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Abstract: Although precision classification is a vital issue for therapy, cancer diagnosis has been shown
to have serious constraints. In this paper, we proposed a deep learning model based on gene expression
data to perform a pan-cancer classification on 16 cancer types. We used principal component analysis
(PCA) to decrease data dimensionality before building a neural network model for pan-cancer prediction.
The performance of accuracy was monitored and optimized using the Adam algorithm. We compared
the results of the model with a random forest classifier and XGBoost. The results show that the neural
network model and random forest achieve high and similar classification performance (neural network
mean accuracy: 0.84; random forest mean accuracy: 0.86; XGBoost mean accuracy: 0.90). Thus, we
suggest future studies of neural network, random forest and XGBoost models for the detection of cancer
in order to identify early treatment approaches to enhance cancer survival.
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1. Introduction

Despite effective advances in research, cancer is one of the leading causes of human
deaths, with nearly 10 million deaths in 2020 [1]. Lung cancer and colon and rectum
cancer were the most common causes of cancer deaths in 2020, with 1.80 million and
916.000 deaths, respectively [2]. In 2020, 2.26 million new breast cancer cases were diag-
nosed, making it the most common cancer worldwide [2].

Pan-cancer classification is still a challenge at the molecular level and could be crucial
in early cancer diagnosis and for treatment strategies [3]. The challenge for early diagnosis
is that the symptoms of many cancers are detected in later stages. The development of a
classifier able to identify more cancer types could improve the prognosis of cancer patients,
since survival rates dramatically improve in cases of early diagnosis [3].

Gene expression profiles have been associated with different cancers and tissues and
have previously been used to build classifiers for different cancer types [4,5]. Differentially
expressed genes in many cancer types have been found in genomic regions that play a
role in development or carcinogenesis and could influence the expression of downstream
genes [6]. Specific patterns of genes have been shown to be significantly altered in many
cancers, making gene expression profiles a tool for pan-cancer classification [6]. Gene
expression plays a crucial role in the early detection of cancer as it can quantify biochemical
processes in tissue and cells [7]. Recently, different genes have been linked to cancer
initiation and progression via gene expression analyses [7].

In addition, gene expression has been widely used to identify prognostic and diag-
nostic gene signatures in cancer and to generate commercial genomic tests. For example,
van’t Veer et al. [8] proposed a list of 70 prognostic genes in breast cancer and generated a
test, MammaPrint, released commercially. Oncotype DX, a qRT PCR-based signature, was
developed as the first commercially available test for breast cancer treatment [9].
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The enormous quantities of data obtained from high-throughput technologies avail-
able in public repositories such as The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) are used for machine learning algorithms, including artificial neural net-
works [10,11]. However, these datasets present some limitations. They consist of a huge
number of gene expression levels or clinical data, as well as noise. Often, the ratio of two
classes to be predicted (e.g., normal and cancer) is not balanced, causing biased models
with lower performances. The number of genes is usually much greater than the number of
samples, requiring a reduction of features dimensionality [12]. As gene expression profiles
have high dimensionality, machine learning models often require significant time and
resources to train and make a prediction.

Among the wide range of methods applied to reduce data dimensionality and noise,
there is principal component analysis (PCA). PCA generates new features, creating a new
space from the original feature vectors via a linear transformation [13]. PCA is applied
in numerous applications across different fields from social science to biology [14]. Many
supervised and unsupervised machine learning algorithms have been applied to gene
expression data for cancer prediction [15].

In the last decade, artificial neural networks (ANNs) have been proposed to deal with
huge quantities of data. They are a set of algorithms that mimic the human brain to identify
complex associations between features and to generate predictive models [16].

Here, we investigated a computational method to classify different cancer types based
on ANNs. We compared the performance of the ANN model with the random forest classi-
fier and XGBoost algorithm. XGBoost has been shown to obtain good performance in many
application fields including chronic kidney disease and epilepsy diagnosis [17,18]. Several
studies have shown that XGBoost obtained better performance in survival prediction in
non-small-cell lung cancer and for predicting tissues of origin for 10 different cancer types
than other standard machine learning algorithms [19,20]

The results of our study might help in the diagnosis and contribute to planning
therapies that could improve cancer survival.

2. Materials and Methods
2.1. Patients, Samples and Gene Expression Data

Gene expression profiles of human tissues and cancer tissues were collected from
GEO [21]. The datasets were downloaded with the R software [22] using the GEOquery
package [23]. A total of 16 datasets were collected according to the criteria: (i) studies
involving cancer/normal tissues, (ii) mRNA expression profiling, (iii) different cancer
types.

Table 1 reports the detailed description of considered samples.

Table 1. Cancer type, Gene Expression Omnibus (GEO) ID, size of cancer and normal cases for each
dataset. #: number.

Dataset GEO ID # of Cancer Samples # of Normal Samples

Bladder Urothelial Carcinoma GSE13507 165 10

Breast invasive carcinoma cancer GSE39004 61 47

Colon adenocarcinoma GSE41657 25 12

Esophageal carcinoma GSE20347 17 17

Head and Neck squamous cell carcinoma GSE6631 22 22

Kidney Chromophobe GSE15641 6 23

Kidney renal clear cell carcinoma GSE15641 32 23

Kidney renal papillary cell carcinoma GSE15641 11 23

Liver hepatocellular carcinoma GSE45267 48 39
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Table 1. Cont.

Dataset GEO ID # of Cancer Samples # of Normal Samples

Lung squamous cell carcinoma GSE33479 14 27

Lung adenocarcinoma GSE10072 58 49

Prostate adenocarcinoma GSE6919 65 63

Rectum adenocarcinoma GSE20842 65 65

Stomach adenocarcinoma GSE2685 21 8

Thyroid carcinoma GSE33630 60 45

Uterine Corpus Endometrial Carcinoma GSE17025 79 12

TOT 749 485

2.2. Data Processing

We standardized each GEO dataset independently, transforming the data distribution
per feature to a normal distribution using the function fit_transform in Python. Normaliza-
tion was performed separately on the training and testing sets.

To avoid unbalanced classes, we applied random oversampling in order to obtain the
same number of samples for each class (normal and cancer samples).

Each GEO dataset was divided randomly into two sets: training and testing sets, based
on the numbers of cases: 70% of the original dataset for the training and 30% for the testing.

PCA was used to reduce the gene expression data’s dimensionality based on 95% of
the variance of the training data. We used the same components for the testing dataset [24].
PCA was applied on: (1) the normalized training set, with the PCA parameters saved;
(2) the normalized testing set, using the training PCA parameters. PCA was performed
using the fit() and transform() functions.

2.3. Neural Network Architecture

We implemented a neural network model consisting of 1 input layer, 2 hidden layers
and 1 output layer. The first hidden layer consisted of 17 neurons and the second hidden
layer of 8 neurons.

The rectified linear unit (ReLU) was implemented as an activation function at each
node of the network [25]. The inputs of the classifier were the key components derived by
PCA, while the number of output neurons was the predicted class (cancer or normal). A
sigmoid activation function was implemented at the output layer to identify the class to be
predicted [26].

We used the Adam optimization algorithm, a modified version of stochastic gradient
descent [27]. It was used to assign the parameters that reduce the loss function (binary
cross-entropy) as much as possible.

In order to avoid overfitting, we used a “early stopping” function in Keras (https://keras.
io/callbacks/#earlystopping accessed on 1 March 2023 ) that stops the training process
when overfitting could be occurring (min_delta = 0.005, patience = 5).

To decrease the time and memory consumption, the model was trained with a batch
size = 8 and run for a maximum of 200 epochs.

The training set was used to train the neural network and the testing set to evaluate
the accuracy, sensitivity, and specificity of the tested model. The performance of the models
was also evaluated using a receiver operating characteristic (ROC) curve, and the area
under the curve (AUC).

The training and testing datasets were generated 10 times and the performance mea-
sures were summarized as the mean and standard deviation.

The neural network model program was developed in Python using the keras package
(version 2.10) [28].

https://keras.io/callbacks/#earlystopping
https://keras.io/callbacks/#earlystopping
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The neural network was compared with a random forest classifier implemented in R
with the randomforest package [29].

2.4. Random Forest

Random forest, a supervised learning algorithm, is a decision tree-based model devel-
oped by Breiman in 2001 [30].

It consists of an ensemble of trees where each tree considers random samples, and a
selection of features is assessed for each node [31].

Each decision tree produces an output of prediction independently. Thus, a final pre-
diction is an average of the different predictions. Considering a vector x = [x1, x2, . . . , xn]
where x represents the model’s input features, the final output is defined according to
Equation (1):

1
B

B

∑
b=1

Rb(x) (1)

B is the total number of generated trees and Rb(x) the estimated prediction occurs in
the bth tree [32].

Random forest, in our study, was implemented using R package ‘randomForest’,
V4.7-11, (https://cran.r-project.org/web/packages/randomForest/index.html accessed
on 1 March 2023). We set the default values of the R package, with 500 trees to grow.

2.5. Extreme Gradient Boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin in 2016, is based on decision trees [33].
It uses gradient tree boosting that makes a prediction via regression trees. It combines
the prediction of different regression trees to improve the overall accuracy. Given x, a
vector consists of model’s input features, the predicted output of XGBoost can be defined
according to Equation (2):

K

∑
k=1

fk(x) (2)

where fk (x) is the output of the kth tree belonging to space of potential regression trees [34,35].
XGBoost was performed using python software with the XGBoost package.
Table 2 shows the applied parameters for the three models. The code is available in:

https://github.com/claudiacava/Applied-Sciences accessed on 1 June 2023.

Table 2. Parameters considered for the artificial neural network (ANN), random forest (RF), and
XGBoost.

Model Parameters

ANN

Number of Hidden Layers = 2

Batch size = 8

Epochs = 200

Optimizer = adam

Losses = binary crossentropy

Hidden layers activation function = relu

Output layer activation function = sigmoid

RF

Number of trees = 500

Minimum size of terminal nodes = 1

Number of features to be analyzed = (sqrt(p) where p is number of features

https://cran.r-project.org/web/packages/randomForest/index.html
https://github.com/claudiacava/Applied-Sciences
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Table 2. Cont.

Model Parameters

XGBoost

Loss = mean squared error

Tree method = gpu hist

Number of estimators = 100

Learning rate = 0.3

Gamma = 0

3. Results

We implemented a pan-cancer classification model using artificial neural networks
and gene expression profiles from the GEO database.

Since gene expression profiles contain a high number of genes, we used PCA as a
feature selection approach that decreased data dimensionality. This method allows us
to find linear combinations of the data that capture the most variance in the data. In
addition, to remove over-fitting in the unbalanced dataset, we performed an over-sampling
technique.

To evaluate the performance of the classifier, we used a training and testing data set
containing gene expression levels of 16 cancer types. To investigate the consistency of our
model, we randomly divided the data 10 times into training and testing data sets. We tested
the performance of models using the independent testing data that was not included in the
training data. We achieved consistent results, considering their average. We compared the
performance of the ANN with a random forest classifier and XGBoost. The performance of
the methods in terms of sensitivity and specificity are summarized in Table 3.

Table 3. Pan-cancer classification performances of the artificial neural network (ANN), XGBoost and
random forest (RF). In bold, we highlighted the best results of the models.

Dataset Sensitivity Specificity

Dataset ANN RF XGBoost ANN RF XGBoost

Bladder Urothelial Carcinoma
(GSE13507) 0.85 ± 0.09 0.0 ± 0.0 0.97 ± 0.03 0.58 ± 0.22 1 ± 0.0 0.79 ± 0.24

Breast invasive carcinoma cancer
(GSE39004) 0.80 ± 0.1 0.84 ± 0.09 0.87 ± 0.06 0.82 ± 0.14 0.79 ± 0.1 0.75 ± 0.07

Colon adenocarcinoma
(GSE41657) 0.75 ± 0.24 1 ± 0 0.97 ± 0.06 1 ± 0 1 ± 0 1 ± 0

Esophageal carcinoma
(GSE20347) 0.85 ± 0.27 0.97 ± 0.09 0.89 ± 0.21 1 ± 0 0.81 ± 0.28 0.98 ± 0.08

Head and Neck squamous cell carcinoma
(GSE6631) 0.69 ± 0.27 0.96 ± 0.08 0.93 ± 0.08 0.92 ± 0.09 0.84 ± 0.14 0.92 ± 0.11

Kidney Chromophobe
(GSE15641) 0.76 ± 0.33 0.97 ± 0.09 0.95 ± 0.16 0.84 ± 0.16 0.67 ± 0.45 0.93 ± 0.14

Kidney renal clear cell carcinoma
(GSE15641) 0.97 ± 0.05 1 ± 0 0.91 ± 0.17 1 ± 0 1 ± 0 1 ± 0

Kidney renal papillary cell carcinoma
(GSE15641) 0.72 ± 0.37 1 ± 0 1 ± 0 0.9 ± 0.26 1 ± 0 0.93 ± 0.08

Liver hepatocellular carcinoma
(GSE45267) 0.85 ± 0.1 0.97 ± 0.04 0.92 ± 0.09 0.81 ± 0.12 0.73 ± 0.06 0.83 ± 0.13

Lung squamous cell carcinoma
(GSE33479) 0.77 ± 0.25 0.91 ± 0.16 0.82 ± 0.15 0.87 ± 0.11 0.81 ± 0.16 0.89 ± 0.20

Lung adenocarcinoma
(GSE10072) 0.79 ± 0.14 0.99 ± 0.02 0.94 ± 0.03 0.89 ± 0.08 0.95 ± 0.04 0.98 ± 0.03

Prostate adenocarcinoma
(GSE6919) 0.57 ± 0.09 0.55 ± 0.16 0.62 ± 0.17 0.64 ± 0.14 0.69 ± 0.17 0.61 ± 0.17



Appl. Sci. 2023, 13, 7355 6 of 10

Table 3. Cont.

Dataset Sensitivity Specificity

Rectum adenocarcinoma
(GSE20842) 0.93 ± 0.05 1 ± 0 0.99 ± 0.02 0.92 ± 0.07 1 ± 0 1 ± 0

Stomach adenocarcinoma
(GSE2685) 0.85 ± 0.11 0.92 ± 0.19 0.86 ± 0.2 1 ± 0 0.76 ± 0.22 0.96 ± 0.13

Thyroid carcinoma
(GSE33630) 0.85 ± 0.1 0.89 ± 0.07 0.89 ± 0.1 0.73 ± 0.15 0.92 ± 0.05 0.77 ± 0.1

Uterine Corpus Endometrial Carcinoma
(GSE17025) 0.94 ± 0.06 0.71 ± 0.24 0.95 ± 0.07 0.83 ± 0.17 1 ± 0 0.89 ± 0.28

TOT 0.81 0.85 0.90 0.86 0.87 0.89

The accuracy of three classifiers is shown in Figure 1. For most cancers the accuracy
of ANN model era above 0.80. The accuracy was: above 0.85 in colon adenocarcinoma,
esophageal carcinoma, kidney renal clear cell carcinoma, rectum adenocarcinoma, stomach
adenocarcinoma, and uterine corpus endometrial carcinoma; and below 0.80 in bladder
urothelial carcinoma, and prostate adenocarcinoma.
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We compared ANN with random forest classifier and XGBoost. The results of the
three classifiers are similar.

T-test demonstrated a statistically significant difference of performance between ANN
and XGBoost (t-test: sensitivity, p-value 0.001, accuracy, p-value 0.001, auc, p-value 0.049),
between ANN and random forest (t-test: auc, p-value 0.001) and between random forest
and XGBoost (t-test: auc, p-value 0.0003).

The overall accuracy, sensitivity, and specificity of the testing sets for the ANN classifier
were 0.83, 0.81 and 0.86, respectively. For the random classifier, we obtained an overall
accuracy of 0.86, an overall sensitivity of 0.85 and an overall specificity of 0.87. XGBoost
achieved an overall accuracy of 0.90, an overall sensitivity of 0.90 and an overall specificity
of 0.89 (Figure 2). The mean AUC values were 0.95 for random forest, 0.92 for XGBoost and
0.89 for ANN.

Figure 3A shows the ROC curves obtained with the ANN model in kidney renal
papillary cell carcinoma. The best ROC curves for the random forest classifier were obtained
in colon adenocarcinoma, kidney renal papillary cell carcinoma and kidney renal clear
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cell and rectum adenocarcinoma (Figure 3B). XGBoost, applied to colon adenocarcinoma,
achieved the best ROC curve (Figure 3C).
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4. Discussion

In this study, we used the gene expression profiles of 749 cancer patients and 485 normal
samples of 16 different cancer types from GEO database to provide a pan-cancer analysis
using a deep learning approach compared with random forest classifier and XGBoost
models.

Previous studies have already shown a higher performance of ANNs compared with
logistic regression in cancer [36,37].

However, in pan-cancer analysis, there is no clear evidence of the predictive accuracy
of ANNs in cancer diagnosis (tumor vs. normal prediction). There are few studies that have
demonstrated the abilities of ANNs to predict cancer samples, and the applications to date
have been mainly performed to few cancer types [38,39]. In addition, we applied a novel
recent algorithm, XGBoost, which obtained good classifier performance in cancer in other
studies [17,18]. Many studies have demonstrated the role of XGBoost in the prediction of
origin of tissues in cancer, and few studies in tumor vs. normal prediction [17,18].

In our study, the performance of the ANN model is compared with a random forest
classifier and XGBoost to carry out a comparative analysis of classification models. The
classification was performed on gene expression levels of cancer and normal tissues, focus-
ing on two main aspects in the ANN model: first, we used PCA as method to reduce data
dimensionality; second, we propose the use of the Adam optimization algorithm.

The ANN model achieved accuracies greater than 0.80 in most cancers based on key
components derived from PCA. Random forest achieved high performances, close to the
ANN model. We conclude that the ANN model and random forest have similar high
performances. Random forest obtained a slightly better performance than the ANN, but
it was not significant (t-test: p-value > 0.5). XGBoost achieved a better performance in
accuracy (p-value = 0.001), sensitivity (p-value = 0.001) and AUC (p-value = 0.049) compared
with the ANN. No statistically significant difference was revealed between the ANN and
random forest in sensitivity, specificity and accuracy.

These findings are consistent with reports presented in other studies. Indeed, recent
studies have suggested neural networks as promising tools in classification analysis using
gene expression data [3]. Ainscough et al. demonstrated that random forest and deep
learning approaches obtained high and similar performance using cancer sequencing
data [40].

In summary, our results demonstrated that our ANN classifier obtained classification
performance similar to random forest using a limited number of samples.

The models are only tested on one dataset for each cancer type. This study found high
and similar performance of the three models, but further studies should be performed on
other datasets in future works, and the associations between gene expression levels and
genetic aberrations should be also investigated.

Despite the interesting results of our study, there are some limitations to be noted.
First, the ANN is difficult to configure, as the model is dependent on the structure of the
network used, the choice of activation functions, the regularization approach used, the
depth of the network and other factors still. Second, the ANN model should be further
applied to larger samples, as several studies reported that the performance of a classifier
based on an ANN increases with the number of samples [41]. Another limitation of the
current approach is that we modelled and predicted the model considering a training and
testing dataset but not a validation set. This is due to small size of the pan-cancer dataset,
which limits its usage only to testing evaluation. The lack of a validation set could induce
an overfitting bias that needs to be explored in a future work. The authors will expand
their research in order to increase the models’ accuracy using other validation sets and
multi-omics data.

5. Conclusions

We presented an analysis that compared some of the commonly used machine learning
approaches. We applied the methods to 16 different cancer types and compared the results.



Appl. Sci. 2023, 13, 7355 9 of 10

Although the three classifiers achieved high and similar performance (neural network
mean accuracy: 0.84; random forest mean accuracy: 0.86; XGBoost mean accuracy: 0.90),
we found that XGBoost obtained the better performance. In the testing set, XGBoost also
showed the highest performance in sensitivity and specificity (0.90 and 0.89, respectively).
In terms of AUC values, random forest obtained the best prediction results (0.95). However,
we suggest deepening the three models given the high and similar performance obtained.

The good performance of the models demonstrated the efficiency of the classifiers
based on gene expression levels, and we suggest that these models could be extended to
other phenotypes and integrated in future studies.

In addition, subsequent analyses should be addressed: (i) to identify a gene signature,
(ii) to use our models for single gene expression analysis, (iii) to achieve a standardization
of data collection, and normalization.
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