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Abstract: The aim of this paper is to analyze the transfer performance of a spacecraft whose primary
propulsion system is a diffractive solar sail with active, switchable panels. The spacecraft uses a
propellantless thruster that converts the solar radiation pressure into propulsive acceleration by
taking advantage of the diffractive property of an electro-optically controlled (binary) metamaterial.
The proposed analysis considers a heliocentric mission scenario where the spacecraft is required to
perform a two-dimensional transfer between two concentric and coplanar circular orbits. The sail
attitude is assumed to be Sun-facing, that is, with its sail nominal plane perpendicular to the incoming
sunlight. This is possible since, unlike a more conventional solar sail concept that uses metalized
highly reflective thin films to reflect the photons, a diffractive sail is theoretically able to generate a
component of the thrust vector along the sail nominal plane also in a Sun-facing configuration. The
electro-optically controlled sail film is used to change the in-plane component of the thrust vector to
accomplish the transfer by minimizing the total flight time without changing the sail attitude with
respect to an orbital reference frame. This work extends the mathematical model recently proposed
by the authors by including the potential offered by an active control of the diffractive sail film. The
paper also thoroughly analyzes the diffractive sail-based spacecraft performance in a set of classical
circle-to-circle heliocentric trajectories that model transfers from Earth to Mars, Venus and Jupiter.

Keywords: diffractive solar sail; binary arrayed grating; preliminary mission design; circle-to-circle
orbit transfer

1. Introduction

Since the success of JAXA’s IKAROS spacecraft, launched on 20 May 2010 [1–3],
the solar sail technology has demonstrated its capabilities across a range of space mission
applications [4–6]. Although the solar sail concept dates back to about a century ago
thanks to the works of the Soviet pioneers of astronautics [7,8], the manufacture of such an
advanced propulsion system and its integration with the spacecraft control and navigation
system [9–11] has been completed in the last decade only, using the lessons learned from
in-flight tests [12–14]. In this context, the most recent example of a spacecraft propelled by a
solar sail is NASA’s Near-Earth Asteroid Scout (NEA Scout) [13,15], which is a 6U CubeSat
that was arranged as a secondary payload for the maiden flight of the Space Launch System
(SLS) in the middle of November 2022. Unfortunately, the ground station failed to establish
communications with the solar sail CubeSat after its successful separation from the SLS so
that the NEA Scout is currently considered lost. The next attempt to analyze the in-flight
performance of a solar sail will be at the beginning of 2025, when NASA’s Solar Cruiser
will start its deep-space scientific mission for Sun observations [14,16].

One of the most delicate aspects of a solar sail-based mission, both from the trajectory
design and the station-keeping viewpoint, is its attitude control [17], which requires a large
reflective surface to be oriented along a given space direction [18,19] to obtain a suitable
thrust vector [20,21]. The simplest solution to avoid any sail reorientation maneuver is the
adoption of a Sun-facing attitude [22,23], which is a configuration where the sail nominal
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plane is always perpendicular to the Sun-spacecraft line (referred to as radial direction),
which coincides with the direction of propagation of the Sun’s photons. It is known, in fact,
that a Sun-facing attitude may be passively maintained in an orbital reference frame by
means of an axially symmetric sail [24,25] with a slightly conical reflective surface, whose
apex is oriented toward the Sun [26]. In that case, however, if the sail film is designed
to be close to an ideal surface with specular reflection [27], a solar sail with a Sun-facing
attitude is able to give only a radial thrust vector [28] and, as such, it is unable to change
the spacecraft angular momentum [26]. Nevertheless, a solar sail with a Sun-facing attitude
is used in important space applications such as, for example, the generation of artificial
equilibrium points in the (Earth + Moon)–Sun system [29–31].

As far as orbit transfers are concerned, a solar sail with a Sun-facing attitude may be
employed only in a few cases of two-dimensional mission scenarios, such as the transfer
between two Keplerian orbits that share the same value of semilatus rectum [23,32], or the
(heliocentric) deployment of a smart dust swarm [33–35]. However, a Sun-facing attitude
is unsuited for transfers between two generic Keplerian orbits, even in the simplified
case of coplanar orbits or if the propulsive acceleration magnitude is modulated during
the flight. In principle, a thrust vector magnitude modulation is possible by means of
electrochromic panels installed on the sail surface [36–39], or through the rotation of long
reflective blades, as it happens in a Heliogyro configuration [40–42]. The latter concept was
originally conceived about 50 years ago within the ambitious proposal of a rendezvous
mission to Halley’s comet [43], and it has recently received new attention [22,44,45] due to
its peculiarities in terms of thrust vector control.

A possible solution to the problem of changing the orbital angular momentum with a
solar sail in a Sun-facing configuration is offered by a diffractive sail, whose concept has
been recently proposed by Swartzlander [46–48]. This solar sail, which uses a diffractive
(instead of reflective) film [49], is able to generate an in-plane thrust component even if the
incoming photon direction is perpendicular to the sail nominal plane [50–52]; see Figure 1.
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Figure 1. Conceptual scheme of the thrust vector direction in a Sun-facing solar sail with a reflective
or a diffractive film.

Exploiting the characteristics of an ideal diffractive sail, the authors [53] have recently
analyzed the performance of a solar sail-based spacecraft with a Sun-facing attitude in an
interplanetary mission scenario, assuming that the sail nominal plane may rotate around the
Sun–spacecraft line. The trajectory design model discussed in [53] extends the preliminary
results obtained by Dubill and Swartzlander [54], and it is based on the assumption that
the diffractive sail-induced thrust vector belongs to a conical surface with a fixed half angle
and coaxial with the Sun–spacecraft line; see Figure 2. The thrust vector orientation with
respect to an orbital reference frame (that is, the azimuthal position of the thrust vector
direction along the virtual cone depicted in Figure 2) can be chosen by rotating the sail
nominal plane of a suitable angle around the Sun–spacecraft line.
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Figure 2. Single degree-of-freedom diffractive sail considered in the trajectory analysis discussed in
Ref. [53].

Using such a simplified model, Ref. [53] analyzes three-dimensional orbit-to-orbit
transfers within an optimal framework, where the performance index to be minimized is
the total flight time necessary for the diffractive sail to complete an assigned heliocentric
transfer between two assigned Keplerian orbits.

The aim of this paper is to simplify the diffractive sail guidance scheme considered
in Ref. [53], assuming a sail nominal plane with a fixed orientation relative to an orbital
reference frame. The in-plane component of the diffractive sail-induced thrust vector may
be changed by means of active (switchable) diffractive elements, that is, using a sail film
designed with a controlled binary arrayed grating [46]. In fact, according to the conceptual
propulsion system design described in Ref. [46], a diffractive sail potentially offers some
interesting features that are difficult (or even impossible) to achieve with a conventional
reflective solar sail, that is, with a metalized high-reflective (typically aluminum-based)
thin film [55,56]. In principle, as pointed out by Swartzlander [46], the diffractive sail
concept gives the opportunity: (i) to recycle photons to generate solar–electric power, using
a bi-layer (or, more in general, a multi-layer) thin film containing photo-voltaic cells; and
(ii) to employ electro-optically controlled binary metamaterial (either for the entire sail or
for a subset of panels) to change the direction of the in-plane thrust vector component.

Actually, the use of active electro-optically controlled panels (EOCPs) is a well-known
idea, which has already been exploited in solar sail design [57] since the construction
of IKAROS spacecraft, which represents a milestone for solar sail technology. Indeed,
during its interplanetary flight, IKAROS spacecraft was able to both generate electric
power through very thin solar cells attached to the sail film and to execute attitude control
maneuvers by means of advanced electro-controlled LCD panels installed near the edges
of its membrane [2]; see the scheme of Figure 3.

The use of a sail film with electro-controlled and variable reflectivity panels has also
been proposed as a means to (slightly) change the magnitude of the sail-induced thrust
vector in order to perform missions that require a propulsive acceleration vector with a
fixed (orbital) direction and a magnitude variable within a narrow range. Possible examples
are the maintenance of a collinear artificial equilibrium point [58] in the Sun–planet elliptic-
restricted three-body problem [59] or the guidance of a smart dust in a scientific mission
aiming at an in situ study of Earth’s magnetotail [60,61].
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solar panels

LCD panels

reflective film

Figure 3. Conceptual scheme of JAXA’s Interplanetary Kite-craft Accelerated by Radiation Of the
Sun (IKAROS) spacecraft, showing active LCD panels to execute attitude control maneuvers.

According to Swartzlander [46], in the case of a diffractive sail, a membrane covered
by EOCPs, which are switchable between two different functioning states, is potentially
able to invert the direction of the in-plane component of the thrust vector while maintaining
its radial component unchanged. In fact, assuming that all EOCPs change their state at
the same time, the result is that the in-plane component of the thrust vector essentially
flips with respect to the Sun–spacecraft line, as illustrated in Figure 4 (note that in this
paper, the two states will be denoted as ¬ and ). In addition, Swartzlander [46] points
out that a suitable selection of a subset of EOCPs that change their state allows the in-plane
component of the thrust vector to be varied (nearly) continuously between two equal but
opposite values.
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Figure 4. Diffractive sail equipped with EOCPs: conceptual sketch of the thrust vector variation as a
function of EOCPs state.

Starting from the mathematical model discussed in the recent literature [53], and as-
suming a Sun-facing configuration to allow the spacecraft attitude control to be passively
maintained, this paper presents a simplified thrust model of a diffractive sail with EOCPs
that simultaneously change their state. Using a suitable initial sail orientation in which
the grating momentum unit vector (and so the thrust vector) belongs to the plane of the
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parking orbit, the proposed thrust model can be employed for the preliminary trajectory
design of a diffractive solar sail. The transfer performance is calculated in a heliocentric
mission in which a spacecraft moves between two circular and coplanar orbits. As usual,
the transfer trajectory is determined by minimizing the total flight time.

This paper is organized as follows. Section 2 introduces the mathematical model used
to evaluate the optimal performance of the diffractive sail-based spacecraft. It also describes
the simplified thrust vector model and its integration in the two-dimensional equations
of motion, which are used to optimize the transfer trajectory with an indirect approach.
The optimization model is then numerically simulated, and the results are discussed in
Section 3, which analyzes potential interplanetary transfers toward Mars, Venus and Jupiter.
Finally, Section 4 summarizes the main results of the work.

2. Mathematical Preliminaries

This section presents the mathematical model used to evaluate the optimal perfor-
mance of a diffractive sail-based spacecraft in a Sun-facing configuration. The sail mem-
brane is equipped with a set of EOCPs that simultaneously change their state. The first part
of the section describes the thrust vector model extending the mathematical description
of the sail-induced acceleration recently discussed by the authors [53]. The thrust vector
description used in Ref. [53] refers to a Sun-facing diffractive sail without EOCPs and is
consistent with the mathematical model discussed in Ref. [54] which, in its turn, is based
on the work by Swartzlander [46]. In this sense, the propulsive acceleration expression
presented in this section completes the recent literature results [53], because a diffractive
sail without EOCPs can be thought of as a special case of a sail entirely covered by an active
(switchable) diffractive film.

2.1. Thrust Vector Mathematical Model

Consider a spacecraft propelled by a diffractive solar sail without EOCPs. Assuming
a Sun-facing configuration and using the model discussed in Refs. [53,54], the spacecraft
propulsive acceleration vector a may be written as

a =
ac√

2

( r⊕
r

)2(
n̂− K̂

)
(1)

where r is the Sun-spacecraft distance, r⊕ = 1 au is a reference distance, ac is the char-
acteristic acceleration defined as the magnitude of a when r = r⊕, n̂ is the unit vector
normal to the sail nominal plane in the direction opposite to the Sun, and K̂ is the grating
momentum unit vector [46]; see Figure 5. The characteristic acceleration, which is the usual
performance parameter used in solar sail design, depends on the sail characteristics and the
vehicle’s total mass. The direction of K̂ is considered to be fixed relative to a body reference
frame when the diffractive sail is designed without EOCPs. Finally, Equation (1) states
that the angle between the thrust vector direction and the radial line is 45◦, as illustrated
in Figure 4.

According to Swartzlander [46], the possible presence of a set of EOCPs allows the in-
plane component of the thrust vector to be flipped (with respect to the Sun–spacecraft line)
as described schematically in Figure 4. In this case, that is, in the presence of a set of EOCPs
that simultaneously change their state, the diffractive sail propulsive acceleration can be
simply obtained from Equation (1) by introducing a dimensionless switching parameter
τ ∈ {−1, 1}, which varies the direction of the in-plane components of a. Accordingly,
when a set of EOCPs is considered in the diffractive sail design, the expression of a becomes

a =
ac√

2

( r⊕
r

)2
(n̂− τ p̂) (2)
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where

τ =

1 for state ¬

−1 for state 

(3)

and p̂ is an auxiliary unit vector, belonging to the sail nominal plane, whose direction
is fixed in a spacecraft body reference frame. In particular, the auxiliary unit vector p̂
coincides with the grating momentum unit vector K̂ when the EOCPs are on state ¬; see
the scheme of Figure 6. According to Equation (2), the dimensionless term τ can be thought
of as a sort of (binary) control parameter whose value can be changed during the flight in
order to perform an assigned orbit transfer, as described later on in this section. Note that
the assignment of τ = 1 in correspondence of state ¬ (and, consequently, τ = −1 when the
EOCPs are on state ) is arbitrary. However, such a specific assumption does not affect the
transfer performance in terms of total flight time, although it influences the shape of the
optimal control law.

Sun

n̂

K̂

radial
direction

ˆ
�K

radial
component

in-plane
component

propulsive
acceleration

45°

a

Figure 5. Propulsive acceleration vector (and its components in a body reference frame) for an ideal
diffractive sail, without EOCPs, in a Sun-facing configuration.

p̂

45°

a
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n̂

(a) Case of τ = 1 (EOCPs state ¬).

p̂
45°

a n̂

K̂

(b) Case of τ = −1 (EOCPs state ).

Figure 6. Propulsive acceleration components as a function of τ and the state of EOCPs; see also
Equations (2) and (3).

The propulsive acceleration expression given by Equation (2) can be used in a general
three-dimensional mission, because the orientation of the auxiliary unit vector p̂ relative
to an orbital reference frame can be varied by rotating the sail nominal plane around the
Sun–spacecraft line. Note also that Equation (1) can be recovered from Equation (2) by
selecting τ = 1 along the whole flight; compare Figures 5 and 6a. In this sense, the thrust
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mathematical model based on Equations (2) and (3) extends and completes the model
proposed in the recent literature [53].

2.2. Equations of Motion

The propulsive acceleration vector model of Equation (1) can be used to describe
the two-dimensional motion of the diffractive sail in a heliocentric scenario, in which
the spacecraft initially (i.e., at time t0 = 0) traces a circular parking orbit of assigned
radius r0. To that end, we introduce a heliocentric polar reference frame T (O; r, θ), whose
origin coincides with the Sun’s center of mass O, where θ is the polar angle measured
counterclockwise from the Sun–spacecraft line at time t = t0 (see the scheme of Figure 7),
îr is the radial unit vector, and îθ is the transverse unit vector.

0r

r

propelled
trajectory

fixed directionSun

parking
orbit

initial
position

q

diffractive
sail

ˆ
r

i

ˆ
q
i

Figure 7. Polar reference frame, parking orbit, and spacecraft state variables r and θ.

Assume that at the initial time, the (body-fixed) unit vector p̂ coincides with îθ , and re-
call that in a Sun-facing configuration, the direction of the normal unit vector n̂ is always
aligned with the Sun–spacecraft line, that is, n̂ ≡ îr at any time instant. In this case, p̂ ≡ îθ

for t ≥ t0, and according to Equation (2), the propulsive acceleration vector a belongs to
the plane (îr, îθ) for t ≥ t0. Note that the latter plane coincides with the parking orbit plane.
Equation (2) can be therefore rewritten as

a =
ac√

2

( r⊕
r

)2(
îr − τ îθ

)
(4)

which shows that the spacecraft heliocentric motion is two-dimensional, and the vehicle’s
dynamics can be described by means of a set of polar equations. More precisely, using
Equation (4) to write the components of a in T , the spacecraft equations of motion become

ṙ = u (5)

θ̇ =
v
r

(6)

u̇ = −µ�
r2 +

v2

r
+

ac√
2

( r⊕
r

)2
(7)

v̇ = −u v
r
− ac τ√

2

( r⊕
r

)2
(8)
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where the dot symbol represents a derivative taken with respect to the time t, µ� is the
Sun’s gravitational parameter, and u (or v) is the radial (or transverse) component of the
spacecraft velocity vector. The first-order differential Equations (5)–(8) are completed by
four initial conditions that model the spacecraft motion along the circular parking orbit, viz.

r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 , v(t0) =

√
µ�
r0

(9)

where the initial value of the polar angle θ has been set equal to zero without loss of
generality because of the polar symmetry of the problem.

The value of the binary-switching parameter τ, which appears in the last term of
Equation (8), is obtained by solving an optimization problem in which the spacecraft
trajectory is calculated in such a way as to minimize the time necessary for the spacecraft to
reach a circular target orbit of assigned radius r f , starting from a circular (coplanar) parking
orbit of radius r0. This mission scenario, which models a typical circle-to-circle orbit raising
(or orbit lowering) when r f > r0 (or r f < r0), is a typical application of a continuous-thrust
propulsion system and is analyzed in the next section.

2.3. Trajectory Optimization

The minimum time circle-to-circle orbit transfer of a diffractive sail is obtained with
an indirect method [62]. The Hamiltonian functionH is defined as

H = λr u +
λθ v

r
− λu µ�

r2 +
ac λu√

2

( r⊕
r

)2
− λv u v

r
+H′ (10)

whereH′ is that part ofH that explicitly depends on the control variable τ, that is

H′ = − ac λv τ√
2

( r⊕
r

)2
(11)

and {λr, λθ , λu, λv} are the variables adjoint to the states {r, θ, u, v}. The optimal control law,
that is, the time variation of τ, is found by means of Pontryagin’s maximum principle, which
requires the reduced HamiltonianH′ to be maximized at any time instant. Observing that
the sign of Equation (11) only depends on the product λv τ, the control law that maximizes
H′ is found when sign(τ λv) = −1 ∀t ≥ t0, that is

τ = −sign(λv) (12)

where sign(2) is the signum function. Equation (12) states that the spacecraft optimal
transfer trajectory is a sequence of patched arcs, where τ is constant in each arc, and the
diffractive film state change is determined by the sign of the adjoint variable λv. This
situation is illustrated in Figure 8 in the exemplary case of four arcs.

propelled
trajectory

Sun

0
v

� �

0
v

� �

0
v

� �

0
v

� �

Figure 8. Sequence of trajectory arcs related to the value of the adjoint variable λv.
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The time variation of the adjoint variables is given by the Euler–Lagrange equations

λ̇r = −
∂H
∂r

=
v(λθ − uλv + vλu)

r2 −
2λuµ� +

√
2 ac r2

⊕(τ λv − λu)

r3 (13)

λ̇θ = −∂H
∂θ

= 0 (14)

λ̇u = −∂H
∂u

=
v λv

r
− λr (15)

λ̇v = −∂H
∂v

=
u λv − 2 v λu − λθ

r
(16)

which are completed by the four initial conditions

λr(t0) = λr0 , λθ(t0) = λθ0 , λu(t0) = λu0 , λv(t0) = λv0 (17)

where {λr0 , λθ0 , λu0 , λv0} are four unknowns to be found by enforcing the transversality
condition [62,63] and the desired value of the spacecraft state variables at the end of the
transfer. In a circle-to-circle transfer, it is required that at the final time t = t f , the spacecraft
be inserted into the target circular orbit, from which

r(t f ) = r f , u(t f ) = 0 , v(t f ) =

√
µ�
r f

(18)

Note that the adjoint variable λθ is a constant of motion, and the polar angle at the
final time t f is left free, that is, the spacecraft angular position on the target circular orbit is
an output of the optimization process. In a minimum time orbit transfer, the performance
index J to be maximized can be written as

J = −t f (19)

so that the transversality condition [62,63] gives

λθ(t f ) = 0 , H(t f ) = 1 (20)

When Equation (14) is combined with the first of Equation (20), the result is that λθ = 0
during the whole transfer, that is, the second of Equation (17) reads λθ0 = 0. The other
three unknowns {λr0 , λu0 , andλv0} in Equation (17) and the minimum flight time t f are
obtained by solving a two-point boundary value problem in which the three scalar (final)
conditions (18) and the last of Equation (20) are numerically enforced. For an assigned set
of parameters {ac, r0, r f } that define the diffractive sail propulsive characteristics and the
mission scenario, the two-point boundary value problem has been solved through a hybrid
numerical technique that combines direct methods with gradient-based routines.

3. Simulation Results

The optimization procedure described in the preceding section has been used to evalu-
ate the diffractive sail transfer performance. A set of heliocentric canonical units [64] has
been introduced to reduce the numerical sensitivity of the two-point boundary value prob-
lem, and in all of the numerical simulations, the differential Equations (5)–(8) and (13)–(16)
have been integrated in double precision using a variable order Adams–Bashforth–Moulton
solver [65] scheme with absolute and relative errors of 10−12.

The diffractive sail circle-to-circle transfer performance has been analyzed by selecting
different possible combinations of ac, r0, and r f . In the remaining part of this section, the nu-
merical results correspond to the important case when r0 = r⊕ = 1 au and ac = 1 mm/s2.
In fact, r0 = 1 au describes the case of a solar sail deployment along a parabolic escape orbit
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relative to the Earth and a heliocentric model in which the eccentricity of the Earth’s orbit
is neglected. Moreover, ac = 1 mm/s2 corresponds to when the solar sail characteristic
acceleration assumes a sort of canonical value, as indicated by McInnes for a reflective
sail [28].

With the aim of obtaining a parametric study of the diffractive sail performance in
heliocentric transfer trajectories, the target orbit radius has been selected in the range
r f ∈ [0.3, 0.95] au (or r f ∈ [1.05, 5.2] au) for an orbit lowering (or an orbit raising). The min-
imum flight time as a function of the target radius is shown in Figure 9, which also reports,
for comparative purposes, the optimal transfer time obtained with a reflective solar sail
assuming an ideal force model [28]. In the latter case, the trajectory optimization has been
studied by adapting the procedure described in Ref. [66].
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Figure 9. Minimum flight time as a function of the target orbit radius when ac = 1 mm/s2: compari-
son between an ideal and unconstrained reflective sail (red dashed line) and a Sun-facing diffractive
sail with EOCPs (solid black line).

The interesting aspect that emerges from Figure 9 is that the minimum flight time of
a diffractive sail is better (i.e., smaller) than that of a reflective sail of equal characteristic
acceleration, provided the target radius is greater (for an orbit raising) or lower (for an
orbit lowering) than a critical value, which depends on the selected ac. In particular, when
ac = 1 mm/s2, Figure 9 shows that a reflective sail outperforms a diffractive sail with
EOCPs when r f ∈ [0.9, 1.12] au. On the other hand, if r f < 0.9 au or r f > 1.12 au, that is,
in a wide range of circle-to-circle mission cases, the flight times required by a diffractive sail
with EOCPs are smaller than the reflective counterpart. Such an interesting result is related
to the complex interaction between the capability of a Sun-facing diffractive sail to generate
a transverse component of the propulsive acceleration greater than that obtained through
an unconstrained reflective sail and the higher maneuverability of a reflective sail, which
can steer the thrust vector in the half-plane a · îr > 0. The latter consideration, which can
be extended to the more general case of a three-dimensional heliocentric mission scenario,
has been thoroughly analyzed in Ref. [53], where a comparison between the force bubble
of the reflective sail with that of a diffractive sail is presented; see the scheme of Figure 10
which reports the force bubble comparison in the three-dimensional case.
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Figure 10. Force bubble of a reflective sail without attitude constraint and a diffractive sail with a
Sun-facing configuration.

Figure 11 shows the final value of the spacecraft polar angle θ(t f ) (calculated with
respect to the initial Sun–spacecraft line) as a function of the target orbit radius r f for
the selected values of {ac, r0}. The same figure is also useful to evaluate the number
N = θ(t f )/(360◦) of complete revolutions during the optimal transfer. The number N
can be considered as a sort of metric of the geometrical complexity of the low-thrust
transfer trajectory. As expected, for the reflective sail case, the value of N increases with the
“distance” of the target orbit with respect to the parking one; that is, N varies with the value
of the ratio r f /r0. However, for the diffractive sail case, in the studied range of variation of
r f and when ac = 1 mm/s2, it turns out that θ(t f ) <360◦ (i.e., N = 0), which is a value that
indicates a less involved transfer trajectory when compared with the reflective counterpart.
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(b) Orbit raising, r f > r0.

Figure 11. Final value of the polar angle as a function of the target orbit radius for an optimal transfer
using an ideal and unconstrained reflective sail (red dashed line) or a Sun-facing diffractive sail with
EOCPs (solid black line) when ac = 1 mm/s2.

This aspect is also confirmed by the graphs presented in the next subsection, which
reports the results of the trajectory optimization in three important mission scenarios
consistent with a transfer toward Venus, Mars, and Jupiter.
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Case Study

Consider now three different cases, with r f = r♀ = 0.723 au, r f = r♂ = 1.524 au,
and r f = rX = 5.2 au, which model a simplified two-dimensional transfer from Earth to
Venus, Mars, and Jupiter, respectively. Using the mathematical model described in the
preceding section and a diffractive sail with a characteristic acceleration ac = 1 mm/s2,
the minimum flight time is about 189 days for the Venus case, 365 days for the Mars case,
and 2420 days for the Jupiter case. In addition, according to Figure 9, for a reflective sail-
based scenario of equal characteristic acceleration, the minimum flight times are about
408 days for the Mars case, 205 days for the Venus case, and 3777 days for the Jupiter case.
A comparison between the optimal performance of a reflective and a diffractive sail is
summarized in Table 1, where the last column highlights that the flight time saving with a
diffractive sail is considerable (about 36%) in the Earth–Jupiter transfer scenario. Note that
the performance improvement is about 10% for the Mars and Venus case, which is due to
the reduced value (when compared with the Jupiter trans) of the typical flight time for a
solar sail with ac = 1 mm/s2.

The optimal transfer trajectories are sketched in Figure 12 along with a comparison
of the optimal transfer trajectories for the ideal reflective case, while Figure 13 shows
the time variation of the control parameter τ. In particular, there exists a substantial
difference between the two optimal transfer trajectories in the Earth–Jupiter mission case.
The interesting aspect that emerges from Figure 13 is that in the Earth–Jupiter scenario, the
control parameter is nearly constant (τ = −1) along the entire flight, and the state of EOCPs
is equal to  during the transfer; see Equation (12). Such a particular behaviour suggests a
potential approach to the trajectory optimization, which could exploit an analytical, albeit
approximate, method to evaluate the minimum flight time by assuming a constant value
of the control parameter τ. The latter analysis point is beyond the scope of the current
paper and represents the natural extension of the mathematical model discussed in the
preceding section.
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Figure 12. Cont.
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Figure 12. Optimal transfer trajectory for the three mission scenarios. Black circle → start, black
square→ arrival, blue line→ parking orbit, red line→ target orbit, black line→ optimal transfer tra-
jectory.
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Figure 13. Time variation of the control variable τ for the three mission cases using a Sun-facing
diffractive sail. Black circle→ start, black square→ arrival.

Table 1. Minimum flight time in a classical Earth–target planet, circle-to-circle, coplanar transfer for a
diffractive or a reflective sail with ac = 1 mm/s2.

Target Planet Reflective Sail Diffractive Sail Variation

Venus (♀) 205 days 189 days −8%
Mars (♂) 408 days 365 days −10%

Jupiter (X) 3777 days 2420 days −36%

4. Discussion and Conclusions

A diffractive sail can be considered as a sort of evolution of the classical concept of
a reflecting solar sail, which received much attention in the last decade thanks to various
space missions successfully flown. A solar sail with a diffractive film has interesting features;
for example, it simplifies the spacecraft guidance by maintaining a Sun-facing configuration,
and it guarantees good transfer performance. This paper discusses a simplified thrust
model for a flat diffractive sail equipped with an electro-optically controlled panel that
allows the direction of the grating momentum unit vector to be changed during the flight.
Using such a feature, the in-plane component of the diffractive sail thrust vector can be
easily flipped without changing the sail attitude with respect to a classical orbital reference
frame. In this sense, the proposed thrust model can be thought of as a simplified version of
the model for interplanetary trajectory analysis recently discussed by the authors [53].

In particular, the mathematical model proposed in this paper can be used to perform a
preliminary design of an optimal interplanetary trajectory in a two-dimensional mission
case, whose main limitation is related to the eccentricity of the initial and target orbits, which
are both set to zero. The interesting aspect that emerges from the numerical results is that the
performance of a Sun-facing diffractive sail with an active (binary) electro-controlled film
is comparable or, in some cases, even better than those obtained with a more conventional
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reflective solar sail. More precisely, the numerical simulations have shown that the flight
time saving obtainable with a diffractive sail, when compared with a reflective sail of equal
(canonical) characteristic acceleration, is in the order of 10% for a transfer toward Mars
or Venus, and it increases up to 36% in an Earth–Jupiter scenario. However, a thorough
comparison between a reflective and a diffractive sail-based spacecraft cannot be confined to
a simple evaluation of the optimal flight time. Indeed, although the two sails share the same
concept of transforming the solar radiation pressure in propulsive acceleration without
the use of propellant, the specific technology at the base of a diffractive sail concept (with
electro-optically controlled panels) is different from the more conventional metalized film
installed on a reflective sail surface. In this sense, a more accurate comparison between a
diffractive (with active panels) and reflective sail should include a detailed mass breakdown
model of the two propulsion systems. Finally, the numerical results indicate that using
an optimal control law, that is, the optimal time variation of the switching parameter,
a circle-to-circle orbit transfer requires a very simple guidance scheme that potentially
permits finding an analytical solution to the trajectory design. The latter point is beyond
the scope of this paper and is left to future research.
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Abbreviations
The following abbreviations are used in this manuscript:

{¬, } diffractive sail film states
ac characteristic acceleration (mm/s2)
a propulsive acceleration vector (mm/s2)
H Hamiltonian function
H′ part ofH that depends on the controls
K̂ grating momentum unit vector
îr radial unit vector
îθ transverse unit vector
J performance index (days)
N number of complete revolutions
n̂ sail normal unit vector
O Sun’s center of mass
p̂ sail-fixed unit vector
r Sun–spacecraft distance (au)
r spacecraft position vector (au)
r⊕ reference distance (1 au)
t time (days)
T polar reference frame
u radial component of the spacecraft velocity (km/s)
v transverse component of the spacecraft velocity (km/s)
θ spacecraft polar angle (◦)
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λr variable adjoint to r
λu variable adjoint to u
λv variable adjoint to v
λθ variable adjoint to θ

µ� Sun’s gravitational parameter (km3/s2)
τ dimensionless control parameter
Subscripts
0 initial, parking orbit
f final, target orbit
♂ Mars
♀ Venus
X Jupiter
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