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Abstract: This paper addresses the challenges associated with machine translation of patents from
English to Japanese. This translation poses unique difficulties due to their legal nature, distinguishing
them from general Japanese-to-English translation. Furthermore, the complexities inherent in the
Japanese language add an additional layer of intricacy to the development of effective translation
models within this specific domain. Our approach encompasses a range of essential steps, including
preprocessing, data preparation, expert feedback acquisition, and linguistic analysis. These steps
collectively contribute to the enhancement of machine learning model performance. The experi-
mental results, presented in this study, evaluate three prominent alternatives considered for the
final step of the transformer model. Through our methodology, which incorporates a modified
version of NLP-Model-III, we achieved outstanding performance for the given problem, attaining
an impressive BLEU score of 46.8. Furthermore, significant improvements of up to three points on
the BLEU score were observed through hyperparameter fine-tuning. This research also involved
the development of a novel dataset consisting of meticulously collected patent document data. The
findings of this study provide valuable insights and contribute to the advancement of Japanese patent
translation methodologies.

Keywords: machine translation; technical patents; natural language processing; translation quality;
cross-lingual information retrieval; corpus-based translation; domain adaptation; language model
fine-tuning; neural machine translation

1. Introduction

Machine translation (MT) is an active and rapidly evolving technology in today’s
software engineering scene even though the idea of using automatic translation is one that
predates the invention of computers by a few hundred years. Notable mathematicians and
philosophers such as Leibniz and Descartes put forth the idea of using numerical codes as a
universal language in the seventeenth century [1]. Though this idea has been around for a
long time, the emergence of machine translation, in the modern sense, is said to have taken
place in 1949 when Warren Weaver published a memorandum titled “Translation” [2], in
which he formulated specific goals and methods that overcame the substantial limitations
created by the straightforward method of word-to-word translation. In 2022, the market
for MT was estimated at USD 153.8 million and is expected to grow to USD 230.69 million
by 2028 with a compound annual growth rate of 7.3% until 2030 [3].

As a sub-field of natural language processing (NLP), MT aims to translate text or
speech from a specific source natural language to another target natural language. When
thinking about the process of translation, it may seem ostensibly simple: first, a transla-
tor, whether human or machine, must decode the meaning of the original text and then
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encode that meaning back into the target language. However, when we break down
these two steps, the hidden complexities beneath the surface become clearer. To achieve
an accurate translation, the translator must have a comprehensive understanding of the
components representing languages, such as syntax, semantics, lexicology, etc., of both the
source and target languages as well as the culture of the speakers of both languages. Or at
least, that is what traditional, also referred to as rule-based translation, aims at.

Additionally, lexical ambiguity further confounds the translation process. Often,
words that are either homonyms or polysemous cause lexical ambiguity because they are
words that have various meanings, and a translator must identify the expected meaning
from context to choose the right word in the target language [1]. Inflectional morphemes are
also a source of lexical ambiguity. For example, the word number in the English language
may be a noun, or it may be the inflected form of numb [1]. This makes selecting the correct
translated option meticulous work. On the other hand, words that are not ambiguous in the
source language may be open to more than one interpretation in its target language. This
lack of one-to-one correspondence between words in different languages makes translation
and inherently automating it a complex task.

A different origin of complexity in translation is syntactic ambiguity where the syntax
of a sentence leads to more than one meaning. This type of ambiguity is particularly more
complex to a computer because humans are able to pick up on the intended meaning
through context, while computers have a difficult time discerning multiple possible mean-
ings [1]. For instance, it is clear to humans that the sentence, “The stolen wallet was found
by the fire hydrant” means that the wallet was found next to the fire hydrant; however, a
computer might interpret it as the fire hydrant finding the stolen wallet. Evidently, these
ambiguities, among many others, make it very difficult for a computer to represent the
structure of a language in the form of rules.

Translation becomes a more complex task to do when patent documentation is intro-
duced into the mix, which involves patent conditions, correspondence with lawyers, and
a unique style of writing [4]. Deep knowledge of technical terms and a comprehensive
understanding of the legal language is required by the translator to achieve high-quality
translations, and as powerful documents that are tools for encouraging innovation, patents
require excellent language pair expertise. Compromising on the accuracy of machine
translation used for patent documents can create a case for fraudulence or can interrupt the
patent filing process, which may lead to other consequences such as theft of inventions, ex-
penses, and delays, among many others [5]. The challenges of patent document translation
from English to Japanese are detailed in Section 3.

These challenges have called on machine learning specialists to develop novel solution
ideas that go beyond the attempt of replicating and automating steps that are used by
expert human translators, especially for special-domain translation tasks such as patent
translation. The latter is the aim of this paper. The paper will cover the challenges of
translating patents from English to Japanese using machine translation, current applications
of machine translation, and commonly used evaluation metrics in the field of NLP. These
sections lead to the proposed methodology as well as the findings of the experiments
conducted. The contributions of this work can be summarized as follows:

• To solve the problem of translating technical multi-domain patents, from English to
Japanese, the performance of different MT models with varying parameters are evaluated.

• Start from the best-performing model to develop and implement a novel multi-step
approach to fine-tune models to improve accuracy in patent translation.

• The offered model is able to overcome consistent problems for the problem at hand,
including lexical ambiguity and sentence structure challenges, as indicated by superior
BLEU score performance compared to previous solutions to this problem.

2. Machine Translation Approaches

MT solutions can be classified into three main approaches: rule-based machine transla-
tion (RBMT), statistical machine translation (SMT), and neural machine translation (NMT).
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2.1. Rule-Based Machine Translation

RBMT is the earliest method of machine translation. It is a system that relies on linguis-
tic information about the target and source languages that are retrieved from traditional
language sources such as dictionaries, grammar rules, etc. This information includes lexical,
syntactic, semantic, and morphological congruities of both languages. RBMT then per-
forms a morphological analysis on the grammatical structure of both the source and target
languages using a parser to construct an output [6]. Due to the number of language rules
and variations of forms for linguistic structures, building a complete rule-based system is a
prohibitively long and rigid process.

Moreover, RBMT requires manual placement of some linguistic information, and
significant post-amendments made by human experts are needed to obtain a sufficient
output. As discussed earlier, many types of ambiguities also make it infeasible when
working with large systems, and improvements depend on more hard-coded rules and
human involvement [6]. With the emergence of SMT and NMT, RBMT has become the least
common method of translating text, though there are still many online translation systems
existing that use a rule-based approach. Some depend on less complex and ambiguous
sentence structures such as inputs to perform well and thus are not reliable for more general
use cases.

2.2. Statistical Machine Translation

Until recently, SMT had been predominantly used in MT research and industry MT
systems, such as Google Translate, given its more precise translation results compared to
RBMT [7]. Because meaning inherently stems from the way words are used together, using
a statistical approach that can detect regularities in text and context of use increases the
quality of translation significantly [7]. The SMT approach analyzes very large amounts of
linguistic data taken from previous translations and assesses their statistical probability of
being the most appropriate translation. The data used are typically in the form of a corpus
containing source and target sentences in pairs [1], referred to as bilingual corpora. The
analysis of the statistical probability of the data first occurs in the translation model, in
which the probability of the correspondence between sentences in the two languages is
estimated. Adjacent to the translation model, the system learns to calculate the probability
of word sequences being valid in what is called the target-language model [1]. The model
must also consider the extent to which each language differs in syntax, so a distortion
model is learned [1]. This model takes into account the probability that a word placed
in a specific position within the source sentence will move to a different position in the
target sentence [1]. For SMT to be able to translate text, a crucial third component must
be used—the decoder. A decoder takes the source sentence and determines the different
probabilities of each word within the translation model, which then outputs possible words
and phrases. The output is used as an input within the target-language model, which
then calculates and outputs the most likely translation according to complex mathematical
and statistical methods [1]. SMT enhances the RBMT method, but its performance is
hindered when we consider the fact that words between languages do not have a one-to-
one correspondence.

A crucial part of statistically based MT systems is the phrase transition model [8],
which depends on either the conditional probability of generating a target sentence given
the source sentence, or the joint probability of the concurrence of the source and target
sentences [8]. The nature of such models makes them susceptible to viewing phrases that
are paraphrased or different on the surface as distinct units. This prohibits the distinct
units, though they may share linguistic properties, from sharing parameters of the model
while translating, which leads to the problem of sparsity that affects morphologically rich
languages [8], including the Semitic languages Hebrew and Arabic [9]. Because of these
shortcomings in SMT, the need for novel algorithms that utilize machine learning became
more pressing. NMT provides an alternative that aims to tackle these challenges, and hence
it has risen in popularity recently.
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2.3. Neural Machine Translation

NMT, put simply, uses a single neural network to directly translate a source sentence
to its intended target sentence [10]. Both SMT and NMT rely on a large corpora of pairs of
sentences in the source language and their corresponding translated target sentences, but
NMT implements continuous vector representations of linguistic units, unlike SMT, which
implements discrete symbolic representations [11], i.e., propositions represented as discrete
objects of varying sizes [12]. Collobert et al. used continuous representations for words
and were successful in showing results that overcame the problem of scarcity in which the
morphological, semantic, and syntactic properties of a language were represented [13].

Although there are other language models in the literature such as recurrent neural
networks (RNNs) and connectionist temporal classification (CTC) [14], this work focuses
on discussing the encoder–decoder architecture in this section as it is the base model for
most NLP sequence-to-sequence use-case models, especially in NMT [15]. It is also used in
NMT systems, which will be discussed in Section 3. The encoder–decoder architecture is a
standard method used to learn the conditional distribution of a sequence given another
sequence. The encoder and decoder are trained together in order to maximize the con-
ditional log-likelihood [13], and the encoder–decoder utilizes a series of recurrent neural
network cells.

A successful example can be seen in [16], where a transformer model that uses the
attention mechanism to determine which parts of the input source text are of the most
importance, to extract mutual dependencies between the input and the output, was im-
plemented. The attention mechanism refers to a function that maps a query and a set
of key–value pairs, represented as vectors, to an output, which is also represented as a
vector [16]. To compute the output, first, a compatibility function of the query, along with
the designated key, calculates a weight that is assigned to each of the values. The weighted
sum of the values is then presented as the output [16].

The architecture of the model is made up of an encoder and a decoder. The encoder is
composed of six identical layers, where each layer has two sub-layers: a multi-head self-
attention mechanism and a fully connected feed-forward network. A residual connection is
then applied around each of the two sub-layers, which is followed by layer normalization.
Similarly, the decoder is made up of six identical layers with a third sub-layer inserted that
takes the output of the encoder and performs multi-head attention on it [16].

3. English-to-Japanese Patent Machine Translation

The translation problem we are tackling focuses on translation from English to
Japanese, specifically on translating technical patents in different domains from English to
Japanese. The purpose of this is to understand the complexities of language translation for
relevant use cases such as patent translation. The vast dissimilarity (lexically, syntactically,
morphologically, and semantically) between the two languages will aid in highlighting
some of these complex problems that are encountered in MT with the purpose of studying
to mitigate them. One source of distinctions other than the obvious difference in characters
of both languages is the word order in English and Japanese. In English, the word order
is in the form of subject–verb–object (SVO), while the word order in Japanese is SOV [17].
This means that topics are at times expressed in entirely different sentence structures, and
thus there is a lack of correspondence between the structures of sentences, which poses a
challenge for the machine to translate accurately [18]. Additionally, being a high-context
language, it is common in Japanese for much of the information to be implied [19]. For
example, the subject is usually dropped in situations where the context is clear [20]. If a
person were to say “I am going to bake a cake” in English, the direct Japanese translation
would be “bake a cake” since it is understood by the listener that the speaker is the subject,
and thus “I” is implied. In contrast, English, as a low-context language, communicates
content explicitly, and writing is understood very literally. This demonstrates that there is
more to translation than ensuring the machine translator chooses the correct words; the
cultural context must also be taken into account to make sure that the intended meaning is
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delivered correctly [21]. This could prove an unfeasible task for computers; being a cultural
mediator requires a certain level of refined reasoning where one must be able to deduce
what meanings might be extracted by a reader so that the translation may be adjusted as
needed [21]. Without the explicit specification of a large number of language and cultural
context-based rules, this task is difficult for machines, and if such intricate rules, which may
be in the tens of thousands, were to be constructed and documented with the system, the
effort expended may be prohibitive and contradictory to the purpose of utilizing machine
learning to automate the MT task altogether. A system that overcomes the need to explicitly
set language-dependent or culture-dependent rules is the ultimate goal here. MT using
machine learning is a candidate to solve this problem.

The problem of context sensitivity is more or less avoided when considering the source
and target text that is shared by readers with the same background knowledge [21]; for
example, readers may be part of the same scientific discipline or industry. The premise of
this work will focus on the translation of technical patents from English to Japanese using
machine translation. Although the complexity of context sensitivity is reduced, we are
faced with another challenge: patents of scientific nature contain many technical words
that are domain-dependent and may be homonyms with more than one interpretation
depending on the subject. Instead of running into the problem of deciphering cultural
context, the machine must determine the correct translation of a word depending on the
domain it is used in. For example, the word “arm” is a homonym for both the biological
human arm as well as a technological robotic arm in English. In Japanese, it becomes
sensitive to the domain it is used in; “腕 “ refers to a human arm, while “アーム” refers to a
mechanical arm.

The world has grown increasingly connected and more technologically advanced,
and this is reflected by the increase in patent applications in new and different technology
spaces over the years. In 2020, the reported number of patents filed worldwide increased by
1.6% with 3.3 million patents filed, where approximately 85% of the total number of patents
filed were accounted for by five national/international patent offices [22]. The National
Intellectual Property Administration of the People’s Republic of China (CNIPA) received
upwards of 1.5 million applications, followed by the United States Patent and Trademark
Office (USPTO), which received 597,172 applications. Ranked third, the Japan Patent Office
(JPO) had 288,472 applications, the Korean Intellectual Property Office (KIPO) had 226,759,
and finally, the European Patent Office (EPO) had 180,346 [22]. Figure 1 below demonstrates
the growth of patent applications from 2006 to 2020 worldwide. MT of patents becomes an
important problem as it is useful, in terms of industrial use, for countries to be able to file
patents in foreign languages. The translation must also be accurate as possible since even
a small variation of the intended meaning may lead to legal loopholes that will be taken
advantage of to exploit intellectual properties [23]. Efficient MT of patents is a direct step
towards having unified human knowledge and sharing patent information for the human
race in the general domain or at least on certain predefined domains, such as efforts related
to fighting climate change.

Although commercially available translators such as Google Translate and Microsoft
Translator offer machine translation with a high level of accuracy for generic and non-
technical texts, more specialized domains/scopes rely on industry-specific training data
to translate the text so that the translation may be relevant in their context [24]. While
Google’s Cloud Translation and Microsoft’s Translator allow for custom translation and
model training to counter this issue, the cost of using them risks getting expensive since
more complex, and large training data as well as custom translations lead to high costs
while using those products, which may be prohibitive. Custom translations with Microsoft
are performed using their C2–C4 instances, where the cost of using those instances ranges
from 2055 USD/month to 45,000 USD/month, respectively [25]. This incurs a large expense,
especially for companies with many patent grants. For instance, IBM, ranked as 2021’s
most innovative company in the US IP space, had 9130 and 8682 patent grants in 2020 and
2021, respectively [26]. Since IBM offers a range of products and patents corresponding to
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different industries, the use cases would require multiple model training, which further
increases the cost. Given the difficulty of MT and the high cost associated with it, continued
research in the field of MT is extremely important, and therefore, the aim of this paper is
to investigate and analyze existing machine translation models used to translate patents
containing highly technical words from a range of domains while also working to increase
the models’ level of accuracy using training data.

Figure 1. Number of Patent Applications Submitted Each Year From 2006 to 2020 [22].

4. Evaluation Methods

The evaluation of MT models is extremely important as it measures the degree of
reliability of the output from the MT model, and it also informs us when a model requires
improvement [27]. Over the years, many evaluation methods have emerged, many of
which fall into two categories: human evaluation and automatic evaluation. Automatic
evaluation metrics work by comparing the output of an MT system to a set of references
generated by humans, also called the gold-standard references [28], and then making use of
mathematical and statistical calculations to compute how different the machine-translated
output is to the reference translation [28]. The quality of the translation is considered better
if the difference between the output and reference is smaller. Automatic metrics use n-
grams to calculate the precision scores, where an n-gram is a sequence of n words [28]. This
section goes over some commonly used automatic metrics that are used to evaluate MT.

4.1. BLEU

The BLEU score, also known as the Bilingual Evaluation Understudy score, is a metric
used to assess machine-translated text and evaluate how accurate it is compared to a set of
references. More specifically, it is the product of n-gram precision and a brevity penalty (BP).
The brevity penalty refers to the penalty applied to the BLEU score when the translated
text is much shorter than the reference text, and it restitutes for the BLEU score not having
a recall term [29]. The n-gram precision is calculated by counting the total number of word
sequences from the MT system output that are also in the set of references [30]. An n-gram,
put simply, is the set of n consecutive words within a given sentence [31]. For example,
considering the sentence “the wall is white”, a 1-gram or unigram is a set that consists of
“The”, “wall”, “is”, and “white”, and a 2-gram or bigram consists of “The wall”, “wall is”,
and “is white”. It is important to note that the words within an n-gram must be taken in
consecutive order [31]. The product between the geometric mean of the n-gram precision
scores and the BP returns a BLEU score that falls in a range of 0 and 1 (or 0–100), where
0 indicates no overlap between the machine-translated text and the reference text [30]. A
score of 1 indicates that the machine-translated text perfectly matches the reference text.
Since even linguistic consultants or human translators do not achieve a perfect translation,
a BLEU score of 1.0 is almost impossible. However, as a rough guideline, a score between



Appl. Sci. 2023, 13, 7126 7 of 17

60 and 70 is generally the best a model can achieve. The n-gram precision of BLEU depends
on exact word matches between the output and references. However, since a specific
reference may not be the only correctly translated option, a good translation may be scored
lower [32]. Despite the transparency of the flaws associated with using the BLEU score, it
continues to be widely used in MT research mainly due to its high correlation with human
judgment of accuracy [32].

4.2. NIST

Another metric commonly used in MT evaluation is the National Institute of Stan-
dards and Technology or NIST. A variant of BLEU, NIST assigns a higher weight to more
informative n-grams and uses the arithmetic mean instead of the geometric mean used by
BLEU [30]. The calculation of the BP is also where NIST and BLEU diverge; the variation
in length between the translated text and the reference text does not affect NIST as it does
with the BLEU score [33]. This is because the precision scores that are calculated in BLEU
are replaced with the information gained from each n-gram [34]. This enables the system
to obtain more credit if the n-gram match is difficult to obtain or less credit if the match is
easier [34].

4.3. WER

The Word Error Rate (WER) is one of the earlier metrics used for evaluating MT [30],
and it examines the accuracy based on the Levenshtein distance. The Levenshtein distance
between two words from the translated output and the set of reference text, refers to the
minimum number of edits that are required to change a word from the translated output to
the word from the reference text [30]. The edits allowed are substitutions (S), insertions (I),
and deletions (D). Equation (1) is used to calculate WER, where N is the total number of
words in the reference text:

WER = (S + I + D)/N (1)

4.4. METEOR

As mentioned in Section 1, the precision-oriented nature of BLEU is the source of a
few weaknesses, and so the Metric for Evaluation of Translation with Explicit Ordering
(METEOR), a recall-oriented metric, is used to tackle these shortcomings [30]. METEOR
calculates the harmonic mean, as opposed to the geometric mean, by combining precision
and recall with a greater bias towards recall [30]. The computation of the final METEOR
score requires multiple stages; the first stage is exact matching where sentences in the
translated output and reference text that are completely alike are aligned [30]. The next
stage called stem matching refers to the process of aligning words that have the same
morphological stem [30]. Finally, in the synonym-matching stage, words that are synonyms
of each other (according to WordNet, a lexical database of the English language [35]) are
aligned [30]. At each stage, only words that are not aligned are allowed to be matched in
the succeeding stage. Furthermore, a fragmentation penalty (FP) is applied to account for
the differences in word order [30]. The METEOR score is then calculated by taking the
product of the harmonic mean and (1 − FP), which outputs a score in the range of 0–1.

This paper uses the BLEU score metric to compare the performance of various MT
models since BLEU is widely used in the literature and this aids in the comparison of
results. Table 1 below provides a summary of the advantages and disadvantages of the
metrics covered above.
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Table 1. Advantages and Disadvantages of MT Evaluation Metrics.

Evaluation Metric Advantages Disadvantages

BLEU
• High correlation with human

judgment of translation
accuracy [32].

• Does not account for
synonyms [32].

• Penalizes longer sentences [32].

NIST
• No penalty applied when

translation text is shorter in
length [33].

• Does not consider synonyms,
syntactic structure, or word
order [33].

WER
• Not difficult to understand or

implement [33].
• Reproducible [33].

• Does not consider semantic
similarity, syntactic structure, or
word order of sentences [33].

METEOR

• Incorporates some linguistic
knowledge using stem and
synonym matching [33].

• Does not penalize longer sentences
unlike BLEU [33].

• WordNet does not support most
languages well except for
English [33].

• Relies on WordNet so not suitable
for morphologically rich
languages [33].

5. Related Works

This section will cover existing work in the field of MT using RBMT, SMT, and mainly
NMT models. In [36], the authors propose to extend the use of a rule-based technique to
simplify sentences before using an RBMT system to translate those sentences from English
to Tamil. Complex sentences are made simpler using connectives such as relative pronouns,
coordinating conjunctions, and subordinating conjunctions [36]. Table 2 below shows the
words that were used by the system as connectives.

Table 2. Connectives used to Simplify Sentences.

Relative Pronouns Who, which, whose, whom

Coordinating conjunction For, and, not, but, or, yet, so

Subordinating conjunction After, although, because, before, if, since, that, though, unless,
where, wherever, when, whenever, whereas, while, why

Additionally, delimiters such as ‘.’ and ‘?’ are used to divide long and complex sen-
tences into sub-sentences where the meaning of the sentence remains the same [36]. The
authors chose to ignore the ‘,’ delimiter. The authors lay out the framework as follows:
first, the initial splitting of the sentences from paragraphs is performed using the delim-
iters. Each sentence obtained after the initial splitting is then parsed using the Stanford
parser [36]. The next round of splitting is completed using the coordinating and subordi-
nating conjunctions in each sentence. Then, the sentence is further simplified if it contains a
relative pronoun [36]. To compare the system’s accuracy, 200 sentences were first given to
the RBMT system to translate from English to Tamil. Due to syntax and reordering, 70% of
the translated sentences were incorrect. Then, the same 200 sentences were simplified using
the outlined framework and given again to the RBMT system. After simplification, 57.5%
of the sentences were translated correctly. The authors concluded that longer sentences that
are given to the MT result in a low translation accuracy while simplifying the sentences
increase the accuracy significantly when translating from English to Tamil. Although an
accuracy of 100% is not possible to achieve in MT, the authors prove that the splitting and
simplification technique can notably improve MT systems.

In another paper titled “Rule Based Machine Translation Combined with Statistical
Post Editor for Japanese to English Patent Translation”, the authors also tackle the problem
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of decreased accuracy due to long sentences used in machine translation. Their hypoth-
esized solution is to use a statistical post-editor in conjunction with the RBMT system to
improve accuracy. The data used by the authors were collected from the Patent Abstract
of Japan, or PAJ, and the abstract of the Patent Publication Gazette (PPG) of Japan, in
which the former was used as the Japanese corpus and the latter, were used as the English
corpus [37]. The sentences were manually translated. Using the corpi, the training and test
datasets were created using the following steps: first, the number of words in sentences
was counted, and if the number exceeded 90, the sentence was rejected. Next, if the ratio of
the number of words in sentences from both the reference text and the translated source
text did not fall between 0.5 and 2, inclusively, the sentence would also be rejected [37].
To evaluate the RBMT system combined with the statistical post-editor (SPE), the authors
propose a new metric of evaluation: an n-gram-based NMG measure. NMG, or normalized
mean grams, which counts the total number of words within the “longest word sequence
matches between the test sentence and the target language reference corpus” [37]. Their
results concluded that for patent translation where sentences are long and complex, the
RBMT provided an advantage for structural transfer [37]. Additionally, since patents are
made up of very technical terms, the SPE provided improved lexical transfer [37].

Before NMT systems became popularized, SMT models were widely used for transla-
tion purposes. SMT systems use a phrase-based approach, which allows them to reduce
the restrictions of RBMT’s word-based approach by translating sequences of words at a
time. NMT systems further improve on this because of their ability to learn and improve
independently; however, they are still far from perfect. In [38], the authors isolate one of the
shortcomings of NMT and propose a novel approach to improve NMT by using SMT. NMT
systems have a tendency to forgo accuracy for fluent translation and to improve on this, the
authors introduce a hybrid approach using SMT [38]. To attain the goal of improvement,
the authors implement the following steps. After the SMT and NMT models have been
trained on parallel corpora, the SMT system receives the source text first as input and the
translated output of the SMT is encoded. The authors then modify the NMT beam search
algorithm, which gives a chance to related SMT tokens during NMT decoding [38]. After
the modified beam search has been conducted, the translation sentence from the modified
beam algorithm goes into the decoder, which then outputs the translated target text [38].
The intent of this improved algorithm is to increase the probability of SMT tokens that
are in lower positions within the beam to be chosen in the NMT decoding step [38]. The
algorithm is used in three different approaches in the paper. First, it is applied for a certain
number of tokens from the start of the decoding, e.g., the first, second, or third tokens.
Second, the algorithm is applied for each sentence as long as the SMT token is discovered
in the beam at some part in the decoding. Lastly, it is applied until the decoding ends [38].
The authors use automatic evaluation metrics, specifically BLEU and METEOR, to draw
conclusions from the experiment. They conclude that the first and second approaches
provide good results in the translation quality, while the third approach, however, performs
poorly. Nevertheless, they are able to successfully show that using the phrase-based SMT
system can provide improvements in NMT decoding, which ultimately leads to a higher
quality of translations [38].

As mentioned previously, NMT models have become a dominant approach to machine
translation problems and have improved on several shortcomings of SMT over the years.
Though a promising technology, NMT still faces many hurdles as its accuracy in translating
several language pairs significantly depends on the availability and use of large parallel
corpora [39]. For a large group of languages, however, obtaining a large parallel corpus
proves to be difficult. For example, language isolates such as Basque or macaronic languages
such as German–Russian [39] do not have enough data available to train an MT model
efficiently. Research has been conducted to overcome this problem, and techniques such
as triangulation techniques and semi-supervised methods have been proposed; however,
there is still a need for strong cross-lingual learning [39]. To overcome the need of using
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cross-lingual learning, the authors of [39] propose a novel solution to train NMT models.
They suggest relying on a monolingual corpus for entirely unsupervised model training.

The authors used a standard model architecture: an encoder–decoder system with
attention mechanisms where the encoder and decoder contained a two-layer bi-directional
recurrent neural network, and the attention mechanism used was a global attention method
with the general alignment function [39]. Three critical aspects allowed the MT system to
be translated with an unsupervised approach, and this included a dual structure, a shared
encoder, and fixed embeddings within the encoder. Furthermore, two strategies allowed
the NMT system to predict translations in a monolingual corpora, which would have been
otherwise impracticable since the authors did not use a parallel corpus. First, they use the
principle of denoising autoencoders that train the system to reconstruct a corrupted input
to its original form. More specifically, they switch the word order of the input sentences
so that the system can learn to retrieve the correct order [39]. Next, they use an adjusted
on-the-fly back-translation method so that given a particular input sentence in the source
language, the system can use inference mode with greedy decoding to translate the input
to the target language [39].

After conducting both automatic and human evaluations, the experiments conclude
that there is a significant improvement in translation over a baseline system that performed
word-by-word substitution. The system was also able to effectively model cross-lingual
relations and output accurate and excellent quality [39]. They further showed that moving
on from a strictly unsupervised case by incorporating a small parallel corpus has the
potential to further improve the quality of translations [39].

Another translator that successfully utilizes neural network architecture for transla-
tion is DeepL. DeepL is a neural machine translation service that advertises its enhanced
performance compared to competitor tech companies such as Google Translate and Mi-
crosoft Translator. It separates itself from the competitors by improving the neural network
methodology in four different areas: the network architecture, training data, training
methodology, and the size of the network [9].

6. Methodology

The aim of this research is to improve the accuracy of translating technical patents,
belonging to different domains, from English to Japanese. Since MT systems such as Google
Translate use generic data for translation, translating highly technical and domain-specific
sentences often faces many problems. Some of these problems include lexical ambiguity
and sentence structure, as discussed earlier in Section 2.

We evaluated different open-source MT models with varying parameters to study and
analyze the performances of each model. Analyzing existing models allowed us to gain
integral insights into the task of translating complex language structures. Once an initial
analysis of models’ performance was completed, we implemented a multi-step approach
to fine-tune three models to improve accuracy in patent translation. Figure 2 provides
a depiction of the activity diagram of our methodology behind fine-tuning a machine
translation model.

Figure 2. Activity Diagram of Methodology.
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6.1. Computing Setup

All training and testing of the MT models covered in the subsequent subsections
were completed using 4 NVIDIA Tesla P100-SXM2 GPUs with 17 GB RAM as well as
24 CPUs/cores.

6.2. Approach I: Transformer Model with Attention

Bharadwaj et al. [40] built an NMT system to translate text from Japanese to English.
First introduced in [16], Bharadwaj et al. implemented a transformer model that uses the
attention mechanism to determine which parts of the input source text are of the most
importance, and to extract mutual dependencies between the input and the output. The
dataset used to train the model consists of two merged datasets; the first is a corpus that
contains approximately 500,000 pairs of sentences that cover the topics of Japanese religion,
culture, and history [41], and the second is a collection of bilingual sentence pairs created
by [42] that comprises Japanese sentences used in daily conversations. The model was
trained using 68,674 rows of the dataset and then evaluated using the BLEU score. The
authors were able to achieve a BLEU score of 41.49 [40], suggesting a good accuracy of the
translated text.

To use this model for the purpose of patent translation, first, the model was adjusted
so that the source text was English and the target text was Japanese. The same dataset
used in [40] was then used to train the new model. Once trained, we tested the translation
accuracy on sentences extracted from technical patents and then evaluated the results using
both automatic (BLEU) and human expert evaluations. Bharadwaj et al.’s translation model
will be referred to as NLP-Model-I in this paper from this time forward.

6.3. Approach II: Pre-Trained Hugging Face Models

Generally, the larger a dataset is, the better an NMT system can perform. However,
training time is also drastically increased, often lasting for days even when using modern
GPUs, such as a TitanX, and distributed training in TensorFlow [43]. To mitigate computa-
tional costs and save time, we adapted two pre-trained models from HuggingFace, an AI
model hosting platform. The pre-trained models are made up of a standard transformer
architecture consisting of an encoder and a decoder as well as an attention mechanism.
This architecture is the same as in the model used in Approach I. The first pre-trained
model used was the Helsinki-NLP [44] model. The exact name of the second pre-trained
model, for commercial confidentiality reasons, will not be included and will be referred
to as NLP-Model-III. For consistency, the Helsinki-NLP Model will be referred to as NLP-
Model-II. Both models use the BLEU score for evaluation and have a baseline score of 15.2
and 32.7, respectively.

NLP-Model-II was developed for the Tatoeba translation challenge, which aims to
serve as a catalyst for the development of open translation models [45]. The dataset used
is an amalgamation of the Open Parallel Corpus (OPUS) [46], an open collection of par-
allel corpora [47], and test data extracted from [48]. Similarly, the dataset used to train
NLP-Model-III was built using various datasets that consisted of a total of approximately
6.6 million bilingual pairs. Of these many datasets, the following were used: the Japanese-
English Subtitle Corpus [49], the Kyoto Free Translation Task (KFTT) [50], the Tanaka
Corpus [51], the Japanese SNLI dataset [52], and finally, WikiMatrix [53].

Each model’s hyperparameters remained unchanged from the original baseline model’s
hyperparameters and Table 3 provides an overview of each of the model’s hyperparameters.
From a parameter’s perspective, NLP-Model-II and NLP-Model-III are similar with some
adjustments. For instance, the number of beams chosen for Model-II and Model-III are
6 and 12, respectively. This parameter represents the number of sequences at each time
step that is used for the decoding process of the beam search algorithm. Increasing this
value may be advantageous as this allows the model to explore the search space in a more
diverse way in turn increasing the probability of finding a solution of higher quality.
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Vocabulary size is a parameter used to represent the number of tokens in the dataset
that are unique, and it influences the model’s performance and translation quality. To
choose an effective value for this parameter, it is important to find the right balance
between computational efficiency and adequate coverage.

The boolean gradient check-pointing parameter may be used to save memory; how-
ever, if set to True, the parameter causes the backward pass to be slower and less effective.
In newer versions, this parameter has been deprecated and thus is set to a default of False.

Table 3. Overview of Each Model.

Model Parameters Dataset BLEU

NLP-
Model-I

• Optimizer: Adam
• Warmup steps: 4000
• Dropout: 0.1
• Label smoothing: 0.1

Japanese–English Bilingual
Corpus [54] and Japanese–
English sentence pairs [42]

<0.001

NLP-
Model-II

• Weight decay: 0.01
• Batch size: 16
• Metric: sacrebleu
• Vocabulary size: 32,001
• Num of beams: 12
• Gradient check-pointing:

False

tatoeba mt [45] <10

NLP-
Model-III

• Weight decay: 0.01
• Batch size: 16
• Metric: sacrebleu
• Learning Rate: 0.00002
• Vocabulary size: 65,001
• Num of beams: 6
• Gradient check-pointing:

False Deprecated parameter

tailored patent dataset (Not
publicly available) 46.8

6.4. Dataset Used for Fine-Tuning

Using both of the baseline models to translate technical patents from our database
was not at a satisfactory level as many technical words and sometimes sentences would
be incorrectly interpreted by the models. For example, the output would often contain
incomplete sentences where words were cut off from the end of a sentence or incorrect
grammar rules were applied. To improve the results outputted by the models, we fine-tuned
the models by creating a dataset using approximately 80,000 patents that spanned various
domains and used that dataset to train each model. The domains of the patents included
human necessities; performing operations and transporting; chemistry and metallurgy;
textiles and paper; fixed constructions; mechanical engineering, lighting, heating, weapons,
and blasting; physics; and electricity. This was to ensure that each of the models can learn
to accurately translate words according to their context. Additionally, from the Japanese
Patent Office [55], we used data consisting of a Japanese–English machine translation
dictionary to further enlarge our dataset. The dictionary was originally in unified power
format and thus had to be extracted using the Accelerator library.

Originally, the created dataset contained several spelling and grammatical errors
and thus reduced the accuracy in the performance of the original model. To rectify this,
an additional preprocessing step was performed. We used back translation, which is a
technique that translates the target language to the source language and combines the
original source sentences and back-translated sentences in an effort to train the model. The
model was trained on the training dataset, which consisted of 124,828 rows of English and
Japanese sentences, and training took approximately a total of three and a half hours. Then,
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the model was tested using the validation dataset consisting of 31,207 rows of English and
Japanese sentences. Moreover, the batch size chosen for fine-tuning the model was 16, and
the metric used to measure accuracy was sacrebleu. The weight decay parameter was set to
0.01, and the number of train epochs was set to 3.

After implementing various models and completing preprocessing steps, the following
step included implementing multi-GPU processing to improve model runtime. Multiple
GPU implementation options were considered including Genesis Cloud, DIGITS2, NVIDIA,
and Asynchronous Functions. Evaluation of those options and the chosen design is reported
in the Results section (Section 7).

To fine-tune the model further, we have sent an application to ASPEC, a Japanese-
based company that creates JP-EN data sets that include millions of parallel sentences
extracted from scientific journals. This dataset is very promising as the main problem we
faced was translating technical words that are hard for even a layman to grasp.

7. Results
7.1. Result I: NLP-Model-I

The results of NLP-Model-I were not what we were expecting considering the BLEU
score achieved by Bharadwaj et al. [40]; the model did not perform as accurately as we had
hoped. Many of the technical scientific words were not able to be translated correctly, and
many sentences had severe grammatical errors. The results were dismissible as the BLEU
score result was much smaller than 0%, meaning that the translation was not accurate at
all. Moreover, fine-tuning this model would provide subpar results, and so we chose to
explore different options in lieu of fine-tuning.

7.2. Result II: NLP-Model-II

Using test data consisting of technical terminology/jargon from the aforementioned
domains, we tested both NLP-Model-II and NLP-Model-III. The results were very promis-
ing for NLP-Model-II when compared to NLP-Model-I since the BLEU score was much
higher than it was for NLP-Model-I. However, it still could not perform acceptably when
translating text from scientific patents. The BLEU score for small sentences was around
40–50%, and many sentences were cut off mid-sentence after the translation. We decided to
use post-editing to confirm the results. Post-editing is the procedure of human intervention
to amend machine-translated text so that translation is acceptable and is used to polish a
final product. In our case, it is to check and evaluate whether a specific model is performing
below par or if the model is accurate in its translation of the scientific text.

It was especially important as some words such as a ‘technological arm’ were being
translated into the Japanese word for a human arm, which changed the meaning and context
of the paragraph that was being translated. This example is a clear demonstration of the
limitations of machine translation and the importance of post-editing. It was confirmed
with post-editing that the accuracy was much lower than expected. Using post-editing,
the accuracy was only 10%. This demonstrates one of the disadvantages when it comes to
using the BLEU score as an evaluation metric.

7.3. Result III: NLP-Model-III

After testing and evaluating NLP-Model-III, we determined that our proposed tech-
nique for machine translation of Japanese patents, which encompasses NLP-Model-III,
performed the best for this particular problem. Post-fine-tuned results also confirmed the
improvement. The average BLEU score of the three epochs was determined to be 46.18.
This is a 41.22% increase in model performance from the original model BLEU score of
32.7. Table 4 provides sample results of each model and depicts their level of accuracy
in translation.
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Table 4. Sample English Sentences and Their Corresponding Japanese Sentences Translated
using models.

Model English (Original) Japanese (After Translation)

NLP-Model-I The car scheduling server receives
a ride request sent by the client.

The no break Izu NAGATA suffering?
Six a ? military shop She Please—not be-
cause The have n’t OK I I I am—such
good I I I are I I I good I—Bus—Bus
restaurant I I—while home sha—while
home Tokyo—while home studying deli-
cious the I I—not He could not He Mon-
day delicious not He could wearing "
mother and not He could

NLP-Model-II

The present invention provides
a carbon dioxide absorbent dur-
ing combustion of fossil fuels
comprising a pressed dry pow-
der of plant fibers, and a fossil
fuel characterized by comprising
of such a pressed dry powder of
plant fibers.

The present invention is characterized
by absorbing carbon dioxide during the
combustion of fossil fuels comprising
a pressed dry powder of plant fibers ,
drying the plant fibers in such a way as
to produce fossil fuels . We supply.

NLP-Model-III

The present invention provides a
carbon dioxide absorbent during
combustion of fossil fuels compris-
ing a pressed dry powder of plant
fibers, and a fossil fuel character-
ized by comprising such a pressed
dry powder of plant fibers.

The present invention provides a car-
bon dioxide absorbent at the time of
combustion of fossil fuels containing a
compressed dry powder of plant fibers,
and such a compressed dry powder of
plant fibers.

As seen in Table 4, NLP-Model-I outputs an incomprehensible translation that is
completely unrelated to the input. The output of NLP-Model-II was a lot more accurate;
however, it was a recurring problem to see sentences cut prematurely or irrelevant words
added to the sentences. The importance of accurate translation, especially when working
with legal documents, was one of the main reasons we moved on from NLP-Model-II
and investigated other models. NLP-Model-III, as seen above, provided the closest and
most accurate translation without compromising on technical words and preserving their
meaning according to their context. To strive to achieve further improvement, we tested
three different values for three different hyperparameters of the model using a manual
search based on our judgment. Although there was some improvement from the baseline
model, ultimately, the best-performing model was the one fine-tuned using our data set
and the default parameters. The hyperparameters tuned were the learning rate, batch size,
and weight decay. Table 5 provides an overview of the hyperparameters and their resulting
BLEU score.

Table 5. Fine-Tuning Hyperparameters of NLP-Model-III.

Hyperparameters Experiment 1 Experiment 2 Experiment 3

Learning rate 0.1 0.01 0.0001

Weight decay 0.1 0.001 0.0001

Batch size 8 16 32

BLEU 33.32 31.22 34.74

Given these outcomes, it is clear that NLP-Model-III is the best model to focus on as
it translated scientific patent abstracts the most accurately and showed promising results.
One problem that remained was the performance speed of the model. For large paragraphs,
it would take the model approximately 19 s to deliver an output of translated text, and
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sentences took approximately 3 s to translate. The aim for us was to achieve a translation
in milliseconds so that the translated content would be able to load faster on a webpage.

8. Conclusions

In this paper, we proposed a comprehensive multi-step technique to solve the problem
of Japanese patent translation. The unique challenges of patent translation stem from the
legal nature of the patent document in comparison to general Japanese-to-English trans-
lation and from existing challenges of the Japanese language, which raise the complexity
of the models that could be successful. Our technique included prepossessing steps, data
preparation, enlisting human expert feedback, and linguistic analysis to refine the machine
learning model performance. The Results section (Section 7) includes evaluation results
of three major alternatives for the transformer model to depend on for the last step. The
aim was to achieve an output from the models that would fall in the range of 0.5–0.7 of
the BLEU score, which is the current state of the art. Our technique, which encompassed
a variation of NLP-Model-III, achieved the best performance for the problem at hand,
reaching a BLEU score of 46.8. It is also noticed that fine-tuning hyperparameters yield up
to a three-point improvement on the BLEU score. This work included developing a novel
dataset that consisted of data collected from patent documents.

Moreover, the interest in commercial use motivates the further study of MT as the
initial findings of this work were demoed in Japan at the PIFC commercial conference
where companies tested the performance of the model and were satisfied with the level
of translation provided. Along with the quality of translation, the speed of translation is
also of great importance. Moving forward, it is important to study how to implement data
parallelism to use multiple GPUs at once to increase the speed at which translation occurs.
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