
Citation: Ko, H.-J.; Han, S.-S.; Jeong,

C.-S. Non-Face-to-Face P2P

(Peer-to-Peer) Real-Time Token

Payment Blockchain System. Appl.

Sci. 2023, 13, 7364. https://

doi.org/10.3390/app13137364

Academic Editor: Luis Javier

García Villalba

Received: 29 April 2023

Revised: 13 June 2023

Accepted: 19 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Non-Face-to-Face P2P (Peer-to-Peer) Real-Time Token Payment
Blockchain System
Hyug-Jun Ko 1, Seong-Soo Han 2,* and Chang-Sung Jeong 3,*

1 Visual Information Processing, Korea University, Seoul 12841, Republic of Korea; doltwo@korea.ac.kr
2 Division of Liberal Studies, Kangwon National University, Samcheok 25930, Republic of Korea
3 Department of Electrical Engineering, Korea University, Seoul 12841, Republic of Korea
* Correspondence: sshan1@kangwon.ac.kr (S.-S.H.); csjeong@korea.ac.kr (C.-S.J.);

Tel.: +82-10-2274-0155 (S.-S.H.)

Abstract: With the increase in intelligent voice phishing and the increasing reliance on open banking
systems, there has been a rise in cases where individuals’ personal information has been exposed,
resulting in significant financial losses for the victims. Non-face-to-face transactions in the financial
sector face challenges such as customer identification, ensuring transaction integrity and preventing
transaction rejection. Blockchain-based distributed ledgers have been proposed as a solution but their
adoption is limited due to the difficulty of managing private keys and the burden of gas fees manage-
ment. This paper proposes a non-face-to-face P2P real-time token payment system that minimizes
the risk of key loss by storing private keys in a keystore file and database through a server-based
key management module. The proposed system simplifies token creation and management through
a server-based token management module and implements an automatic gas-charging function
for smooth token transactions. Transaction integrity and non-repudiation are ensured through a
transaction confirmation module that uses transaction IDs without exposing personal information.
Furthermore, advanced security measures such as blocking foreign IP access and DDoS defense are
implemented to securely protect user data. The proposed system aims to provide a convenient, secure
and accessible online payment solution to the public by implementing a self-authentication function
using a web application that is not limited to smartphones or application platforms.

Keywords: blockchain; Symverse; Ethereum; payment; gas; voice fishing; fintech

1. Introduction

The rapid advancement of technology and widespread adoption of digital financial
services have opened up a new era of convenience and efficiency in transactions. However,
along with these benefits, the possibility of financial fraud has also increased and the risk
of financial fraud is increasing as the sophistication of voice phishing and the dependence
on open banking systems increase [1]. Since these kinds of systems integrate information
from various financial institutions, the criminals create potential opportunities to exploit
vulnerabilities that may result in significant financial losses to individuals whose personal
information is inadvertently exposed [2].

In the area of non-face-to-face transactions, challenges such as customer identity
verification, ensuring transaction integrity and preventing transaction refusal remain.
These obstacles hinder the introduction of safe and smooth financial services that protect
users from fraud while maintaining ease of use. Blockchain technology, with its unique
characteristics of decentralization, immutability and transparency, has been proposed as
a potential solution to resolve these challenges. Fintech technology using blockchain can
be used as a means of small payments at lower fees than bank transactions on a platform
based on trust, as an automatic payment method to respond to recurring payments, as a
safe transaction service to prevent fraudulent transactions in second-hand transactions,

Appl. Sci. 2023, 13, 7364. https://doi.org/10.3390/app13137364 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137364
https://doi.org/10.3390/app13137364
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13137364
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137364?type=check_update&version=1

Appl. Sci. 2023, 13, 7364 2 of 23

including bank inspection hours, and to respond to bankbook blackmail, a new type of
voice phishing that sends random transmissions to bankbook account numbers exposed to
online shopping malls.

A coin in a blockchain is a value object for transactions created by a blockchain
mainnet project and transmitted on the mainnet and is used as a fee to record them. Since
transactions use both value and cost, it is difficult to transfer full value, and since value
fluctuates across exchanges, it is difficult to apply in real life. Blockchain mainnets are
enabling the creation of tokens for various purposes to enable fintech, with the Ethereum
mainnet providing a way to create ERC-20 tokens and ERC-721 tokens for NFTs [3]. The
token is used as a proof of value and Ethereum can be used as the gas that powers smart
contracts (a fee for the transfer) to transfer the full value through a wallet (a wallet is
a set of programs that store your address and private key on the blockchain and sign
transactions as they occur). Therefore, each wallet you use requires gas, which is used
as a fee, to send tokens and if you do not have gas or do not have enough, you cannot
create transactions and therefore cannot send tokens. These gas shortage issues add to
the complexity of use and have been a barrier to widespread blockchain adoption, and
the risk of exposing and losing private keys due to changes or loss of the device that
created the wallet has also been passed on to the user, limiting widespread adoption of
blockchain-based distributed ledgers [4,5].

This paper proposes the use of a key management module of a server-based blockchain
wallet to securely store private keys in keystore files and databases, effectively minimizing
the risk of loss, and since the web UI is used even when changing devices, there is no
requirement to move private keys, so there is no risk of private key exposure. In addition,
by implementing the gas auto-charging function of the token transfer module, it automat-
ically charges and transfers transactions when the gas is low, allowing users to transact
smoothly without the burden of managing gas costs. The system’s transaction verification
module, Transaction Explorer, utilizes transaction ID to ensure transaction integrity and
non-repudiation without exposing personal information [6]. It also introduces advanced
security measures such as blocking overseas access IPs and DDoS defense to safeguard
user data. It aims to provide a P2P online payment blockchain system that the public can
use conveniently and safely by implementing an identity authentication function using
smartphones and a platform-independent web application [7].

This paper is organized as follows: In Section 2, we review existing research and
solutions in blockchain technology that can address the challenges and issues faced in
blockchain transactions. Section 3 introduces our proposed face-to-face, peer-to-peer real-
time token payment system. In Section 4, we demonstrate the implementation principle of
the main functions of the system through implementation, and in Section 5, we verify the op-
eration of the service through performance testing and analyze the implemented functions
and performance. Finally, we evaluate the proposed system and conclude in Section 6.

2. Related Works

This chapter introduces ERC-20 and MetaMask as the underlying technologies of
existing blockchains proposed to solve the problem of non-face-to-face transactions and
examines their limitations. It also describes the underlying technologies used to develop
the application proposed in this thesis and explains the improvements made to improve
the limitations of the existing underlying technologies.

2.1. ERC-20

Ethereum’s ERC-20 (Ethereum Request for Comment 20) was first proposed by Vitalik
Buterin as an API standard for creating, managing and using tokens [8]. The purpose of
the ERC-20 API was to create a standard interface for blockchain users to create tokens and
send and receive them [9]. It is typically used in wallets such as MetaMask. The ERC-20
API consists of six mandatory functions (totalSupply, balanceOf, transfer, transferFrom,
approve, allowance) and two events (transfer, approval), as listed in Table 1 [10].

Appl. Sci. 2023, 13, 7364 3 of 23

Table 1. ERC-20 API: Methods.

Name Description

Method

totalSupply Provide the total amount of tokens

balanceOf Querying token balances

transfer Transfer Tokens

transferFrom Send tokens on a proxy

approve Delegate the right to withdraw your own tokens to spenders

allowance Allowance returns the number of tokens a spender can proxy withdraw from an owner

Event
transfer Emitted when value tokens are moved from one account (from) to another (to).

approval Emitted when the allowance of a spender for an owner is set by a call to approve

This approach uses smart contracts that run on the Ethereum EVM, written in the
programming language Solidity, compiled and registered on the Ethereum blockchain via
transactions [11]. Creating and managing multiple tokens requires a lot of work, as you
need to develop and manage solidities individually and there are limitations that make it
difficult to manage as there are no guarantees on behavior. To improve these issues, this
paper presents an easy way to create ERC-20-like tokens using SCT-20 proposed by the
Symverse blockchain [12].

2.2. MetaMask

In blockchain, a wallet is an application designed to generate, store and manage
private keys and to send and receive coins and tokens, which are assets on the blockchain.
Once a user creates a private key through their cryptocurrency wallet, they can generate
a public key and the hash value of the public key creates an address on the blockchain.
Transactions can be made through this address and all transactions are recorded on the
blockchain network and can be viewed through the explorer. MetaMask is a web browser
plugin application used by most users as a cryptocurrency wallet for storing ERC-20-based
tokens that operate on top of Ethereum and the Ethereum blockchain [13]. MetaMask
allows you to store and trade Ethereum, integrate MetaMask into decentralized financial
applications and manage and trade various tokens and NFTs [14]. MetaMask stores wallet
settings, transaction data and more in the form of LevelDB [15]. The path to the LevelDB in
the most popular browsers Chrome and Edge is shown in Table 2. In Table 2, PROFILE
refers to the user profile set in the browser, which has the value “Default” when the user
does not use multiple profiles. The ID is a unique ID given to the browser extension, with
different values depending on the browser: “nkbihfbeogaeaoehlefnkodbefgpgknn” for
Chrome and “ejbalbakoplchlghecdalmeeeajnimhm” for Edge.

Table 2. Path of MetaMask LevelDB folder.

Browser Path

Chrome %USERPROFILE%\AppData\Local\Google\Chrome\User
Data\{PROFILE}\Local Extension Settings\{ID}

Edge %USERPROFILE%\AppData\Local\Microsoft\Edge\User
Data\{PROFILE}\Local Extension Settings\{ID}

MetaMask exposes your private key when you change devices and while the “clear
browsing data” feature does not delete the extension’s data, removing the extension directly
from the browser deletes the entire folder containing LevelDB, which is irreversible and
irreparable [16]. To improve this problem, this paper does not store the private key on the
device, but on the server’s keystore for safe storage.

Appl. Sci. 2023, 13, 7364 4 of 23

2.3. Limitations of Existing Solutions

A blockchain wallet is used to store private keys, generate signatures and create
transactions on behalf of users. In short, it is an application that allows you to make
real-time payments on the blockchain [17]. If we divide wallets into categories, the first case
is web wallets, which are available through any web browser and are convenient and easy
to use. The web interface has compatibility issues with mobile devices such as smartphones
and is vulnerable to DDoS attacks over the Internet. In addition, it is necessary to secure the
user’s key due to the exposure of the private key when moving the key [18]. In the second
case, when using web browser extensions such as MetaMask, the problem of deleting
private keys that are difficult to recover due to browser deletion or extension deletion is the
biggest blind spot as pointed out in Section 2.2 [16]. In the third case, a mobile wallet using
a smartphone is highly portable but puts the user in control of and makes them responsible
for their keys. The worst-case scenario for the security of your keys is that if you lose your
smartphone, you will not be able to get them back, or if you change your smartphone,
your keys will be exposed to the outside world and you will have a hard time figuring
out how to move them [19]. In the fourth case, if you use a desktop wallet, your private
keys are either stored on your PC or hosted by a third party, such as a service provider.
The disadvantages of storing your keys on your PC are that they may be compromised or
deleted and if they are hosted by a company that offers customization services or hardware
wallet services, or you may have to pay for them [20,21].

The wallets listed above are storage wallets used to store coins or tokens. Therefore,
it is inconvenient to manage the coins used as gas to transfer tokens and there is also a
difficulty in purchasing and transferring through the exchange when there is a shortage of
gas. This causes great inconvenience in the use of payment transactions between individuals
and is a major obstacle to blockchain activation. In this paper, we implemented the core
function of automatic gas charging in the token transfer module in Section 3.4, so that
gas is automatically charged when transferring tokens, so that token transactions between
individuals can be carried out without the need to manage gas, eliminating the obstacles to
token transactions.

In addition, a web-app wallet is proposed so that various types of wallet applications
can be applied to various devices (smartphones, tablets, PCs, etc.) [22] and this web-app
wallet is written with the Flutter framework and can be used with the same interface on all
devices and is excellent for obfuscation and security [23]. The proposed web-app wallet
does not expose keys when changing wallets due to device changes and does not lose
keys when the device is lost and defends against DDoS attacks [24] that are vulnerable to
server-based wallet services by using the 3.5 DDoS protection module and protects against
key loss by creating wallets using low-capacity keystores such as List 1 in the 3.2 Key
management module and by storing secondary backup copies in the DB.

2.4. Background Technology
2.4.1. Ethereum Keystore

An Ethereum keystore is a means of authenticating to a specific address on Ethereum
and is a file that stores a private key encrypted with a passphrase [25,26]. To obtain a
private key, you need to know not only the keystore file but also the passphrase, and, for
usability reasons, it is a key storage standard created for secure transactions using the
keystore and passphrase combination rather than exposing the private key and using it
directly [27].

• Generating a Keystore

The Ethereum platform generates a private key and a public key using the ECDSA
(Elliptic Curve Digital Signature Algorithm). The passphrase is encrypted using a one-way
cryptographic algorithm called “Scrypt” to generate a derived key, as shown in Figure 1 [28].

Appl. Sci. 2023, 13, 7364 5 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 24

2.4. Background Technology
2.4.1. Ethereum Keystore

An Ethereum keystore is a means of authenticating to a specific address on
Ethereum and is a file that stores a private key encrypted with a passphrase [25,26]. To
obtain a private key, you need to know not only the keystore file but also the passphrase,
and, for usability reasons, it is a key storage standard created for secure transactions us-
ing the keystore and passphrase combination rather than exposing the private key and
using it directly [27].
• Generating a Keystore

The Ethereum platform generates a private key and a public key using the ECDSA
(Elliptic Curve Digital Signature Algorithm). The passphrase is encrypted using a
one-way cryptographic algorithm called “Scrypt” to generate a derived key, as shown in
Figure 1 [28].

Figure 1. Generate a derived key.

For the decryption of the private key, it is encrypted using the AES algorithm as
shown in Figure 2 and then a cipher text needs to be generated.

Figure 2. Create a cipher text.

The MAC for verifying whether the user-input passphrase matches is stored in the
keystore by concatenating the last 16 bytes of the derived key (32 bytes) with the cipher
text and hashing the result using the SHA3-256 hash function, as shown in Figure 3.

Figure 1. Generate a derived key.

For the decryption of the private key, it is encrypted using the AES algorithm as shown
in Figure 2 and then a cipher text needs to be generated.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 24

2.4. Background Technology
2.4.1. Ethereum Keystore

An Ethereum keystore is a means of authenticating to a specific address on
Ethereum and is a file that stores a private key encrypted with a passphrase [25,26]. To
obtain a private key, you need to know not only the keystore file but also the passphrase,
and, for usability reasons, it is a key storage standard created for secure transactions us-
ing the keystore and passphrase combination rather than exposing the private key and
using it directly [27].
• Generating a Keystore

The Ethereum platform generates a private key and a public key using the ECDSA
(Elliptic Curve Digital Signature Algorithm). The passphrase is encrypted using a
one-way cryptographic algorithm called “Scrypt” to generate a derived key, as shown in
Figure 1 [28].

Figure 1. Generate a derived key.

For the decryption of the private key, it is encrypted using the AES algorithm as
shown in Figure 2 and then a cipher text needs to be generated.

Figure 2. Create a cipher text.

The MAC for verifying whether the user-input passphrase matches is stored in the
keystore by concatenating the last 16 bytes of the derived key (32 bytes) with the cipher
text and hashing the result using the SHA3-256 hash function, as shown in Figure 3.

Figure 2. Create a cipher text.

The MAC for verifying whether the user-input passphrase matches is stored in the
keystore by concatenating the last 16 bytes of the derived key (32 bytes) with the cipher
text and hashing the result using the SHA3-256 hash function, as shown in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 24

Figure 3. Create mac from derived key and cipher text.

The resulting keystore file created in this way is shown in Listing 1.

Listing 1. Keystore file example.

{
"version":4,
"id":"64cbaeb8-431b-41d4-a5e6-0508fc509b74",
"address":"0x1bff0b319a73b51159fb4e2d0111d5c93fa1b3d6",
"crypto":{

"ciphertext":"1ab011aeae5d288465a1f4c89cf6b4a494ba90d908ef015ffa43fa9838ff1483",
"cipherparams":{

"iv":"2dd0641c64f19d978854a0ab3e27c0a8"},
"cipher":"aes-128-ctr",
"kdf":"scrypt",
"kdfparams":{

"dklen":32,
"salt":"cfaeccc4d27f0305f0af2d3d87214a360a06714cdf2320db44c815b9c03b4ce8",
"n":4096,
"r":8,
"p":1
},

"mac":"5ad80b19d7338245fb12129c2c441eee104ab054171edfd07c44cd602cdefdf6",
"machash":"sha3256"

}
}

• Decrypting Keystore
To decrypt the keystore, you must first verify that the entered passphrase is correct.

Based on the entered passphrase, a newly derived key and MAC are generated and
checked for a match with the MAC within the keystore. If a match is confirmed, the
newly derived key, cipher text and cipher parameters information within the keystore
are input into the AES decryption algorithm to decrypt the cipher text into the private
key, as shown in Figure 4 [29].

Figure 4. Decrypt cipher.

Figure 3. Create mac from derived key and cipher text.

The resulting keystore file created in this way is shown in Listing 1.

Appl. Sci. 2023, 13, 7364 6 of 23

Listing 1. Keystore file example.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 24

Figure 3. Create mac from derived key and cipher text.

The resulting keystore file created in this way is shown in Listing 1.

Listing 1. Keystore file example.

{
"version":4,
"id":"64cbaeb8-431b-41d4-a5e6-0508fc509b74",
"address":"0x1bff0b319a73b51159fb4e2d0111d5c93fa1b3d6",
"crypto":{

"ciphertext":"1ab011aeae5d288465a1f4c89cf6b4a494ba90d908ef015ffa43fa9838ff1483",
"cipherparams":{

"iv":"2dd0641c64f19d978854a0ab3e27c0a8"},
"cipher":"aes-128-ctr",
"kdf":"scrypt",
"kdfparams":{

"dklen":32,
"salt":"cfaeccc4d27f0305f0af2d3d87214a360a06714cdf2320db44c815b9c03b4ce8",
"n":4096,
"r":8,
"p":1
},

"mac":"5ad80b19d7338245fb12129c2c441eee104ab054171edfd07c44cd602cdefdf6",
"machash":"sha3256"

}
}

• Decrypting Keystore
To decrypt the keystore, you must first verify that the entered passphrase is correct.

Based on the entered passphrase, a newly derived key and MAC are generated and
checked for a match with the MAC within the keystore. If a match is confirmed, the
newly derived key, cipher text and cipher parameters information within the keystore
are input into the AES decryption algorithm to decrypt the cipher text into the private
key, as shown in Figure 4 [29].

Figure 4. Decrypt cipher.

• Decrypting Keystore

To decrypt the keystore, you must first verify that the entered passphrase is correct.
Based on the entered passphrase, a newly derived key and MAC are generated and checked
for a match with the MAC within the keystore. If a match is confirmed, the newly derived
key, cipher text and cipher parameters information within the keystore are input into
the AES decryption algorithm to decrypt the cipher text into the private key, as shown
in Figure 4 [29].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 24

Figure 3. Create mac from derived key and cipher text.

The resulting keystore file created in this way is shown in Listing 1.

Listing 1. Keystore file example.

{
"version":4,
"id":"64cbaeb8-431b-41d4-a5e6-0508fc509b74",
"address":"0x1bff0b319a73b51159fb4e2d0111d5c93fa1b3d6",
"crypto":{

"ciphertext":"1ab011aeae5d288465a1f4c89cf6b4a494ba90d908ef015ffa43fa9838ff1483",
"cipherparams":{

"iv":"2dd0641c64f19d978854a0ab3e27c0a8"},
"cipher":"aes-128-ctr",
"kdf":"scrypt",
"kdfparams":{

"dklen":32,
"salt":"cfaeccc4d27f0305f0af2d3d87214a360a06714cdf2320db44c815b9c03b4ce8",
"n":4096,
"r":8,
"p":1
},

"mac":"5ad80b19d7338245fb12129c2c441eee104ab054171edfd07c44cd602cdefdf6",
"machash":"sha3256"

}
}

• Decrypting Keystore
To decrypt the keystore, you must first verify that the entered passphrase is correct.

Based on the entered passphrase, a newly derived key and MAC are generated and
checked for a match with the MAC within the keystore. If a match is confirmed, the
newly derived key, cipher text and cipher parameters information within the keystore
are input into the AES decryption algorithm to decrypt the cipher text into the private
key, as shown in Figure 4 [29].

Figure 4. Decrypt cipher.

Figure 4. Decrypt cipher.

2.4.2. Symverse

Symverse is a layer-1 blockchain platform with one-second block finality based on
self-sovereign distributed identities, using the SYM coin. It uses a unique ID system of
10 bytes consisting of a network identifier called SymID (2 bytes), a CitizenID (6 bytes) and
an account identifier (2 bytes) to replace the approximately 20 bytes of public key hash used
as an address. It is a scalable multi-blockchain platform as a cooperative blockchain service
that interoperates between independent blockchain platforms based on the Symverse
platform. In particular, the block generation method is an enhanced BFT (Byzantine Fault
Tolerant) method with strategic voting, and fast block finality is implemented using PoS
(proof of stake) [30].

• SCT-20

SCT (Symverse contract template) is a template protocol designed to make it easy to
create and operate smart contracts within the Symverse blockchain. In the case of Ethereum,
the ERC-20 protocol allows you to write a smart contract with Solidity and register it on

Appl. Sci. 2023, 13, 7364 7 of 23

the blockchain through a transaction and operate the smart contract through the EVM [29],
but in Symverse, SCT-20 is a template that provides standard inputs and outputs as shown
in Table 3 to easily create a token smart contract on the blockchain with data type JSON via
RPC [31]. To create an SCT contract, use the SCT_CREATE function in Table 4 and pay the
transaction fee of 0.8049 SYM coins. The SCT contract generates a transaction using the
RLP (recursive length prefix) encoded value of array (“0x14”, 0, array (“SYMBOL NAME”,
“SYMBOL”, convertEth2WeiHex (10,000,000,000, 18), SymID)) in the input parameter of
Table 5, converted to Hex, and sends it to the Symverse blockchain to create a token smart
contract. To transfer the generated token, we use the SCT_TRANSFER function in Table 3
and set the gasPrice in Table 4 to 7000 to transfer the token.

• Transactions

Table 3. SCT20 creation parameters.

Parameters Type Description

Name Address Smart contract (token) name

Symbol String Smart contract (token) symbol. The length should be from 3 to 10

Amount Int Total supply

Owner Address 10 bytes—address of the contract owner

Table 4. SCT20 operation gas.

Type Function Description SCT Gas Total Gas

SCT20

SCT20_CREATE Create SCT20 contract 49,000 8,049,000

SCT20_TRANSFER Transfer token 7000 56,000

SCT20_TRANSFER_FROM Token delegation transfer 9000 58,000

SCT20_MINT Issue additional token 7000 56,000

SCT20_BURN Token burn 7000 56,000

SCT20_PAUSE Contract suspension 4000 53,000

SCT20_UNPAUSE Resume suspended
contract 4000 53,000

Table 5. Transaction data parameters.

Field Type Description

from address [10] bytes, sender address

nonce int the count of transaction publication in the account

gasPrice int gas price per gas unit

gas int gas amount for executing transaction

to address [10] bytes, receiver address or contract address or nil

value int the value sent with this transaction or amount of deposit

input data [] byte, rlp encoded data (contract or sct)

type int Transaction type (0: general (default), 1: sct, 2: deposit)

workNodes [] address array, list of work nodes that deliver the transaction (count = 1)

extraData int [] byte

A transaction is an act of recording a ledger in a block on the blockchain, and once a
transaction is recorded, it cannot be modified or deleted. In Symverse, transactions include
normal transaction behavior, SCT transactions and deposit transactions [31]. The data
required for a transaction is shown in Table 5.

Appl. Sci. 2023, 13, 7364 8 of 23

The transaction of general transaction behavior is to transfer SYM coins, SCT transac-
tion is to transfer smart contracts, and deposit transaction is for interest distribution. The
gas consumed by a transaction is calculated using the following formula.

The gas consumed in a transaction is calculated using the following Formula (1):

Consumed_gas = base_gas
+ (number of none-zero-byte) *680

+ (number of zero-byte) *40
+ contract_operation_gas

(1)

Consumed gas is calculated as the base gas rate (base_gas) set in the blockchain plus
the number of non-zero bytes of input_data*680 and the number of zero bytes*40 plus the
contract operation gas rate.

The token transfer transaction (1) prepares a private key corresponding to the sender’s
SymID, (2) retrieves the recent transaction nonce in the SymID’s blockchain and (3) prepares
the raw transaction data as follows.

a. Add 1 to the recent transaction nonce. b. Prepare $input = array (“0x14”, “0x1”,
array(“Receiver SymID”, convertEth2WeiHex(1000000000, 18))) to be used as transaction
input and prepare. c. RLP-encode the sct_data d. Prepare the transaction data. $tx_req = ar-
ray (“from” => “Sender SymID”,”to” => “Contract ID”,”gasLimit” => bcdechex(2000000),
“gasPrice” => bcdechex(100000000000), “value” => 0x0, “nonce” => LatedNonce+1, “type”
=> “1”, “workNodes” => array(“Work Node SymID”), “input” => “0x”.RLP(sct_data))
e. Sign the transaction data. (4) Send an RPC from the signed data as a JSON data
type. $param_arr = array (“jsonrpc” => “2.0”, “method” => “sym_sendRawTransaction”,
“params” => array($tx_raw), “id” => 1) Use the returned transaction hash to obtain a
transaction receipt to check if the transaction was processed successfully. You can see the
transaction processing flow in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 24

Figure 5. Symverse transaction processing flow [31].

The next chapter will introduce the details and architecture of the system proposed
in the thesis and the various modules that address the problems discussed in this chapter.
We will also provide an evaluation of the system’s performance, security and usability,
demonstrating its potential to provide a comprehensive solution for non-face-to-face fi-
nancial transactions.

3. Token Payment Blockchain System
The proposed token payment blockchain system is a secure system that enables re-

al-time token transfers between individuals or parties without exposing personal infor-
mation. Once the transaction is completed, the transaction history can be verified by an-
yone using a wallet or using a separate blockchain scanner. This architecture consists of
five modules: a module for wallet owners to generate and store private keys in the key-
store, a module for checking and charging insufficient gas in the wallet, a module for
sending and receiving tokens, a module for DDoS defense of the system and a module for
real-name authentication of the keystore.

3.1. Overall Architecture
The blockchain system consists of a key management module, token management

module, token payment module, DDoS defense module and real-name authentication
module for the legacy system. The key management module efficiently generates,
changes and retrieves private keys in conjunction with the keystore, while the token
management module manages tokens by creating, querying, minting and burning them.
The token payment module automatically charges and sends gas when a general user has
no gas. The DDoS defense module is composed of distributed attack prevention and
blocking of overseas access to protect the server and the real-name authentication mod-
ule authenticates the wallet according to domestic law. Figure 6 shows the mod-
ule-by-module configuration and interconnection of the system that enables P2P re-
al-time payments based on the server.

Figure 5. Symverse transaction processing flow [31].

The next chapter will introduce the details and architecture of the system proposed
in the thesis and the various modules that address the problems discussed in this chapter.
We will also provide an evaluation of the system’s performance, security and usabil-
ity, demonstrating its potential to provide a comprehensive solution for non-face-to-face
financial transactions.

Appl. Sci. 2023, 13, 7364 9 of 23

3. Token Payment Blockchain System

The proposed token payment blockchain system is a secure system that enables real-
time token transfers between individuals or parties without exposing personal information.
Once the transaction is completed, the transaction history can be verified by anyone using
a wallet or using a separate blockchain scanner. This architecture consists of five modules:
a module for wallet owners to generate and store private keys in the keystore, a module for
checking and charging insufficient gas in the wallet, a module for sending and receiving
tokens, a module for DDoS defense of the system and a module for real-name authentication
of the keystore.

3.1. Overall Architecture

The blockchain system consists of a key management module, token management
module, token payment module, DDoS defense module and real-name authentication
module for the legacy system. The key management module efficiently generates, changes
and retrieves private keys in conjunction with the keystore, while the token management
module manages tokens by creating, querying, minting and burning them. The token
payment module automatically charges and sends gas when a general user has no gas.
The DDoS defense module is composed of distributed attack prevention and blocking of
overseas access to protect the server and the real-name authentication module authenticates
the wallet according to domestic law. Figure 6 shows the module-by-module configuration
and interconnection of the system that enables P2P real-time payments based on the server.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24

Figure 6. Token payment blockchain platform.

The control flow of the proposed system is shown in Figure 7. When the user’s
smartphone enters the blockchain address of the destination to be transmitted and the
quantity of tokens to request transmission, the key management module reads and de-
crypts the user’s keystore for transaction signing in the key management module, ex-
tracts the private key, signs the private key and sends it to the token transmission mod-
ule. When paying for tokens, it checks the gas of SymID, the blockchain address of the
sender and automatically charges the gas when it runs out and sends the transaction to
the blockchain node. The transactions sent from the node to the blockchain are put into a
block and when the block is confirmed and finalized through PoS (proof of stake) con-
sensus, it is permanently distributed and stored on the blockchain. When the recipient’s
wallet requests a token balance inquiry, the balance is received by querying the node
through the corresponding token management module.

Figure 7. Control flow of system.

3.2. Key Management Module
Transaction creation process is illustrated in Figure 8. The key management module

generates a private key as a 32-byte hexa code by creating a 256-bit random number
when the user requests to create a wallet by entering a passphrase. It also generates a
corresponding public key and public key hash and stores them in the file system as a
keystore. The generated public key hash and the user’s ID are sent to the certificate au-
thority server of the Symverse blockchain to create a SymID, which is an address used in
the Symverse blockchain, and store it in the DB. Users can send tokens with just their ID
and passphrase at login without having to remember their SymID. The passphrase for the
keystore can be changed, but the private key and SymID cannot be changed. When a user
requests to sign a transaction raw code, they enter the passphrase to decrypt and extract
the private key from the keystore, sign the raw code and create a transaction.

Figure 6. Token payment blockchain platform.

The control flow of the proposed system is shown in Figure 7. When the user’s
smartphone enters the blockchain address of the destination to be transmitted and the
quantity of tokens to request transmission, the key management module reads and decrypts
the user’s keystore for transaction signing in the key management module, extracts the
private key, signs the private key and sends it to the token transmission module. When
paying for tokens, it checks the gas of SymID, the blockchain address of the sender and
automatically charges the gas when it runs out and sends the transaction to the blockchain
node. The transactions sent from the node to the blockchain are put into a block and
when the block is confirmed and finalized through PoS (proof of stake) consensus, it
is permanently distributed and stored on the blockchain. When the recipient’s wallet
requests a token balance inquiry, the balance is received by querying the node through the
corresponding token management module.

Appl. Sci. 2023, 13, 7364 10 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24

Figure 6. Token payment blockchain platform.

The control flow of the proposed system is shown in Figure 7. When the user’s
smartphone enters the blockchain address of the destination to be transmitted and the
quantity of tokens to request transmission, the key management module reads and de-
crypts the user’s keystore for transaction signing in the key management module, ex-
tracts the private key, signs the private key and sends it to the token transmission mod-
ule. When paying for tokens, it checks the gas of SymID, the blockchain address of the
sender and automatically charges the gas when it runs out and sends the transaction to
the blockchain node. The transactions sent from the node to the blockchain are put into a
block and when the block is confirmed and finalized through PoS (proof of stake) con-
sensus, it is permanently distributed and stored on the blockchain. When the recipient’s
wallet requests a token balance inquiry, the balance is received by querying the node
through the corresponding token management module.

Figure 7. Control flow of system.

3.2. Key Management Module
Transaction creation process is illustrated in Figure 8. The key management module

generates a private key as a 32-byte hexa code by creating a 256-bit random number
when the user requests to create a wallet by entering a passphrase. It also generates a
corresponding public key and public key hash and stores them in the file system as a
keystore. The generated public key hash and the user’s ID are sent to the certificate au-
thority server of the Symverse blockchain to create a SymID, which is an address used in
the Symverse blockchain, and store it in the DB. Users can send tokens with just their ID
and passphrase at login without having to remember their SymID. The passphrase for the
keystore can be changed, but the private key and SymID cannot be changed. When a user
requests to sign a transaction raw code, they enter the passphrase to decrypt and extract
the private key from the keystore, sign the raw code and create a transaction.

Figure 7. Control flow of system.

3.2. Key Management Module

Transaction creation process is illustrated in Figure 8. The key management module
generates a private key as a 32-byte hexa code by creating a 256-bit random number
when the user requests to create a wallet by entering a passphrase. It also generates
a corresponding public key and public key hash and stores them in the file system as
a keystore. The generated public key hash and the user’s ID are sent to the certificate
authority server of the Symverse blockchain to create a SymID, which is an address used in
the Symverse blockchain, and store it in the DB. Users can send tokens with just their ID
and passphrase at login without having to remember their SymID. The passphrase for the
keystore can be changed, but the private key and SymID cannot be changed. When a user
requests to sign a transaction raw code, they enter the passphrase to decrypt and extract
the private key from the keystore, sign the raw code and create a transaction.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 24

Figure 8. Transaction creation process through private key signature.

3.3. Token Management Module
Token management module is illustrated in Figure 9. The token management mod-

ule is responsible for creating tokens that represent the initial supply quantity and can
mint or burn the token amount as needed. Token minting on the Symverse blockchain
can be performed using the SCT-20 template, which has a minting function to increase
the total token issuance amount and a burn function to decrease it. To create a token, you
need to input the token symbol name, symbol, total issuance quantity, owner SymID
according to the JSON convention of SCT-20 and sign the generated bytecode with the
private key extracted from the keystore using a passphrase. The bytecode is then con-
verted into a transaction and permanently registered on the blockchain. To retrieve in-
formation such as the token contract address, you can query the blockchain using the
hash value of the returned transaction receipt.

Figure 9. Token management module.

3.4. Token Transfer Module
Token transfer module is illustrated in Figure 10. The token transfer module is re-

sponsible for transferring tokens between users. When a user sends tokens, gas is con-
sumed to execute the smart contract and the user must manage the gas separately, mak-
ing it difficult to use. To make it easier for users, a module is provided so that it manages
the gas consumption payment instead of users. To transfer tokens, the user generates
bytecode and signs it using their private key. The gas consumed by the transaction is then
calculated. If there is not enough gas, the contract owner requests that SYM coins have to
be automatically recharged to the SymID account on the blockchain. In the next step, the
transaction is sent to the node and permanently recorded in the block through a con-
sensus algorithm so that the tokens are transferred to the recipient.

Figure 8. Transaction creation process through private key signature.

3.3. Token Management Module

Token management module is illustrated in Figure 9. The token management module
is responsible for creating tokens that represent the initial supply quantity and can mint
or burn the token amount as needed. Token minting on the Symverse blockchain can be
performed using the SCT-20 template, which has a minting function to increase the total
token issuance amount and a burn function to decrease it. To create a token, you need to
input the token symbol name, symbol, total issuance quantity, owner SymID according
to the JSON convention of SCT-20 and sign the generated bytecode with the private key
extracted from the keystore using a passphrase. The bytecode is then converted into a
transaction and permanently registered on the blockchain. To retrieve information such
as the token contract address, you can query the blockchain using the hash value of the
returned transaction receipt.

Appl. Sci. 2023, 13, 7364 11 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 24

Figure 8. Transaction creation process through private key signature.

3.3. Token Management Module
Token management module is illustrated in Figure 9. The token management mod-

ule is responsible for creating tokens that represent the initial supply quantity and can
mint or burn the token amount as needed. Token minting on the Symverse blockchain
can be performed using the SCT-20 template, which has a minting function to increase
the total token issuance amount and a burn function to decrease it. To create a token, you
need to input the token symbol name, symbol, total issuance quantity, owner SymID
according to the JSON convention of SCT-20 and sign the generated bytecode with the
private key extracted from the keystore using a passphrase. The bytecode is then con-
verted into a transaction and permanently registered on the blockchain. To retrieve in-
formation such as the token contract address, you can query the blockchain using the
hash value of the returned transaction receipt.

Figure 9. Token management module.

3.4. Token Transfer Module
Token transfer module is illustrated in Figure 10. The token transfer module is re-

sponsible for transferring tokens between users. When a user sends tokens, gas is con-
sumed to execute the smart contract and the user must manage the gas separately, mak-
ing it difficult to use. To make it easier for users, a module is provided so that it manages
the gas consumption payment instead of users. To transfer tokens, the user generates
bytecode and signs it using their private key. The gas consumed by the transaction is then
calculated. If there is not enough gas, the contract owner requests that SYM coins have to
be automatically recharged to the SymID account on the blockchain. In the next step, the
transaction is sent to the node and permanently recorded in the block through a con-
sensus algorithm so that the tokens are transferred to the recipient.

Figure 9. Token management module.

3.4. Token Transfer Module

Token transfer module is illustrated in Figure 10. The token transfer module is respon-
sible for transferring tokens between users. When a user sends tokens, gas is consumed to
execute the smart contract and the user must manage the gas separately, making it difficult
to use. To make it easier for users, a module is provided so that it manages the gas consump-
tion payment instead of users. To transfer tokens, the user generates bytecode and signs it
using their private key. The gas consumed by the transaction is then calculated. If there
is not enough gas, the contract owner requests that SYM coins have to be automatically
recharged to the SymID account on the blockchain. In the next step, the transaction is sent
to the node and permanently recorded in the block through a consensus algorithm so that
the tokens are transferred to the recipient.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 10. Token transfer module.

3.5. DDoS Protection Module
DDoS block module architecture is illustrated in Figure 11. The current token pay-

ment system has been developed for the purpose of actual use in Korea, so the module
aims to block overseas IPs so as to comply with Korean laws for real-name authentication
and to indiscriminate attacks from overseas. Based on the built-in database of global IP
address allocation, it extracts IP addresses allocated to Korea and allows access only if
they are included within the Korean IP address range. It also manages DDoS source IPs
separately in the database to block access and effectively defends against DDoS by han-
dling traffic from the built-in database without traffic increase on the main DB during
multiple loads.

Figure 11. DDoS block module.

3.6. Real Name Verification Module
Real-name authentication module architecture is illustrated in Figure 12. The real

name verification module interfaces with external legacy systems. When a smartphone
user enters their name, phone number, date of birth (six digits) and the first digit to de-
note the sex code in the resident registration number, the server converts it into the for-
mat requested by the related institution and sends a response code to the smartphone
number via SMS (short messaging system). The user inputs the response code and the
module verifies their real name by receiving a response from the credit information
management institution and performs real-name verification for the keystore.

Figure 12. Real-name authentication module.

Figure 10. Token transfer module.

3.5. DDoS Protection Module

DDoS block module architecture is illustrated in Figure 11. The current token payment
system has been developed for the purpose of actual use in Korea, so the module aims to
block overseas IPs so as to comply with Korean laws for real-name authentication and to
indiscriminate attacks from overseas. Based on the built-in database of global IP address
allocation, it extracts IP addresses allocated to Korea and allows access only if they are
included within the Korean IP address range. It also manages DDoS source IPs separately
in the database to block access and effectively defends against DDoS by handling traffic
from the built-in database without traffic increase on the main DB during multiple loads.

Appl. Sci. 2023, 13, 7364 12 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 10. Token transfer module.

3.5. DDoS Protection Module
DDoS block module architecture is illustrated in Figure 11. The current token pay-

ment system has been developed for the purpose of actual use in Korea, so the module
aims to block overseas IPs so as to comply with Korean laws for real-name authentication
and to indiscriminate attacks from overseas. Based on the built-in database of global IP
address allocation, it extracts IP addresses allocated to Korea and allows access only if
they are included within the Korean IP address range. It also manages DDoS source IPs
separately in the database to block access and effectively defends against DDoS by han-
dling traffic from the built-in database without traffic increase on the main DB during
multiple loads.

Figure 11. DDoS block module.

3.6. Real Name Verification Module
Real-name authentication module architecture is illustrated in Figure 12. The real

name verification module interfaces with external legacy systems. When a smartphone
user enters their name, phone number, date of birth (six digits) and the first digit to de-
note the sex code in the resident registration number, the server converts it into the for-
mat requested by the related institution and sends a response code to the smartphone
number via SMS (short messaging system). The user inputs the response code and the
module verifies their real name by receiving a response from the credit information
management institution and performs real-name verification for the keystore.

Figure 12. Real-name authentication module.

Figure 11. DDoS block module.

3.6. Real Name Verification Module

Real-name authentication module architecture is illustrated in Figure 12. The real
name verification module interfaces with external legacy systems. When a smartphone user
enters their name, phone number, date of birth (six digits) and the first digit to denote the
sex code in the resident registration number, the server converts it into the format requested
by the related institution and sends a response code to the smartphone number via SMS
(short messaging system). The user inputs the response code and the module verifies their
real name by receiving a response from the credit information management institution and
performs real-name verification for the keystore.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 10. Token transfer module.

3.5. DDoS Protection Module
DDoS block module architecture is illustrated in Figure 11. The current token pay-

ment system has been developed for the purpose of actual use in Korea, so the module
aims to block overseas IPs so as to comply with Korean laws for real-name authentication
and to indiscriminate attacks from overseas. Based on the built-in database of global IP
address allocation, it extracts IP addresses allocated to Korea and allows access only if
they are included within the Korean IP address range. It also manages DDoS source IPs
separately in the database to block access and effectively defends against DDoS by han-
dling traffic from the built-in database without traffic increase on the main DB during
multiple loads.

Figure 11. DDoS block module.

3.6. Real Name Verification Module
Real-name authentication module architecture is illustrated in Figure 12. The real

name verification module interfaces with external legacy systems. When a smartphone
user enters their name, phone number, date of birth (six digits) and the first digit to de-
note the sex code in the resident registration number, the server converts it into the for-
mat requested by the related institution and sends a response code to the smartphone
number via SMS (short messaging system). The user inputs the response code and the
module verifies their real name by receiving a response from the credit information
management institution and performs real-name verification for the keystore.

Figure 12. Real-name authentication module. Figure 12. Real-name authentication module.

4. Implementation

The proposed system is composed of the commonly used server modules, CentOS and
Apache, PHP and mySQL. The overseas IP blocking database is separately configured using
SQLite. The blockchain is integrated with the Symverse mainnet through a service node
installed for users’ convenience. In particular, the user interface is programmed by using
the Flutter language framework provided by Google so that it enables various devices such
as smartphones, tablets and PCs to utilize the proposed system.

4.1. System Environment

The implementation system consists of a web service server and a blockchain work
node called gsym. The web service is installed with CentOS as the operating system,
Maria DB as the database, Apache as the web server and PHP as the scripting language
to implement the REST server. The user interface is developed in Flutter language using
Android Studio (Version 11.0.12+7) and is released as a web version uploaded to the server
for users’ convenience through web browsers. The database for blocking overseas IPs is
implemented using Sqlite3 (Version 3.31.1) to separate it from the main database so that
it does not affect the internal logic. The list of environments and libraries used in the
implementation is shown in Table 6.

Appl. Sci. 2023, 13, 7364 13 of 23

Table 6. List of environments and libraries.

Environments Specifications Environments Specifications

OS Centos 7.4.17 Database mySQL 5.7.36
sqlite3

Language PHP/HTML/Dart/Javascript Webserver Apache 2.4.52

Webserver-
plugin

Php 7.4.1
Scrypt 1.4.2 Blockchain

symverse

UI framework Flutter/Bootstrap gsym

Test tool JMeter V5.5 Browser
Chrome version

111.0.5563.66 (build)
(64bits)

4.2. Wallet Creation

To use the wallet, generate a private key for each user who has completed smartphone
authentication, save it as a keystore in the filesystem and send the key hash to the Symverse
CA server (https://mainnet-ca.symverse.com/ca/v1/citizenInfo, accessed on 15 May 2023)
to generate a SymID by sending JSON data {“id”: {number},”mobileNum”: “{smartphone
number}”, “publicKeyHash”: “{key hash}”, “userNm”: “{user name}”, “verificationType”:
“CELL_PHONE”} as a POST request and obtain back the generated SymID and store it in
the user table to map the user ID and SymID. In this case, the keystore stored in the file
system is restored in the backup table corresponding to the SymID, so that the keystore
in the file system is redundant. This is used as a backup in case of accidents such as bulk
deletion of keystores stored on the server.

4.3. Token Creation

The smart contract used in this paper is created by the smart contract by creating a
transaction using the Listing 2 Array of SCT-20 input parameters and sending it to the
Symverse blockchain. In other words, instead of writing smart contract code in Solidity
such as Ethereum, it creates an SCT-20 contract on the Symverse blockchain using the
SCT-20 contracts and transactions described in Section 2.4.2. As a result, a smart contract
ID of “0x4801e91a5068757a9484” was created, link (https://scan.symverse.org/v2/sct2x_
token/SCT20/0x4801e91a5068757a9484, accessed on 15 May 2023).

Listing 2. Array of SCT-20 input parameters.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24

Listing 2. Array of SCT-20 input parameters.

sct_data = [
"0x14", // SCT20

"0x0", // SCT20_CREATE Command
[
 "eSportsToken", // Token Name
 "EST", // Token Symbol

"0x204fce5e3e25026110000000”, // Token Amount (1 Billion)
 "0x00035b875ec2c5410002" // Owner’s SymID
]
]

The smart contract ID is a required parameter when searching for the corresponding
token or inputting a transaction according to the transaction; Sct_data is encoded with
RLP (Recursive Length Prefix) as shown in Listing 3.

Listing 3. Sct_data RLP encoding result.

0xec1480e98c6553706f727473546f6b656e834553548c204fce5e3e250261100000008a00035b875ec2c54100

If you put this as the input value of Table 5 and sign the array of Table 5 and send it
to the work node as a transaction, the block is confirmed and you can see that the token is
created as shown in Listing 4.

Listing 4. SCT-20 information.

(
 [jsonrpc] => 2.0
 [id] => 1
 [result] => Array
 (
 [creator] => 0x00035b875ec2c5410002
 [name] => eSportsToken
 [owner] => 0x00035b875ec2c5410002
 [state] => active
 [stateCode] => 0x0
 [symbol] => EST
 [total] => 0x204fce5e3e25026110000000
 [type] => sct20
)
)

In addition, another token can be created in the same way and the implementation
system is designed to store the smart contract ID in the DB as a separator so that all token
transactions can be operated.

4.4. Balance Inquiry
This is the most used feature of the wallet and it calls the balance corresponding to

the blockchain address, SymID. The data flow for the balance inquiry is shown in Figure
13, and the client to make the call is a web-app developed using Flutter: (1) the web-app
completes authentication for the user ID; (2) the web-app returns the balance for the user
ID as JSON-formatted data {“act”:”actGetBalance”, “domain”:”NooWeb”, “us-
er_id”:”doltwo”} as an asynchronous HTTP request; (3) a REST API written in PHP that
first checks for DDoS protection on the server and then looks up the SymID DB corre-
sponding to the authorized user ID; (4) request this as JSON data {“jsonrpc”:”2.0”,
“method”:”src_getContractAccount”,
“params”:[“0x0ced1024eed02b234df2”,”0x00000000000000000001”,”lastest”], “id”:1} to
the Symverse node gsym using RPC; (5) the node responds with
{“jsonrpc”:”2.0”,”id”:1,”result”:{“balance”: 10000000000000}}; and (6) sends this returned

The smart contract ID is a required parameter when searching for the corresponding token
or inputting a transaction according to the transaction; Sct_data is encoded with RLP (Recursive
Length Prefix) as shown in Listing 3.

Listing 3. Sct_data RLP encoding result.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24

Listing 2. Array of SCT-20 input parameters.

sct_data = [
"0x14", // SCT20

"0x0", // SCT20_CREATE Command
[
 "eSportsToken", // Token Name
 "EST", // Token Symbol

"0x204fce5e3e25026110000000”, // Token Amount (1 Billion)
 "0x00035b875ec2c5410002" // Owner’s SymID
]
]

The smart contract ID is a required parameter when searching for the corresponding
token or inputting a transaction according to the transaction; Sct_data is encoded with
RLP (Recursive Length Prefix) as shown in Listing 3.

Listing 3. Sct_data RLP encoding result.

0xec1480e98c6553706f727473546f6b656e834553548c204fce5e3e250261100000008a00035b875ec2c54100

If you put this as the input value of Table 5 and sign the array of Table 5 and send it
to the work node as a transaction, the block is confirmed and you can see that the token is
created as shown in Listing 4.

Listing 4. SCT-20 information.

(
 [jsonrpc] => 2.0
 [id] => 1
 [result] => Array
 (
 [creator] => 0x00035b875ec2c5410002
 [name] => eSportsToken
 [owner] => 0x00035b875ec2c5410002
 [state] => active
 [stateCode] => 0x0
 [symbol] => EST
 [total] => 0x204fce5e3e25026110000000
 [type] => sct20
)
)

In addition, another token can be created in the same way and the implementation
system is designed to store the smart contract ID in the DB as a separator so that all token
transactions can be operated.

4.4. Balance Inquiry
This is the most used feature of the wallet and it calls the balance corresponding to

the blockchain address, SymID. The data flow for the balance inquiry is shown in Figure
13, and the client to make the call is a web-app developed using Flutter: (1) the web-app
completes authentication for the user ID; (2) the web-app returns the balance for the user
ID as JSON-formatted data {“act”:”actGetBalance”, “domain”:”NooWeb”, “us-
er_id”:”doltwo”} as an asynchronous HTTP request; (3) a REST API written in PHP that
first checks for DDoS protection on the server and then looks up the SymID DB corre-
sponding to the authorized user ID; (4) request this as JSON data {“jsonrpc”:”2.0”,
“method”:”src_getContractAccount”,
“params”:[“0x0ced1024eed02b234df2”,”0x00000000000000000001”,”lastest”], “id”:1} to
the Symverse node gsym using RPC; (5) the node responds with
{“jsonrpc”:”2.0”,”id”:1,”result”:{“balance”: 10000000000000}}; and (6) sends this returned

If you put this as the input value of Table 5 and sign the array of Table 5 and send it to the
work node as a transaction, the block is confirmed and you can see that the token is created as
shown in Listing 4.

https://mainnet-ca.symverse.com/ca/v1/citizenInfo
https://scan.symverse.org/v2/sct2x_token/SCT20/0x4801e91a5068757a9484
https://scan.symverse.org/v2/sct2x_token/SCT20/0x4801e91a5068757a9484

Appl. Sci. 2023, 13, 7364 14 of 23

Listing 4. SCT-20 information.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24

Listing 2. Array of SCT-20 input parameters.

sct_data = [
"0x14", // SCT20

"0x0", // SCT20_CREATE Command
[
 "eSportsToken", // Token Name
 "EST", // Token Symbol

"0x204fce5e3e25026110000000”, // Token Amount (1 Billion)
 "0x00035b875ec2c5410002" // Owner’s SymID
]
]

The smart contract ID is a required parameter when searching for the corresponding
token or inputting a transaction according to the transaction; Sct_data is encoded with
RLP (Recursive Length Prefix) as shown in Listing 3.

Listing 3. Sct_data RLP encoding result.

0xec1480e98c6553706f727473546f6b656e834553548c204fce5e3e250261100000008a00035b875ec2c54100

If you put this as the input value of Table 5 and sign the array of Table 5 and send it
to the work node as a transaction, the block is confirmed and you can see that the token is
created as shown in Listing 4.

Listing 4. SCT-20 information.

(
 [jsonrpc] => 2.0
 [id] => 1
 [result] => Array
 (
 [creator] => 0x00035b875ec2c5410002
 [name] => eSportsToken
 [owner] => 0x00035b875ec2c5410002
 [state] => active
 [stateCode] => 0x0
 [symbol] => EST
 [total] => 0x204fce5e3e25026110000000
 [type] => sct20
)
)

In addition, another token can be created in the same way and the implementation
system is designed to store the smart contract ID in the DB as a separator so that all token
transactions can be operated.

4.4. Balance Inquiry
This is the most used feature of the wallet and it calls the balance corresponding to

the blockchain address, SymID. The data flow for the balance inquiry is shown in Figure
13, and the client to make the call is a web-app developed using Flutter: (1) the web-app
completes authentication for the user ID; (2) the web-app returns the balance for the user
ID as JSON-formatted data {“act”:”actGetBalance”, “domain”:”NooWeb”, “us-
er_id”:”doltwo”} as an asynchronous HTTP request; (3) a REST API written in PHP that
first checks for DDoS protection on the server and then looks up the SymID DB corre-
sponding to the authorized user ID; (4) request this as JSON data {“jsonrpc”:”2.0”,
“method”:”src_getContractAccount”,
“params”:[“0x0ced1024eed02b234df2”,”0x00000000000000000001”,”lastest”], “id”:1} to
the Symverse node gsym using RPC; (5) the node responds with
{“jsonrpc”:”2.0”,”id”:1,”result”:{“balance”: 10000000000000}}; and (6) sends this returned

In addition, another token can be created in the same way and the implementation system is
designed to store the smart contract ID in the DB as a separator so that all token transactions can
be operated.

4.4. Balance Inquiry
This is the most used feature of the wallet and it calls the balance corresponding to the blockchain

address, SymID. The data flow for the balance inquiry is shown in Figure 13, and the client to make
the call is a web-app developed using Flutter: (1) the web-app completes authentication for the user
ID; (2) the web-app returns the balance for the user ID as JSON-formatted data {“act”:”actGetBalance”,
“domain”:”NooWeb”, “user_id”:”doltwo”} as an asynchronous HTTP request; (3) a REST API written in
PHP that first checks for DDoS protection on the server and then looks up the SymID DB corresponding to
the authorized user ID; (4) request this as JSON data {“jsonrpc”:”2.0”, “method”:”src_getContractAccount”,
“params”:[“0x0ced1024eed02b234df2”,”0x00000000000000000001”,”lastest”], “id”:1} to the Symverse node
gsym using RPC; (5) the node responds with {“jsonrpc”:”2.0”,”id”:1,”result”:{“balance”: 10000000000000}};
and (6) sends this returned data to the webapp as JSON as {“est_id”:”0x00000000 000000000001”,”bal-
ance”: 10000000000000}} to display the SymID address and balance in the web-app.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24

data to the webapp as JSON as {“est_id”:”0x00000000000000000001”,”balance”:
10000000000000}} to display the SymID address and balance in the web-app.

Figure 13. Control flow diagram for a balance inquiry.

4.5. Token Transfer
Token transfer is a user transfer function and is shown in Figure 14 as a diagram. (1)

A sender with a user ID token authenticated through a web-app written in Flutter checks
the recipient’s SymID by looking up the phone number or name and adds the number of
tokens and (2) requests a token transfer to the REST API server with JSON type data. (3)
The server looks up the sender’s SymID, (4) checks the balance of the SymID, (5) checks if
the sender has more than the number of tokens to transfer and (6) creates a raw transac-
tion through the private key management module, signs it and requests transfer to the
token transfer module. (7) Check the gas of the SymID of the sender of the transmitted
raw transaction and if there is insufficient gas to transmit, (8) send an amount calculated
by a formula from the token transfer module to the blockchain node to automatically
charge the sender’s gas, (9) confirm the receipt for this operation and (10) send the raw
transaction data to the blockchain node, gysm. (11) Retrieve the receipt for the transaction
and (12) send the result to the web-app.

Figure 14. Control flow diagram for send token.

The token transfer module automatically recharges SymIDs that are low on gas,
eliminating transfer errors due to low gas and allowing users to transfer tokens without
considering gas.

Figure 13. Control flow diagram for a balance inquiry.

4.5. Token Transfer
Token transfer is a user transfer function and is shown in Figure 14 as a diagram. (1) A sender

with a user ID token authenticated through a web-app written in Flutter checks the recipient’s
SymID by looking up the phone number or name and adds the number of tokens and (2) requests
a token transfer to the REST API server with JSON type data. (3) The server looks up the sender’s
SymID, (4) checks the balance of the SymID, (5) checks if the sender has more than the number of
tokens to transfer and (6) creates a raw transaction through the private key management module,
signs it and requests transfer to the token transfer module. (7) Check the gas of the SymID of
the sender of the transmitted raw transaction and if there is insufficient gas to transmit, (8) send
an amount calculated by a formula from the token transfer module to the blockchain node to
automatically charge the sender’s gas, (9) confirm the receipt for this operation and (10) send the

Appl. Sci. 2023, 13, 7364 15 of 23

raw transaction data to the blockchain node, gysm. (11) Retrieve the receipt for the transaction
and (12) send the result to the web-app.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24

data to the webapp as JSON as {“est_id”:”0x00000000000000000001”,”balance”:
10000000000000}} to display the SymID address and balance in the web-app.

Figure 13. Control flow diagram for a balance inquiry.

4.5. Token Transfer
Token transfer is a user transfer function and is shown in Figure 14 as a diagram. (1)

A sender with a user ID token authenticated through a web-app written in Flutter checks
the recipient’s SymID by looking up the phone number or name and adds the number of
tokens and (2) requests a token transfer to the REST API server with JSON type data. (3)
The server looks up the sender’s SymID, (4) checks the balance of the SymID, (5) checks if
the sender has more than the number of tokens to transfer and (6) creates a raw transac-
tion through the private key management module, signs it and requests transfer to the
token transfer module. (7) Check the gas of the SymID of the sender of the transmitted
raw transaction and if there is insufficient gas to transmit, (8) send an amount calculated
by a formula from the token transfer module to the blockchain node to automatically
charge the sender’s gas, (9) confirm the receipt for this operation and (10) send the raw
transaction data to the blockchain node, gysm. (11) Retrieve the receipt for the transaction
and (12) send the result to the web-app.

Figure 14. Control flow diagram for send token.

The token transfer module automatically recharges SymIDs that are low on gas,
eliminating transfer errors due to low gas and allowing users to transfer tokens without
considering gas.

Figure 14. Control flow diagram for send token.

The token transfer module automatically recharges SymIDs that are low on gas, eliminating
transfer errors due to low gas and allowing users to transfer tokens without considering gas.

4.6. DDoS Protection
DDoS defense consists of two components: a part that checks the nationality of the IP and

blocks access if it is not an authorized nationality and a DB that maintains a blacklist of IPs for
brute force attacks on the web server and blocks access. In this case, the nationality and blacklist
for IP use sqlite3, which is a separate DB separated from the main DB, and only sqlite3 works in
case of an accidental attack to protect the main DB, mySQL. Specifically, when a web app makes
a connection, the REST API server can determine the connection IP using the PHP environment
variable $_SERVER[‘REMOTE_ADDR’]. For the corresponding nationality search, use the SQL
query in Listing 5 to check the results of the table of IP bands for each country entered in sqlite3.

Listing 5. Geolocation query with IP lookup.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 24

4.6. DDoS Protection
DDoS defense consists of two components: a part that checks the nationality of the

IP and blocks access if it is not an authorized nationality and a DB that maintains a
blacklist of IPs for brute force attacks on the web server and blocks access. In this case, the
nationality and blacklist for IP use sqlite3, which is a separate DB separated from the
main DB, and only sqlite3 works in case of an accidental attack to protect the main DB,
mySQL. Specifically, when a web app makes a connection, the REST API server can de-
termine the connection IP using the PHP environment variable
$_SERVER[‘REMOTE_ADDR’]. For the corresponding nationality search, use the SQL
query in Listing 5 to check the results of the table of IP bands for each country entered in
sqlite3.

Listing 5. Geolocation query with IP lookup.

SELECT * FROM global_ip WHERE startipL <= “. ip2long({$_SERVER['REMOTE_ADDR']}). " AND endipL >=
“. ip2long({$_SERVER['REMOTE_ADDR']})

Block international access using the country code and allow only local users. In ad-
dition, check the access IP $_SERVER[‘REMOTE_ADDR’] against the blacklist and allow
only if it is not applicable. DDoS protection imposes a load on the server by investigating
every connection and we will cover load testing for wallet creation and balance retrieval
in Chapter 5 of this paper.

4.7. Database
The database consists of tables for user information, wallet and transfer, as well as

tables for tokens, real-name authentication logs and IPs for DDoS defense. Table 7 sum-
marizes the database table list for system implementation to operate a service.

Table 7. List of database tables.

Table Name Table ID
User nr_user
Wallet est_wallet
Transfer nr_charge
Charge nr_deposit
Withdraw nr_withdraw
Statics transfer nr_settle_sale
Statics join nr_stat_join
Realname log nr_log_sms
DDoS ban ip nr_ddos_ip

4.8. User Interface of Client Side
The user interface of the client used by wallet users is organized as shown in Table 8.

Table 8. User’s menu.

Menu
Description

Class1 Class2

Client

Login Login with member ID and password

HP authentication Mobile phone real name verification
Charge Token charging function for payment

Charge list Recently charged history list

Block international access using the country code and allow only local users. In addition,
check the access IP $_SERVER[‘REMOTE_ADDR’] against the blacklist and allow only if it is not
applicable. DDoS protection imposes a load on the server by investigating every connection and
we will cover load testing for wallet creation and balance retrieval in Chapter 5 of this paper.

4.7. Database
The database consists of tables for user information, wallet and transfer, as well as tables for

tokens, real-name authentication logs and IPs for DDoS defense. Table 7 summarizes the database
table list for system implementation to operate a service.

Appl. Sci. 2023, 13, 7364 16 of 23

Table 7. List of database tables.

Table Name Table ID

User nr_user
Wallet est_wallet
Transfer nr_charge
Charge nr_deposit
Withdraw nr_withdraw
Statics transfer nr_settle_sale
Statics join nr_stat_join
Realname log nr_log_sms
DDoS ban ip nr_ddos_ip

4.8. User Interface of Client Side
The user interface of the client used by wallet users is organized as shown in Table 8.

Table 8. User’s menu.

Menu
Description

Class1 Class2

Client

Login Login with member ID and password

HP authentication Mobile phone real name verification

Charge Token charging function for payment

Charge list Recently charged history list

Transfer Transfer listings for sending to sellers

Transfer list List of sent history records

The interface for the wallet user who receives payment is composed of menus that allow
them to view transaction history (as in Table 9) and exchange the received tokens into fiat currency.

Table 9. Seller’s menu.

Menu
Description

Class1 Class2

Seller

Transfer list Deposits and withdrawals of tokens and error history

Convert list Details of application for conversion and details of results

Convert application Application for changing safely traded tokens to fiat

The platform operator’s interface is configured with menus such as statistics management,
member management and deposit/withdrawal management, as shown in Table 10.

Table 10. Platform operator’s menu.

Menu
Description

Class1 Class2

Platform

Statistics Member registration status by time/day/month

Member management Member list/real name authentication management

Settlement management Settlement information/daily settlement/settlement statistics

Deposit and withdrawal management Conversion list/charging list/real-time notification

Mobile gift certificate management Mobile gift certificate sales list/purchase list

Manager management Admin list and administrator privilege setting

Appl. Sci. 2023, 13, 7364 17 of 23

To convert fiat currency to tokens in order to transfer tokens, users make a request for con-
version through an interface as depicted in Figure 15a, which shows the actual usage example.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 24

Transfer Transfer listings for sending to sellers
 Transfer list List of sent history records

The interface for the wallet user who receives payment is composed of menus that
allow them to view transaction history (as in Table 9) and exchange the received tokens
into fiat currency.

Table 9. Seller’s menu.

Menu
Description

Class1 Class2

Seller

Transfer list Deposits and withdrawals of tokens and error history

Convert list
Details of application for conversion and details of
results

Convert application Application for changing safely traded tokens to fiat

The platform operator’s interface is configured with menus such as statistics man-
agement, member management and deposit/withdrawal management, as shown in Table
10.

Table 10. Platform operator’s menu

Menu
Description

Class1 Class2

Platform

Statistics Member registration status by time/day/month

Member management Member list/real name authentication
management

Settlement management Settlement information/daily
settlement/settlement statistics

Deposit and withdrawal
management Conversion list/charging list/real-time notification

Mobile gift certificate
management

Mobile gift certificate sales list/purchase list

Manager management Admin list and administrator privilege setting

To convert fiat currency to tokens in order to transfer tokens, users make a request
for conversion through an interface as depicted in Figure 15a, which shows the actual
usage example.

Figure 15. UI of P2P payment system (a) interface of convert token. (b) History of convert status.
(c) Interface of transfer token. (d) History of transfer token.

The history of the conversion transaction can be confirmed in the deposit history as shown
in Figure 15b and it can be checked whether the conversion has been completed.

After depositing tokens, users can transfer tokens to a specified seller after confirming the
transfer address, using the Figure 15c interfaces.

All the transaction history (deposit/convert/payment) is displayed as a list as shown in
Figure 15d to represent the result of the transaction.

4.9. External Interface
External interfaces are represented by three interfaces as shown in Table 11 and each interface

communicates using the JSON RPC (Version 2.0) method.

Table 11. External interfaces.

I/FID Sender Receiver Interface Description Data Format

IF_001 KSDT server gsym Symverse work node JSON
IF_002 Credit rating agency Ok-names Ok-names real name inquiry JSON
IF_003 Symverse Symverse CA Issue SymID JSON

5. Experiment and Results
To evaluate the proposed system, we measured it using JMeter (Version 5.5), which uses the

BMT tool to test the HTTP protocol.

5.1. System Environment
Experiment environment architecture is illustrated in Figure 16 and Test environment is

shown in Table 12. For performance evaluation, the system environment consists of a physi-
cal node with a main web server environment with one CPU (AMD Ryzen 5 PRO 3400GE) and
8GB DDR4 main memory and an SSD of 240GB, a physical node as a Symverse work node with
server environment consisting of one CPU (Intel(R) Xeon(R) CPU E3-1230 v6 @ 3.50GHz) and 8GB
DDR4 main memory and an SSD of 240GB and a client system with one CPU (Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz) and DDR4 16GB memory so that it can perform the evaluation of
various experiments.

Appl. Sci. 2023, 13, 7364 18 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24

Figure 15. UI of P2P payment system (a) interface of convert token. (b) History of convert status. (c)
Interface of transfer token. (d) History of transfer token.

The history of the conversion transaction can be confirmed in the deposit history as
shown in Figure 15b and it can be checked whether the conversion has been completed.

After depositing tokens, users can transfer tokens to a specified seller after con-
firming the transfer address, using the Figure 15c interfaces.

All the transaction history (deposit/convert/payment) is displayed as a list as shown
in Figure 15d to represent the result of the transaction.

4.9. External Interface
External interfaces are represented by three interfaces as shown in Table 11 and each

interface communicates using the JSON RPC (Version 2.0) method.

Table 11. External interfaces.

I/FID Sender Receiver Interface Description Data Format
IF _001 KSDT server gsym Symverse work node JSON

IF _002
Credit rating

agency Ok-names
Ok-names real name

inquiry JSON

IF_003 Symverse Symverse CA Issue SymID JSON

5. Experiment and Results
To evaluate the proposed system, we measured it using JMeter (Version 5.5), which

uses the BMT tool to test the HTTP protocol.

5.1. System Environment
Experiment environment architecture is illustrated in Figure 16 and Test environ-

ment is shown in Table 12. For performance evaluation, the system environment consists
of a physical node with a main web server environment with one CPU (AMD Ryzen 5
PRO 3400GE) and 8GB DDR4 main memory and an SSD of 240GB, a physical node as a
Symverse work node with server environment consisting of one CPU (Intel(R) Xeon(R)
CPU E3-1230 v6 @ 3.50GHz) and 8GB DDR4 main memory and an SSD of 240GB and a
client system with one CPU (Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz) and DDR4
16GB memory so that it can perform the evaluation of various experiments.

Figure 16. Experiment environment.

Figure 16. Experiment environment.

Table 12. Test environment.

No Role OS CPU Memory Disk Spec

1
Web

Server Ubuntu 20.04.3 LTS AMD Ryzen 5 PRO 3400GE 8G
SSD

256GB

-mySQL 5.7.36

-Apache 2.4.52

-PHP 7.4.1

-sqlite3

2 Node
Server

CentOS Linux release
7.4.1708

Intel(R) Xeon(R) CPU
E3-1230 v6 @ 3.50GHz 8G SSD

512GB -gSym

3 Client Windows 10
Pro(64bit)

Intel core i7-8750H
2.20Ghz

16G SSD
512GB

-chrome V111.0.5563.65

-jMeter v5.5

5.2. Performance Testing
The token payment system is a system that provides services through JSON format using

RPC, not web page calls, as it is composed of a web application server. We implement performance
testing on wallet creation response and balance inquiry, where both systems call and the results
are representing a simple JSON format.

5.2.1. Wallet Creation Response Time
Wallet creation requests are sent to the server and the results are stored in the database. First,

the results up to keystore creation are tested. Then, to measure the pure wallet creation time,
the IP blocking for DDoS prevention is turned off. For the user10 scenario, assuming a loop of
100 requests with 10 threads, the ramp-up is set to 0, allowing only up to 10 requests per second.
For the user20 scenario, assuming a loop of 100 requests with 20 threads, the ramp-up is set to
0, allowing only up to 20 requests per second. For the user50 scenario, assuming a loop of 100
requests with 50 threads, the ramp-up is set to 0, allowing only up to 50 requests per second. The
summary of the test results for the three scenarios is shown in Table 13.

Table 13. TC1 Response time of keystore creation (without DDoS protection).

Requests Requests Response Times (ms) Throughput Network (KB/s)

Label # of
Samples KO Error% Average Min Max Median 90th

pct
95th
pct

99th
pct

Transaction
(Per sec) Receive Send

Total 8000 2 0.03% 1222.38 11 2037 1568.00 1732.00 1767.00 1829.00 27.98 10.37 6.07
User10 1000 0 0.00% 322.70 230 552 314.50 404.00 404.00 450.96 30.66 11.35 6.59
User20 2000 0 0.00% 646.74 210 912 650.50 800.95 800.95 861.00 30.52 11.30 6.56
User50 5000 2 0.04% 1632.57 11 2037 1646.00 1784.00 1784.00 1843.00 30.47 11.30 6.54

The average response time corresponding to the variation in the number of threads is de-
picted in Figure 17a.

Appl. Sci. 2023, 13, 7364 19 of 23
Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 24

Figure 17. TC1 active number of threads vs. response time (a) without DDoS protection (b) with
DDoS protection. (Puple: User10, Red: User20, Yellow: User50)

Under the same conditions, the results of processing with DDoS blocking turned off
are shown in Table 14 and the graphical representation of the results is shown in Figure
17b. The DDoS blocking logic showed an impact of approximately two transactions per
second, with 1.61 for user10, 1.9 for User20 and 2.0 for user50 in terms of transactions per
second. However, for user50, there was a significant variation in response time.

Table 14. TC2 Response time keystore creation (with DDoS protection).

Requests Requests Response Times (ms) Throughput Network (KB/s)

Label
of Sam-

ples
KO Error% Average Min Max Median 90th pct 95th pct 99th pct

Transaction
(Per sec)

Receive Send

Total 8000 2 0.10% 1148.02 6 1891 1483.00 1612.00 1641.00 1700.00 17.00 6.32 3.65
User10 1000 0 0.00% 304.58 209 488 296.00 360.90 390.00 431.98 32.27 11.94 6.93
User20 2000 0 0.00% 608.69 191 825 617.00 711.00 737.00 786.99 32.42 12.00 6.97
User50 5000 8 0.16% 1532.44 6 1891 1544.00 1633.00 1661.00 1712.99 32.47 12.11 6.97

In Figure 17a,b, the difference in results is due to the same condition, but when
DDoS blocking is turned off and when DDoS blocking is not turned off, the result of
transactions per second is different, such as 1.61 for user10, 1.9 for user20 and 2.0 for us-
er50, as shown above. However, the difference between the two conditions is not signif-
icant, which shows that the performance of the proposed technique is excellent.

Figure 17. TC1 active number of threads vs. response time (a) without DDoS protection (b) with
DDoS protection. (Puple: User10, Red: User20, Yellow: User50).

Under the same conditions, the results of processing with DDoS blocking turned off are
shown in Table 14 and the graphical representation of the results is shown in Figure 17b. The
DDoS blocking logic showed an impact of approximately two transactions per second, with 1.61
for user10, 1.9 for User20 and 2.0 for user50 in terms of transactions per second. However, for
user50, there was a significant variation in response time.

Table 14. TC2 Response time keystore creation (with DDoS protection).

Requests Requests Response Times (ms) Throughput Network (KB/s)

Label # of
Samples KO Error% Average Min Max Median 90th

pct
95th
pct

99th
pct

Transaction
(Per sec) Receive Send

Total 8000 2 0.10% 1148.02 6 1891 1483.00 1612.00 1641.00 1700.00 17.00 6.32 3.65
User10 1000 0 0.00% 304.58 209 488 296.00 360.90 390.00 431.98 32.27 11.94 6.93
User20 2000 0 0.00% 608.69 191 825 617.00 711.00 737.00 786.99 32.42 12.00 6.97
User50 5000 8 0.16% 1532.44 6 1891 1544.00 1633.00 1661.00 1712.99 32.47 12.11 6.97

Appl. Sci. 2023, 13, 7364 20 of 23

In Figure 17a,b, the difference in results is due to the same condition, but when DDoS block-
ing is turned off and when DDoS blocking is not turned off, the result of transactions per second
is different, such as 1.61 for user10, 1.9 for user20 and 2.0 for user50, as shown above. However,
the difference between the two conditions is not significant, which shows that the performance of
the proposed technique is excellent.

5.2.2. Balance Inquiry Response Time
Balance response is the process of querying SymID from the blockchain node and delivering

the balance to the client in JSON format. To measure the balance response time, DDoS defense
IP blocking was turned off and a scenario was assumed where user50 generates 50 threads with
100 loops of requests, setting the ramp-up to 0 so that only up to 50 requests can be made per
second. User100 assumes a scenario where 100 threads with 100 loops of requests are generated,
setting the ramp-up to 0 so that only up to 100 requests can be made per second. User200 assumes
a scenario where 200 threads with 100 loops of requests are generated, setting the ramp-up to
0 so that only up to 200 requests can be made per second. User300 assumes a scenario where
300 threads with 100 loops of requests are generated, setting the ramp-up to 0 so that only up to
300 requests can be made per second. The summary report of the test is shown in Table 15. The
transactions per second (TPS) were 560.73 without errors in 50 threads, 565.55 TPS with 0.01%
errors in 100 threads, 482.35 TPS with 0.09% errors in 200 threads and 475.0 TPS with 0.7% errors
in 300 threads, indicating an increase in errors as the number of threads increases.

Table 15. TC3 Response time of balance inquiry (without DDoS protection).

Requests Requests Response Times (ms) Throughput Network (KB/sec)

Label # of
Samples KO Error% Average Min Max Median 90th

pct
95th
pct

99th
pct

Transaction
(Per sec) Receive Send

Total 65,000 230 0.35% 425.91 0 1980 571.00 920.00 1022.00 1229.00 383.81 168.20 82.17
User50 5000 0 0.00% 83.01 31 307 78.00 121.00 140.00 185.00 560.73 242.54 120.47
User100 10,000 1 0.01% 156.17 15 638 136.00 276.00 329.00 426.00 565.55 244.71 121.49
User200 20,000 18 0.09% 387.40 4 1496 368.00 651.00 737.00 896.99 482.35 209.33 103.54
User300 30,000 211 0.70% 598.63 0 1980 571.00 920.00 1022.00 1229.00 475.01 210.84 101.34

The results of processing with DDoS blocking enabled under the same conditions are shown
in Table 16 and the DDoS defense logic is impacted by about 220 TPS in transactions per second:
313.39 for user50, 313.24 for user100, 232.1 for user200 and 223.06 for user300.

Table 16. TC4 response time of balance inquiry (with DDoS protection).

Requests Requests Response Times (ms) Throughput Network (KB/sec)

Label # of
Samples KO Error% Average Min Max Median 90th

pct
95th
pct

99th
pct

Transaction
(Per sec) Receive Send

Total 65,000 210 0.32% 830.81 0 3067 1131.00 1610.00 1764.00 2060.99 223.60 97.89 47.88
User50 5000 0 0.00% 191.60 48 524 186.00 276.00 307.00 370.99 247.34 106.98 53.14
User100 10,000 1 0.01% 372.60 8 1660 356.00 571.00 652.00 822.99 252.31 109.17 54.20
User200 20,000 32 0.16% 752.27 3 2151 738.00 1112.90 1228.95 1468.00 250.26 108.91 53.68
User300 30,000 177 0.59% 1142.44 0 3067 1131.00 1610.00 1764.00 2060.99 251.95 111.39 53.81

In Figure 18a,b, the results are different when DDoS blocking is turned off and when DDoS
blocking is not turned off, even though the conditions are the same. However, the difference
between the two conditions is not significant, which shows that the performance of the proposed
technique is excellent.

Appl. Sci. 2023, 13, 7364 21 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 24

Figure 18. TC3 Active number of threads vs. response time: (a) without DDoS protection (b) with
DDoS protection.

6. Conclusions
This paper has proposed a new server-based real-time P2P token payment block-

chain system designed to address the problems of non-face-to-face transactions in the
financial sector, especially in the situation where sophisticated voice phishing is spread-
ing and reliance on open banking systems is increasing. This solution overcomes the
limitations of private key management difficulties and gas fee management while uti-
lizing the advantages of blockchain technology.

The server-based key management module effectively minimizes the risk of loss by
securely storing private keys in keystore files and databases. The server-based token
management module simplifies token generation and management, ensuring smooth
token transactions through automatic gas charging. The transaction verification module,
which utilizes transaction IDs without exposing personal information, guarantees trans-
action integrity and non-repudiation. In addition, advanced security measures such as
external access IP blocking and DDoS protection are introduced to keep user data safe.

It also aims to provide convenient, secure and accessible online payment solutions to
the general public by implementing identity verification using smartphones and plat-
form-agnostic web applications. This comprehensive approach has the potential to in-

Figure 18. TC3 Active number of threads vs. response time: (a) without DDoS protection (b) with
DDoS protection.

6. Conclusions
This paper has proposed a new server-based real-time P2P token payment blockchain system

designed to address the problems of non-face-to-face transactions in the financial sector, especially
in the situation where sophisticated voice phishing is spreading and reliance on open banking sys-
tems is increasing. This solution overcomes the limitations of private key management difficulties
and gas fee management while utilizing the advantages of blockchain technology.

The server-based key management module effectively minimizes the risk of loss by securely
storing private keys in keystore files and databases. The server-based token management module
simplifies token generation and management, ensuring smooth token transactions through auto-
matic gas charging. The transaction verification module, which utilizes transaction IDs without
exposing personal information, guarantees transaction integrity and non-repudiation. In addi-
tion, advanced security measures such as external access IP blocking and DDoS protection are
introduced to keep user data safe.

It also aims to provide convenient, secure and accessible online payment solutions to the
general public by implementing identity verification using smartphones and platform-agnostic
web applications. This comprehensive approach has the potential to innovate non-face-to-face
transactions in the financial sector by providing user-friendly and secure alternatives to traditional
methods. As the digital environment continues to evolve, the non-contact P2P real-time tokenized
payment system can become an important tool for protecting users from financial fraud and cre-
ating a more inclusive and flexible financial ecosystem.

Through this research, it was demonstrated that blockchain token payments can be utilized
as an anti-voice phishing technology by blocking the possibility of exposure to crime through

Appl. Sci. 2023, 13, 7364 22 of 23

transparent transactions where all details can be made public and both the payer and the payee
can be verified. Third-party authentication for non-repudiation is also possible. Furthermore, it
is expected to create business opportunities for innovative finance, such as IoT automatic regular
payments, small loan services and 24-h uninterrupted payment services. The feasibility and effi-
ciency of the proposed system were confirmed through experimental results and it is expected to
have a significant impact on the financial industry.

Author Contributions: Conceptualization, C.-S.J.; Methodology, C.-S.J.; Software, H.-J.K. and S.-S.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request form the
corresponding author. The data are not publicly available due to research contract.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jain, A.K.; Gupta, B.B. A survey of phishing attack techniques, defence mechanisms and open research challenges. Enterp. Inf.

Syst. 2022, 16, 527–565. [CrossRef]
2. Jeong, Y.H.; Ha, H.J., 2nd. Messenger Phishing Crime: Trends and Responses. Crim. Investig. Stud. 2022, 8, 31–54. [CrossRef]
3. Entriken, W.; Shirley, D.; Evans, J.; Sachs, N. Eip-721: Erc-721 non-fungible token standard. Ethereum Improv. Propos. 2018, 721,

109–113.
4. Tama, B.A.; Kweka, B.J.; Park, Y.; Rhee, K.-H. A Critical Review of Blockchain and Its Current Applications. In Proceedings of the

2017 International Conference on Electrical Engineering and Computer Science (ICECOS), Palembang, Indonesia, 22–23 August
2017; pp. 109–113.

5. Gad, A.G.; Mosa, D.T.; Abualigah, L.; Abohany, A.A. Emerging Trends in Blockchain Technology and Applications: A Review
and Outlook. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6719–6742. [CrossRef]

6. Shah, K.; Patel, N.; Thakkar, J.; Patel, C. Exploring applications of blockchain technology for Industry 4.0. Mater. Today Proc. 2022,
62, 7238–7242. [CrossRef]

7. Ahmed, M.R.; Meenakshi, K.; Obaidat, M.S.; Amin, R.; Vijayakumar, P. Blockchain Based Architecture and Solution for Secure
Digital Payment System. In Proceedings of the ICC 2021—IEEE International Conference on Communications Communications,
Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.

8. Vogelsteller, F.; Buterin, V. EIP-20: ERC-20 Token Standard. 2015. Available online: https://eips.ethereum.org/EIPS/eip-20
(accessed on 14 March 2022).

9. Friedhelm, V.; Lüders, B.K. Measuring ethereum-based erc20 token networks. In Financial Cryptography and Data Security,
Proceedings of the 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, 18–22 February 2019; Revised Selected
Papers 23; Springer International Publishing: Berlin/Heidelberg, Germany, 2019.

10. Moon, H.; Park, S. A De Facto Standard for ERC-20 API Functional Specifications and Its Conformance Review Method for
Ethereum Smart Contracts, Korea Information Processing Society. Softw. Data Eng. 2022, 11-10, 399–408.

11. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Berlin Version beacfbd. 24 October 2022. Available
online: https://gavwood.com/paper.pdf (accessed on 14 March 2023).

12. Symverse. SymVerse Whitepaper. 2022. Available online: https://symverse.com/en/learn/whitepaper/ (accessed on 14
March 2023).

13. Lee, W. Using the MetaMask Crypto-Wallet. Beginning Ethereum Smart Contracts Programming: With Examples in Python, Solidity, and
JavaScript; Apress: Berkeley, CA, USA, 2023; pp. 111–144.

14. Bauer, D.P. ERC-721 Nonfungible Tokens. Getting Started with Ethereum: A Step-by-Step Guide to Becoming a Blockchain Developer;
Apress: Berkeley, CA, USA, 2022; pp. 55–74.

15. Wang, L.; Ding, G.; Zhao, Y.; Wu, D.; He, C. Optimization of LevelDB by separating key and value. Parallel and Distributed
Computing, Applications and Technologies. In Proceedings of the 2017 18th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 18–20 December 2017; pp. 421–428.

16. Son, J.; Park, J. Forensic analysis of MetaMask cryptocurrency wallet artifacts. J. Digit. Forensics 2022, 16, 151–165.
17. Suratkar, S.; Shirole, M.; Bhirud, S. Cryptocurrency wallet: A review. In Proceedings of the 2020 4th International Conference on

Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 22–23 April 2020; pp. 1–7.
18. Willian, D.; Jekov, B.; Hristov, P. Analysis of the cybersecurity weaknesses of DLT ecosystem. Software Engineering and

Algorithms. In Proceedings of the 10th Computer Science Online Conference, Online, 21 April–2 May 2021; Springer International
Publishing: Berlin/Heidelberg, Germany, 2021; Volume 1.

https://doi.org/10.1080/17517575.2021.1896786
https://doi.org/10.46225/CIS.2022.06.8.1.31
https://doi.org/10.1016/j.jksuci.2022.03.007
https://doi.org/10.1016/j.matpr.2022.03.681
https://eips.ethereum.org/EIPS/eip-20
https://gavwood.com/paper.pdf
https://symverse.com/en/learn/whitepaper/

Appl. Sci. 2023, 13, 7364 23 of 23

19. Kaur, P.; Dhir, A.; Bodhi, R.; Singh, T.; Almotairi, M. Why do people use and recommend m-wallets? J. Retail. Consum. Serv. 2020,
56, 102091. [CrossRef]

20. Taylor, S.; Kim, S.H.-Y.; Ariffin, K.A.Z.; Abdullah, S.N.H.S. A comprehensive forensic preservation methodology for crypto
wallets. Forensic Sci. Int. Digit. Investig. 2022, 42–43, 301477. [CrossRef]

21. Brian, M. Evaluation of Security in Hardware and Software Cryptocurrency Wallets; School of Computing Edinburgh, Napier University
Edinburgh: Edinburgh, UK, 2019.

22. Voskobojnikov, A.; Wiese, O.; Koushki, M.M.; Roth, V. The U in crypto stands for usable: An empirical study of user experience
with mobile cryptocurrency wallets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
Yokohama Japan, 8–13 May 2021.

23. Pansara, P.; Patel, R.; Shah, K.; Jhaveri, R.; Parmar, V. Chat Application Security: Implementing Blockchain-based End-to-End
Encryption. In Proceedings of the 2023 10th International Conference on Computing for Sustainable Global Development
(INDIACom), New Delhi, India, 15–17 March 2023.

24. Raikwar, M.; Gligoroski, D. DoS Attacks on Blockchain Ecosystem. In European Conference on Parallel Processing; Springer
International Publishing: Cham, Switzerland, 2022. [CrossRef]

25. Purathani, P.; Wei, X.Y.; Lei, P.; Robin, D. Attainable Hacks on Keystore Files in Ethereum Wallets—A Systematic Analysis. In
Future Network Systems and Security, Proceedings of the 5th International Conference, FNSS 2019, Melbourne, VIC, Australia,
27–29 November 2019; Springer: Berlin/Heidelberg, Germany, 2019.

26. Pascal, U. Innovative Wallet Using Trusted On-Line Keystore, Blockchain Research & Applications for Innovative Networks and
Services (BRAINS). In Proceedings of the 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS), Paris, France, 12–14 September 2021.

27. Niko, L.; Kimmo, H.; Outi-Marja, L.; Anni, K.; Jarno, S. CryptoVault—A Secure Hardware Wallet for Decentralized Key
Management. In Proceedings of the 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona,
Spain, 1–4 August 2021.

28. Phuc, T.S.D.; Lee, C. Password Hashing Algorithms—From Past to Future. J. Platf. Technol. 2015, 3, 63–75.
29. Andreas, M.; Antonopoulos, G.W. Mastering Ethereum: Building Smart Contracts and DApps; O’Reilly Media: Sebastopol, CA,

USA, 2018.
30. Coinmarketcap. Available online: https://coinmarketcap.com/currencies/symverse/ (accessed on 14 March 2023).
31. Symverse SCT Guide. Available online: https://github.com/symverse-lab/Document/wiki/SCT-Guide (accessed on 14

March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jretconser.2020.102091
https://doi.org/10.1016/j.fsidi.2022.301477
https://doi.org/10.1007/978-3-031-06156-1_19
https://coinmarketcap.com/currencies/symverse/
https://github.com/symverse-lab/Document/wiki/SCT-Guide

	Introduction
	Related Works
	ERC-20
	MetaMask
	Limitations of Existing Solutions
	Background Technology
	Ethereum Keystore
	Symverse

	Token Payment Blockchain System
	Overall Architecture
	Key Management Module
	Token Management Module
	Token Transfer Module
	DDoS Protection Module
	Real Name Verification Module

	Implementation
	System Environment
	Wallet Creation
	Token Creation
	Balance Inquiry
	Token Transfer
	DDoS Protection
	Database
	User Interface of Client Side
	External Interface

	Experiment and Results
	System Environment
	Performance Testing
	Wallet Creation Response Time
	Balance Inquiry Response Time

	Conclusions
	References

