith pixel.

4. Experiment

We implemented our method on three medical image datasets: the lesion boundary
segmentation dataset from ISIC-2018 [43], the CVC-ClinicDB [44], and the 2018 Data
Science Bowl challenge [45]. We used these datasets to evaluate the effectiveness of our
proposed segmentation network. In this chapter, we first introduce the experimental setup
and evaluation metrics. Then, we report our accuracy, comparing its performance to the
implementation results of other approaches on the same dataset. Furthermore, we discuss
the impact of our method through visual analysis.

4.1. Experimental Setup and Evaluation Metrics

In this section, we mainly introduce the experimental settings in the process of training
and testing according to the following aspects. All models were implemented using the
Keras framework 2.3.0 [46] with Tensorflow 2.2.0 [47] as the backend. The training and
testing were based on the Ubuntu 16.04 system with four NVidia GeForce Titan graphics
cards, which have 62 gigabytes of memory. For all models, the SGD optimizer was chosen to
train 300 epochs, and the batch size and learning rate were set to 8 and 1×10−4, respectively.
During training, both Early Stopping and ReduceLROnPlateau were used. In this paper, the
evaluation metrics such as Sørensen-Dice Coefficient (DSC), mean Intersection over Union
(mIoU), Precision, and Recall were adopted. However, we mainly focused on DSC and
mIoU, which are recognized as indicators of the challenge of lesion boundary segmentation.
Equations (12)–(15) are our evaluation metrics:

DSC =
2TP

2TP + FP + FN
, (12)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

, (13)

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

where TP, TN, FP and FN represent the number of true positives, true negatives, false
positives and false negatives, respectively. Additionally, k in Equation (13) is the number of
target classes to be predicted.
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4.2. Datasets and Results

When the training samples are insufficient, the network may overfit, and since medical
images are often scarce, it becomes crucial to increase the number and diversity of samples
to improve the network’s robustness. To achieve this, we applied 25 types of data augmen-
tation methods, including center crop, random rotation, transpose, elastic transform, etc.,
to each dataset. Figure 3 shows an original image in CVC-ClinicDB and its corresponding
augmented images by 25 kinds of algorithms. For each dataset, the samples were split into
three subsets: 80% for training, 10% for validation, and the remaining 10% for testing. We
first divided the dataset into training, validation and testing sets and then used 25 kinds of
methods to augment them.
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4.2.1. Ablation Studies before and after Network Improvement

In this section, in order to verify the effectiveness of our method, we compare the
network before and after improvement. We adopted the U-Net with VGG19 pre-trained
model as our framework. The experiments were mainly carried out on the CVC-ClinicDB
dataset. The key objectives of the experiments were as follows:

(1) Examining whether feature re-extraction enhances the network’s segmentation per-
formance on medical images.

(2) Evaluating whether the improved skip-connection can effectively filter out interfering
information and further improve the performance of the network.

The specific experimental results are shown in Table 1.

Table 1. Ablation studies before and after network improvement on CVC-ClinicDB dataset.

Metric U-Net (Baseline) U-Net+Process1 EFEN

DSC (%) 87.81 91.52 93.04
mIoU (%) 78.81 86.90 87.25
Recall (%) 78.65 85.43 86.99
Precision (%) 93.29 95.12 95.80
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From Table 1, it is shown that adding the feature re-extraction process and improved
skip-connection can improve the performance of the baseline network continuously. Com-
pared with the baseline U-Net, employing feature re-extraction yields a result of 91.52%
and 86.9% in DSC and mean IOU, which brings 3.71% and 8.09% improvement, respec-
tively. This is because the feature re-extraction process can further calibrate the fuzzy
information on the basis of the initial feature extraction, so the feature extraction ability
can be improved. Based on U-Net+Process1, using improved skip-connection can further
improve the performance of the network. Because skip-connection in U-Net adds the
features extracted by the encoder to the output of the corresponding layer of the decoder
indiscriminately, it will inevitably introduce noise information into it, thus interfering with
the subsequent segmentation results. The improved skip-connection designed in this paper
uses the cross-attention mechanism on the input feature map from the encoder, because the
supervision information comes from deep semantic information, so it can greatly reduce
the noise. Compared with the baseline U-Net, EFEN has a DSC of 93.04%, which is superior
to U-Net (87.81%) by 5.23%. This experiment proves that our method is effective.

4.2.2. Results on CVC-ClinicDB Dataset

The segmentation of polyp images is a challenging task, which is mainly because the
demarcation is indistinct between the polyp and its surrounding mucosa and the different
sizes, colors and textures of the polyps with the same type. CVC-ClinicDB is an open access
colonoscopy image database which is used in our experiments. The CVC-ClinicDB dataset
contains 612 images with a resolution of 384 × 288 from 31 colonoscopy sequences. We first
split the dataset into training, validation, and testing sets at a ratio of 8:1:1. Then, we used
data augmentation methods to obtain 12,714 training images and 1586 validation images.
The experimental results of each method in this dataset are shown in Table 2.

Table 2. Comparisons on CVC-ClinicDB testing set.

Method DSC (%) mIoU (%) Recall (%) Precision (%)

TransUNet [48] 86.76 79.91 87.34 87.63
LeViT-UNet [49] 82.82 75.48 82.68 84.99
Multi-scale patch-based CNN [50] 81.30 - 78.60 80.90
ResUNet++ [51] 85.40 78.11 85.39 87.05
Conditional generative adversarial
network [52] 88.48 81.27 - -

U-Net [7] 87.81 78.81 78.65 93.29
DoubleU-Net [12] 92.39 86.11 84.57 95.92
PraNet [53] 89.60 84.90 - -
ResUNet++ + CRF [54] 92.03 88.98 93.93 84.59
TransFuse-S [55] 91.8 86.8 - -
AG-CUResNeSt [56] 91.70 86.7 - -
UACANet-S [57] 91.6 87.00 - -
SSFormer-L [58] 94.47 89.95 - -
EFEN 93.04 87.25 86.99 95.80

Table 2 shows the results on the CVC-ClinicDB testing dataset. Compared with U-
Net and the recent works, we observe that the EFEN improves performance remarkably.
The comparison methods in this table can be summarized into two categories: one is
those based on CNN, and the other is those based on transformer. The methods based
on CNN are almost similar to U-Net when using skip-connection; that is, they all add
the features extracted by the encoder to the output of the corresponding layer of the
decoder indiscriminately. It will inevitably introduce noise information into the decoder,
thus interfering with the subsequent segmentation results. However, there are still gaps
compared with the state-of-the-art methods. For example, SSFormer-L achieves a DSC
of 94.47%. This is because SSFormer-L is a method based on transformer which lacks
inductive bias in CNN, and it is based on two datasets. This kind of method needs a lot
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of pre-training data to obtain better results, or it will be worse. For example, the results
of TransUNet and LeViT-UNet are even lower than U-Net. For the smaller dataset, CNN
is still the prior choice. However, compared with the baseline U-Net, EFEN outperforms
U-Net by a large margin, with 5.23% improvement on DSC and 8.44% improvement on
mIoU. In addition, compared with recent works, EFEN has a DSC of 93.04%, which is
superior to DoubleU-Net (92.39%) by 0.65%.

A careful visual analysis of the result is shown in Figure 4. In the first two columns of
Figure 4, we can see that U-Net misclassified the parts that do not belong to the target. It
can be seen from columns 3–6 in Figure 4 that because the boundary between polyps and
their surrounding mucosa is unclear, and polyps have different sizes, colors, and textures,
it is difficult for U-Net to segment the target accurately. However, our network can segment
some smaller targets and targets with unclear edges more accurately. See the red boxes in
Figure 4 for more details. Although our improved skip-connection can make up for some
missing information, compared with the mask, our method still has some inaccuracies,
such as the second, fourth and last columns. There are two main reasons for this issue. First,
the quality of samples includes the quality of samples collected and the quality marked by
professional doctors should be enhanced. Second, the performance of the model itself also
needs to be further improved, which mainly includes the ability of the network to extract
features and the further improvement of the compensation method for lost information in
the process of feature extraction.
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Furthermore, we introduce the differences between our model and the baseline model
U-Net and a recent work, DoubleU-Net, in terms of computational efficiency, utilization of
computational resources, and model complexity. The comparison results are presented in
Table 3.

Table 3. More comparisons.

Methods Parameters (M) Pre-Training(Y/N) FPS Inference Time(s)

U-Net 18.93 Y 0.64 1.56
DoubleU-Net 29.30 Y 0.28 3.45
EFEN 29.44 Y 0.20 4.97

‘M’ in this table stands for million, ‘Y’ and ‘N’ stand for yes and no, respectively, and ‘Inference time’ refers to the
time required for inference per image.
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As can be seen from Table 3, compared with U-Net and DoubleU-Net, our model
has slightly increased parameters and processing time per image. However, this trade-off
results in significantly improved segmentation accuracy.

4.2.3. Results on Lesion Boundary Segmentation Dataset from ISIC-2018

The lesion boundary segmentation dataset is a large-scale dataset which is published
by the International Skin Imaging Collaboration (ISIC). It contains 2594 original dermoscopy
images and 2594 corresponding binary masks. Lesion boundary segmentation takes its
Task 1 from ISIC. It is very useful to analyze dermatoscope images, which can help doctors
find potential skin diseases such as skin cancer in advance. Similar to other approaches
utilizing this dataset, we randomly partitioned it into three subsets, following the pro-
portions of 80%, 10%, and 10% for training, validation, and testing, respectively. Then,
53,950 training samples and 6734 validation samples are obtained by applying 25 different
data augmentation methods. The experimental results of each method in this dataset are
shown in Table 4.

Table 4. Comparisons on ISIC-2018.

Method DSC (%) mIoU (%) Recall (%) Precision (%)

U-Net [7] 87.46 80.25 90.66 88.37
ResUNet++ [51] 87.99 81.00 88.92 90.57
DoubleU-Net [12] 89.62 82.12 87.80 94.59
LeViT-UNet [49] 88.32 81.72 90.83 89.66
TransUNet [48] 84.99 77.00 89.82 84.73
Attention-UNet [59] 88.34 81.49 89.01 91.53
BAT [60] 91.2 84.3 - -
EFEN 89.92 82.25 88.10 94.71

Table 4 shows the results on the lesion boundary segmentation dataset from ISIC-2018.
EFEN is compared with the baseline network and recent works with the same settings
on the same dataset for evaluation. We observe that EFEN achieves a validation DSC
of 89.92%, exceeding U-Net (87.46%) by 2.46%. In addition, our method outperforms
DoubleU-Net with 0.3% and 0.13% improvements on DSC and mean IOU, respectively. Of
course, it should be noted that our method still has room for improvement compared to the
state-of-the-art method BAT, which is based on a transformer and requires a larger amount
of training data. We acknowledge this gap and remain committed to further exploring and
enhancing our method in future research.

The results of visual analysis are shown in Figure 5. We need to segment the target
with possible skin diseases from dermoscopy images, even when the skin diseases have
different characteristics. Although the same disease appears in different people, the size,
boundary and color of the affected area may be different, and there may be some other
problems such as hair interference. We select some results with obvious contrast effects
to show. Through the comparison of visualization results, it is not difficult to find that
our method is better than U-Net in segmenting skin diseases with unclear boundaries and
unclear targets. For the segmentation of small targets, such as the first column, our method
is better than the baseline method. More details are shown in Figure 5. The red box shows
the segmentation results of the same area in the same image using different methods.

4.2.4. Results on 2018 Data Science Bowl Challenge

The main task of this challenge is to detect nuclei in images. Cell nucleus identification
helps researchers to identify each cell in an image, thus helping researchers understand po-
tential biological processes. By automatically segmenting the nucleus, doctors can quickly
diagnose the disease and treat it. Most genetic disease analysis is based on identifying
the nucleus, because most of the 30 trillion cells in the human body contain a nucleus
filled with DNA, and DNA is the genetic code for programming each cell. The dataset
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includes 670 nuclei images. The images are of varied resolutions, and we resize all images
to 384× 288. We first divide the dataset into a training set, verification set and testing set
according to the ratio of 8:1:1. By using 25 kinds of data augmentation methods to expand
the dataset, we obtain 13,936 training samples and 1742 verification samples. Table 5 shows
the experimental comparisons of various methods on this dataset.
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the comparisons in the same position.

Table 5. Comparisons on 2018 Data Science Bowl challenge.

Method DSC (%) mIoU (%) Recall (%) Precision (%)

U-Net [7] 88.75 80.80 92.08 87.22
UNet++ [9] 88.68 81.41 91.88 87.40
DoubleU-Net [12] 91.33 84.07 64.07 95.96
LeViT-UNet [49] 88.23 80.81 88.83 88.96
TransUNet [48] 89.51 82.10 90.60 90.02
ResUNet++ [51] 89.43 82.24 90.32 90.05
Attention-UNet [59] 88.79 81.63 91.81 87.05
SSFormer-L [58] 92.30 86.14 - -
EFEN 91.65 84.31 72.43 96.56

Table 5 shows the results for the 2018 Data Science Bowl challenge. We observe that
EFEN achieves a validation DSC of 91.65%, exceeding baseline U-Net (88.75%) by 2.9%.
Compared with recent works, EFEN outperforms DoubleU-Net, with 0.32% and 0.24%
improvements on DSC and mean IOU, respectively. SSFormer-L is based on a transformer
which needs more data for training, and CNN will be more suitable for the smaller dataset.

In Figure 6, we visualize the segmentation results of our method compared to baseline
U-Net. Our method exhibits an advantage in effectively segmenting small objects. As
shown in the first, fourth and sixth columns, we observe that the nuclei missed by U-Net
can be identified by our method. In the second and third columns, we observe that our
method is better than U-Net in identifying targets. Although our method may not be
optimal, as shown by previous experiments, our method is better than the baseline method
and some recent work.
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Figure 6. Visualization results of EFEN on the 2018 Data Science Bowl challenge test set. Each column
includes the original input image and its corresponding mask, the result of baseline model U-Net
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5. Conclusions

In this paper, we present EFEN for medical image segmentation tasks, which is
designed by adding the feature re-extraction process and using improved skip-connection
based on U-Net. By adding the feature re-extraction process, the feature extraction ability
of the network is enhanced. Improved skip-connection can not only help the network to
identify segmentation targets, but also further help the network to reduce the interference
information from shallow features. Experiments on the CVC-ClinicDB, the ISIC-2018, and
the 2018 Data Science Bowl challenge datasets show that although there are still some
gaps between EFEN and the most advanced method, our method is superior to U-Net and
other recent excellent networks. Furthermore, from the visual analysis we can see that
EFEN can improve the segmentation result of medical images with blurred boundaries
or complex backgrounds. The EFEN proposed in this paper can provide doctors with
auxiliary diagnosis, help doctors locate lesions and help them to diagnose and evaluate the
disease more accurately. In the future, this method or its idea can be applied to cross-modal
medical image segmentation, personalized medicine and automated workflows to further
explore its advantages.
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