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Abstract: Urban roads face significant challenges from the unpredictable and destructive character-
istics of natural or man-made disasters, emphasizing the importance of modeling and evaluating
their resilience for emergency management. Resilience is the ability to recover from disruptions
and is influenced by factors such as human behavior, road conditions, and the environment. How-
ever, current approaches to measuring resilience primarily focus on the functional attributes of
road facilities, neglecting the vital feedback effects that occur during disasters. This study aims to
model and evaluate road resilience under dynamic and uncertain emergency event scenarios. A new
definition of road operational resilience is proposed based on the pressure-state-response theory,
and the interaction mechanism between multidimensional factors and the stage characteristics of
resilience is analyzed. A method for measuring road operational resilience using Dynamic Bayesian
Networks (DBN) is proposed, and a hierarchical DBN structure is constructed based on domain
knowledge to describe the influence relationship between resilience elements. The Best Worst method
(BWM) and Dempster–Shafer evidence theory are used to determine the resilience status of network
nodes in DBN parameter learning. A road operational resilience cube is constructed to visually
integrate multidimensional and dynamic road resilience measurement results obtained from DBNs.
The method proposed in this paper is applied to measure the operational resilience of roads during
emergencies on the Shanghai expressway, achieving a 92.19% accuracy rate in predicting resilient
nodes. Sensitivity analysis identifies scattered objects, casualties, and the availability of rescue re-
sources as key factors affecting the rapidity of response disposal in road operations. These findings
help managers better understand road resilience during emergencies and make informed decisions.

Keywords: dynamic bayesian networks; pressure-state-response theory; resilience; urban road; urban
transport infrastructure

1. Introduction

Urban roads are a vital component of urban transportation systems, playing a pivotal
role in the operation of a city’s economy and society. However, in highly efficient urban road
networks, unexpected disturbances caused by emergency events have the potential to cause
severe and unpredictable impacts [1]. Hurricane Sandy in 2012 caused up to USD 7.5 billion
in damages to the transportation system in New York City alone [2]. In 2021, there were
273,098 traffic accidents in China, resulting in 62,218 deaths, 281,447 injuries, and a loss of
CNY 1,450,329,000 [3]. Therefore, the resilience of urban roads has become an increasingly
important focus of global urban management [4]. The theory of resilience has captured the
attention of both academic and industrial circles due to its emphasis on disaster prevention,
loss reduction, and quick post-disaster recovery. This study aims to model and evaluate the
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resilience of roads in dynamic and uncertain emergency scenarios, providing a scientific
basis and decision support for the emergency management of urban roads.

Murray-Tuite introduced the concept of resilience into transportation networks for
the first time in 2006 [5], defining it as the comprehensive characteristics of remaining
performance, recovery speed, and required external assistance of transportation systems
when facing abnormal conditions. Subsequently, many scholars have conducted studies
on the resilience of road systems. Zoubir et al. defined infrastructure resilience as the
ability of physical systems to resist risks, minimize functional losses, and reduce recovery
time and costs [6]. Zimmerman et al. described the resilience of land transportation infras-
tructure under extreme weather conditions, including the capacity of critically vulnerable
points of land transportation infrastructure to withstand disturbances and recover from
damage [7]. The definition of road resilience focuses on the functional integrity of the road
facility structure itself. However, it ignores the positive and negative feedback effects of
pressure disturbance and emergency response in road systems responding to emergency
events. Road traffic is a complex and dynamic system composed of people, vehicles, and
the environment. Road resilience changes dynamically with the evolution of operational
situations. When considering road system resilience, it is necessary to comprehensively
consider the multidimensional impact of pressure disturbance, state resistance, and re-
sponse recovery faced by the road system from a systemic perspective. It is essential to
fully understand the complex dynamic coupling effect among multiple factors and consider
the multidimensional characteristics of disaster evolution behavior under the action of
complex elements. Paying attention to the chain process and its mutation characteristics of
resilience and disaster evolution is also essential.

Quantifying resilience is an essential theoretical basis for road resilience evaluation.
Existing quantitative methods for resilience are divided into deterministic methods [8–10]
and probabilistic methods [11–14]. However, deterministic methods require precise and
complete data support [15]. Many factors affect road resilience in different emergency event
scenarios, making obtaining real-time and complete data related to resilience challenging.
Moreover, there are differences in data granularity and quality among different data
sources. Therefore, Kammouh used Bayesian network methodology to solve the uncertainty
problem in resilience quantification [16]. Tang et al. proposed a layered Bayesian network
model (BNM) to evaluate the resilience of factors at various stages of urban transportation
system design, construction, operation, and management [17]. Chen et al. constructed
a static urban transportation system Bayesian network based on absorption, recovery,
and adaptation capacity. They used penetration theory to determine the dynamic elastic
evaluation framework for minimum performance requirements for road networks [18]. Zhu
et al. considered 4I (municipal infrastructure, human individuality, vehicle instrumentation,
and network information) factors and used BN to measure the physical resilience of road
system networks [19]. In previous research, BN-based traffic infrastructure resilience
ignored the dynamic changes in resilience with the development of emergency events. The
network structure fails to depict the time correlation between resilience elements fully.

A Dynamic Bayesian Network (DBN) consists of multiple time-slice BNs that can
describe changes in resilience over time [20,21]. The DBN network structure often takes
the stage state or functional elements of resilience as dynamic nodes. The relationship
between nodes is constructed based on the evolutionary law of resilience in the field. Qi
Tong et al. considered the possibility of industrial facility systems maintaining or restoring
their normal functions during and after interruptions. They constructed a Markov chain
model for system absorption, adaptation, recovery, and learning state transitions, which
was then converted into DBN [22]. Mrinal Kanti Sen et al. used robustness, vulnerability,
resourcefulness, and agility as four key resilience elements to construct a DBN for housing
infrastructure against flood disasters [23]. Zhang et al. used the functional resonance
analysis method (FRAM) to establish a network structure model of accident evolution. They
constructed DBN to depict the interaction between accidents and emergency measures [24].
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DBN parameter learning (including unconditional and conditional probability) is
the key to resilience quantification based on DBN. Conditional probability refers to the
probability that a specific state of a child node occurs under the known state of a parent
node. In resilience quantification, this state usually refers to whether resilience is good
or not. Conditional probability is closely related to the dependency relationship between
nodes and the probability distribution of node resilience status. However, it is not easy to
directly obtain data for judging node resilience status, so making judgments on network
node resilience status is a prerequisite and key for DBN parameter learning. The resilience
status of nodes can be determined by combining expert knowledge with actual data [25,26].
Mottahedi evaluated resilience status based on expert judgment and triangular fuzzy func-
tion (TFN) [27]. However, TFN cannot conduct probability transmission, which indicates
the failure to transfer the information of a fixed node to other nodes in the task of resilience
deduction. Chen used Boolean expressions to calculate the probability distribution of node
resilience status [18]. Hossain simulated the impact of parent nodes on child node resilience
status using the NoisyOR function [28]. Although the existing research has explored the
methods of evaluating the alternation of resilience status, further study is required to fully
consider the complex dependency influenced by multiple factors between nodes to judge
node resilience status accurately. In addition, when multiple nodes contain information
that conflicts with each other for judging resilience status, conflicting information will also
be challenging to handle. For processing multi-source information, the Dempster–Shafer
evidence theory provides a method of uncertain reasoning by calculating judgments’ cred-
ibility by merging various kinds of evidence quantities [29]. Road resilience is affected
by many factors, such as people, vehicles, roads, and the environment. In Bayesian net-
works, judging node resilience status can be regarded as a multi-criteria decision-making
problem. The influence weight of multiple nodes can be determined by using the AHP
hierarchical analysis method [30], the TOPSIS method [31], the VIKOR method [32], or
the BWM method for the multi-criteria compromise solution ranking method. Among
them, the BWM method is suitable for solving the problem of determining node influence
weight due to its agility and reliability in the decision-making process [33]. Therefore, in
the Dynamic Bayesian Network-based resilience quantification method, network structure
learning should consider multiple factors and depict how resilient elements interact in the
road operational process. In contrast, parameter learning should consider multiple factors’
complex coupling effects and apply methods that fit uncertain data in road operational
scenarios to judge network node states.

Road resilience is the result of the comprehensive effect of multidimensional elements.
In order to intuitively visualize resilience and present multidimensional resilience evolution
characteristics, Bruneau proposed a resilience curve model based on system performance
and time [34]. Hosseini et al. extracted equivalent functional curves to evaluate the
impact of resource quantity on urban road network elasticity [35]. However, resilience
curves make it challenging to integrate multidimensional resilience information clearly
in the same plane space. Amirpurya proposed a comprehensive evaluation model for
the seismic resistance of urban road networks that integrates indicator information with
different weights in cubes [36]. However, the degree of dimensional resilience in different
stages of road resilience evolution differs. Existing resilience quantification visualization
models cannot present weighted information on multidimensional resilience at different
stages. They need to realize the integration and visualization of multidimensional resilience
evaluation information.

To comprehensively and dynamically quantify road resilience, this paper proposes a
road resilience modeling and evaluation method. Firstly, a method is presented for defining
and analyzing the elements of road resilience in emergency scenarios, laying the foundation
for a quantitative analysis of resilience. Second, a resilience evaluation method based on
Dynamic Bayesian Networks is introduced. This method establishes a Dynamic Bayesian
Network structure that captures all-dimensional influences and phase characteristics. It
also considers the mutual influence between elements under emergency scenarios, designs



Appl. Sci. 2023, 13, 7481 4 of 33

a DBN node resilience discrimination method, and determines network parameters based
on it. Finally, a multidimensional resilience quantification and integrated visualization
method is proposed to present a complete picture of the dynamic quantitative results
of resilience.

The rest of this paper is organized as follows. Section 2 proposes the definition of road
operational resilience and conducts a resilience element analysis based on this definition.
Section 3 presents a road operational resilience evolution method based on DBN, which
establishes a DBN network structure for resilience under road emergency scenarios and a
Bayesian network node state discrimination method. Section 4 proposes a multidimensional
road operational resilience quantification and integrated visualization method. Section 5
analyzes and discusses the experimental results of this method’s application.

2. Road Operational Resilience
2.1. Definition of Road Operational Resilience

Road resilience refers to the ability of a road system to provide functional services
when facing emergency events and disturbances sustainably. The pressure generated by
emergency events and disturbances is the reason for the decline in the functional service
capacity of the road system. The functional state presented by the road system in the face
of disturbance pressure from different emergency events is determined by the performance
of the comprehensive interference and resistance elements of the road system. The external
behavior of restoring the functional service capacity of the road system is a response to
the impact on the road. Therefore, the “pressure-state-response” framework could be
used to abstract the evolutionary process of road resilience [37]. Therefore, this article
proposes the concept of road operational resilience based on Pressure-State-Response
(PSR) theory. In this paper, road resilience is defined as the ability of a road system to
maintain functional status via its physical and topological properties, resist pressure, retain
stability, and restore traffic capacity through emergency response to emergency events
and disturbances. It focuses on the functional performance of engineering systems. It
pays attention to the impact of external pressure and the recovery of functional status
under intervention. Combining the resilience evolution mechanism, we divide it into three
dimensions: pressure resilience, state resilience, and response resilience. Among them,
pressure resilience characterizes the degree of disturbance stimulus when the road system
operates. State resilience characterizes the stability of facilities in maintaining functions
under disturbances. Response resilience measures the ability of road systems to recover
from external responses.

2.2. Analysis of Road Operational Resilience Elements

Road operational resilience is related to the environment, road, and facilities (such as
the robustness of pavement performance, the robustness of lane access, and the robustness
of facility functions). To more clearly depict road operational resilience, this paper proposes
a hierarchical framework of road operational resilience elements based on PSR theory, as
shown in Figure 1.

The pressure resilience dimension is characterized using exposure, uncertainty, diver-
sity, and hazard factors related to pressure:

• The exposure to pressure characterizes the possibility of the road system being exposed
to risk scenarios. The higher the exposure, the greater the possibility of disturbance.
Specific elements include the exposure to meteorology (E1-1), the exposure to road
type (E1-2), and the exposure to traffic flow (E1-3);

• The uncertainty of pressure characterizes the randomness of the time, type, and degree
of emergency events on roads. The higher the uncertainty of pressure disturbance,
the lower the pressure resilience performance, and the higher the difficulty for road
systems to defend against disasters. Specific elements include the diversity of accident
types (E2-1) and the diversity of vehicle types (E2-2);
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• The diversity of pressures characterizes the possibility that road systems face various
types of risks. Under the influence of other external factors, such as complex road
environments and vehicle conditions, various disturbances may occur in a coupled and
spread manner, increasing the risk of impact. Specific elements include uncertainty of
scattered objects (E3-1) and uncertainty of fire (E3-2);

• The risk impact on road emergency occurrences is characterized by the pressure
hazard, which includes losses of facilities, personnel, and vehicles. Specific elements
include the hazards to the vehicle involved (E4-1), the hazards to casualties (E4-2), and
the hazards to the facility (E4-3);
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This paper measures the state resilience dimensions based on state robustness and
state redundancy factors;

• The state of robustness is the ability of a road system’s inherent properties to resist
disturbances, such as physical properties and network topology properties. Specific
elements include the robustness of road width (E5-1), the robustness of road mainte-
nance (E5-2), the robustness of pavement performance (E5-3), the robustness of lane
access (E5-4), and the robustness of facility functions (E5-5);

• The state redundancy maintains functions through its replaceable components in re-
sponse to damaged traffic functions. It is generally characterized by the storage
capacity and substitutability of resources required by road systems, such as the
redundancy of design traffic capacity (E6-1) and the redundancy of road network
connectivity (E6-2).

This paper describes response resilience through response awareness, resourcefulness
of response, rapidity of response, and responsive learnability:

• Response awareness characterizes the timeliness and accuracy of perception for emer-
gency events and risk environments. It is a prerequisite for response occurrence and
can be characterized by the rapidity of response arrival (E7-1);

• Rapidity of response refers to the ability of transportation system managers to take
emergency disposal measures to restore system functions quickly. It usually mani-
fests itself as effectiveness and speediness in emergency disposal. Specific elements
include the implementability of response disposal (E8-1) and the rapidity of response
disposal (E8-2);
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• The resourcefulness of the response is measured by managers’ ability to organize
transportation systems to establish priorities and mobilize various disaster prevention
and mitigation resources. It is the basis for response disposal. Specific elements
include the availability of rescue resources (E9-1), the availability of traction resources
(E9-2), and the availability of firefighting resources (E9-3);

• The term responsive learnability refers to a transportation system’s ability to absorb
historical experience and continuously learn so that functional status can be restored
as soon as possible or even reach higher performance levels. It is characterized by
emergency review capabilities (E10-1).

Road operational resilience is a dynamic, comprehensive result of elemental combina-
tions in various dimensions. Its evolution also follows the stages of defense disturbance,
resistance disturbance, and function repair [38]. As shown in Table 1, in the defense dis-
turbance stage, the road system faces risk scenarios under the influence of exposure to
pressure elements. Under the action of elements in the diversity to pressure factor layer
and the uncertainty of the pressure factor layer, the system’s performance is in a fluctuating
stage. In the resistance disturbance stage, the system is affected by elements under the
hazard of the pressure factor layer (such as those hazardous to casualties), and relying
on its resources cannot defend against disturbance, and its performance rapidly declines.
The speed of performance decline is related to elements under the state robustness and
state redundancy factor layers (such as the redundancy of design traffic capacity and the
redundancy of road network connectivity). The elements under the system’s response
awareness factor layer also take effect at this stage. In the functional repair stage, elements
under the resourcefulness of the response factor layer and the rapidity of the response factor
layer (such as the availability of rescue resources and the rapidity of response disposal) take
effect after perceiving on-site information and relying on elements under the responsive
learnability factor layer (such as the emergency review capabilities) to improve decision
quality. System performance begins to recover at this stage until it reaches road traffic
performance requirements.

Table 1. Elements of road operational resilience for each resilience phase.

Dimen
-sions Factors Elements of the Defense

Disturbance Phase
Elements of the Resistance

Disturbance Phase
Elements of the Functional

Recovery Phase

Pressure resilience

Exposure to pressure
Exposure to meteorology(E1-1)
Exposure to road types (E1-2)

Exposure to traffic flows (E1-3)
Diversity to pressure Diversity of accident types (E2-1)

Diversity of vehicle types (E2-2)
Uncertainty
of pressure

Uncertainty of scattered objects (E3-1)
Uncertainty of fire (E3-2)

Hazard of pressure
Hazardous to the facility (E4-1)

Hazardous to the vehicle involved (E4-2)
Hazardous to casualties (E4-3)

State resilience State robustness

Robustness of road width (E5-1)
Robustness of road maintenance (E5-2)

Robustness of pavement
performance (E5-3)

Robustness of lane access (E5-4)
Robustness of facility functions (E5-5)

State redundancy
Redundancy of design traffic

capacity (E6-1)
Redundancy of road network

connectivity (E6-2)

Response resilience

Response awareness Rapidity of response arrival (E7-1)

Rapidity of response
Implementability of response

disposal (E8-1)
Rapidity of response disposal (E8-2)

Resourcefulness
of response

Availability of rescue resources (E9-1)
Availability of traction

resources (E9-2)
Availability of firefighting

resources (E9-3)

Responsive learnability Emergency review
capabilities (E10-1)

The interaction of elements under the dimensions of pressure resilience, state resilience,
and response resilience is the direct cause of the change in road operational resilience. The
blue arrow lines in Figure 2 show the interaction mechanism between elements. When
a disturbance occurs, the elements under pressure resilience will stimulate the elements
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under state resilience in the road system. The system will mobilize the elements under state
resilience to mitigate the impact of the elements under pressure resilience. A disturbance
occurs if the road system fails to recover its functional status quickly. The operator of
the road system will receive an assistance signal, make emergency decisions, mobilize
resources, and take measures. Currently, the elements under response resilience act on
the elements under state resilience to enhance the functional state of the road system.
In addition, during the disturbance period, the emergency response subject of the road
system receives disturbance information from elements under pressure resilience and takes
preventive measures. At this time, the elements under response resilience will work on the
elements under pressure resilience, minimizing the impact of disturbance pressure on the
road system.
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3. Road Operational Resilience Evolution Based on DBN

Road operational resilience is a complex concept that involves multiple factors, such
as people, vehicles, and the environment. It dynamically changes with the development
of emergency events, making it challenging to evaluate its resilience using conventional
deterministic methods [39]. In this study, we consider the multidimensional impacts of
pressure disturbances, state resistance, and response recovery faced by roads and estab-
lish a dynamic measurement method for resilience using Dynamic Bayesian Networks
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(DBN). DBN is a classical probabilistic graphical method that can address uncertainties in
resilience measurement and balance multiple influencing factors to characterize resilience
dynamically [40,41].

To construct the DBN, we first identify the relevant variables in the hierarchical
framework of road operational resilience elements in Section 2.2 and use them as DBN
nodes. Based on the hierarchical framework of resilience elements, we construct the basic
structure of the DBN and determine the dependency relationships between resilience
elements through structural learning using historical data from emergency events. Then,
we determine the resilience state of network nodes using the Best Worst Method (BWM)
and Dempster–Shafer (DS) evidence theory. We extend the resilience status dataset using
historical data from emergency events and determine the strength of the dependency
relationship between resilience elements through parameter learning. This DBN can be
used to measure the evolution of road operational resilience.

To quantitatively calculate road operational resilience, we assign each node in the
DBN a resilience state attribute divided into “good resilience” and “poor resilience” states.
We measure the “good” and “poor” resilience states using the classical Bayesian network
classification method [22,23], which significantly reduces the computational complexity
of the model. We use the probability of maintaining “good resilience” or recovering from
a “poor resilience” state to a “good resilience” state under emergency event scenarios
as a measure of resilience. The probability values of resilience status can be used to
compare resilience in different scenarios. We determine the resilience state of the resilience
element node through the historical dataset of emergency events, with experts using
domain knowledge to classify the data into “good resilience” and “poor resilience” states.
We determine the probability value by calculating the frequency of “good resilience”
states from historical data on emergency events. We identify the resilience factor node,
resilience dimension node, and road operational resilience node based on the node state
discrimination method proposed in Section 3.3.

3.1. Description of Road Emergency Event Data

The DBN’s nodes and attributes, network structure, and parameters all rely on histori-
cal data from road emergency events. Therefore, this study collected detailed historical data
on road emergency events from Shanghai urban road operating enterprises. The original
data was recorded and stored in tables and text form, as shown in Table 2, and typical
event records such as “At 00:50, with clear weather and traffic density of 200 pcu/km/ln,
a one-compartment tanker truck collided with the guardrail on S20 inner ring to G50
ramp, causing damage to the guardrail and spillage of objects, occupying one lane without
ignition and hindering the rear traffic. At 01:10, the towing vehicle arrived. At 01:15, one
person was injured and sent for medical treatment. The ramp was temporarily closed, and
the traffic behind was slow, with implementation difficulties. At 02:35, the accident was
cleared, and the traffic resumed normal flow. There was no maintenance operation on the
accident section”. Following the resilience element classification method in Section 2.2,
relevant data were extracted from the pressure, state, and disturbance dimensions.

To better present the critical information in the data, this paper extracts event infor-
mation from three dimensions: pressure, state, and disturbance, based on the resilience
element division method described in Section 2.2:

• The pressure dimension data includes accident occurrence time, weather conditions,
traffic flow during the incident, accident location, accident type, vehicle types, scat-
tered objects situation, fire situation, facility losses, number of involved vehicles, and
casualty numbers;

• The state dimension data includes road width, road maintenance situation, pavement
performance, total lanes, occupied lanes, facility functions, road network connectivity,
and design traffic capacity;
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• The response dimension data encompasses accident discovery time, response arrival
time, disposal time, response-related resources such as rescue, traction, firefighting
resources, and accident logging time.

Table 2. Extraction of road emergency event data based on PSR.

Dimensions Elements Data of Elements

Pressure resilience

Exposure to meteorology Weather conditions
Exposure to road type Road type of accident occurrence

Exposure to traffic flow Traffic flow
Diversity of accident types Accident type
Diversity of vehicle types Vehicle types

Uncertainty of scattered objects Scattered objects situation
Uncertainty of fire Fire situation

Hazardous to facility losses Facility losses
Hazardous to the vehicle involved Number of vehicles involved

Hazardous to casualties Casualty numbers

State resilience

Robustness of road width Road width
Robustness of road maintenance Road maintenance situation

Robustness of pavement performance Pavement performance
Robustness of lane access Accessible lanes

Robustness of facility functions Facility functions
Redundancy of road network connectivity Road network connectivity

Redundancy of design traffic capacity Design traffic capacity

Response resilience

Response awareness Accident discovery time
Implementability of response disposal Response arrival time

Rapidity of response disposal Disposal time
Availability of rescue resources Rescue resources

Availability of traction resources Traction resources
Availability of firefighting resources Firefighting resources

Emergency review capabilities Responsive learnability and review capacity

The historical data of emergency events includes continuous data related to time,
such as handling time, and discrete data, such as casualty numbers and accident types.
For discrete data, this study defines them as discrete variables by referencing the Chinese
national standards“Codes for traffic accident information” (GA/T16.1-16.18-2010) [42],
“Codes for Road Traffic Accident Scene” (GA 17.1–17.11-2003) [43], and expert knowledge.
For instance, the number of injuries of two or fewer is converted to 0, while the number
of injuries greater than two or the occurrence of severe injuries and deaths is labeled as
1. For continuous data, information about an event is recorded in units of 15 min, and
a period of five time intervals (75 min) is considered one cycle based on the distribution
of real-world data. With the guidance of expert experience, data values are assigned as
good resilience status (0) and poor resilience status (1). For example, if the original data
describes the handling of an incident as “At 00:50, with clear weather and traffic density of
200 pcu/km/ln, a one-compartment tanker truck collided with the guardrail on S20 inner
ring to G50 ramp, causing damage to the guardrail and spillage of objects, occupying one
lane without ignition, and hindering the rear traffic. At 01:10, the towing vehicle arrived.
At 01:15, one person was injured and sent for medical treatment. The ramp was temporarily
closed, and the traffic behind was slow, with implementation difficulties. At 02:35, the
accident was cleared, and the traffic resumed normal flow. There was no maintenance
operation on the accident section”, the emergency response time is the difference between
the time the towing vehicle arrived and the time the incident was discovered, which falls
under the time interval T1 (15 min)–T2 (30 min). The response perception in this period is
beneficial for the resilience of road operations. It is assigned a value of 0, while the response
perception in the 0–T1 time interval was not in place and is assigned a value of 1. Similarly,
other data related to time are processed accordingly. After processing the data, as shown in
Table 3, it is used as the input for the DBN network nodes.
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Table 3. The data on emergency events after processing.

Data of Elements Emergency
Event 1

Emergency
Event 2

Emergency
Event 3

Emergency
Event 4 ...

Weather conditions 0 0 1 1 ...
Road type of accident occurrence 0 1 0 1 ...

Traffic flow 1 1 1 1 ...
Accident type 1 1 1 1 ...
Vehicle types 0 0 0 0 ...

Scattered objects situation 0 0 0 0 ...
Fire situation 0 0 0 0 ...
Facility losses 0 0 0 0 ...

Number of vehicles involved 1 0 1 1 ...
Casualty numbers 0 0 0 0 ...

Road width 0 1 0 0 ...
Road maintenance situation 0 0 0 0 ...

Pavement performance 0 0 1 0 ...
Accessible lanes 0 1 0 0 ...

Facility functions 0 1 0 0 ...
Road network connectivity 0 0 1 1 ...

Design traffic capacity 0 1 0 0 ...
Accident discovery time 0 0 0 0 ...

Response arrival time 0 1 0 0 ...
Disposal time 0 1 0 0 ...

Rescue resources 0 0 0 0 ...
Traction resources 0 1 0 0 ...

Firefighting resources 0 0 0 0 ...
Responsive learnability and

review capacity 0 0 0 0 ...

3.2. Construction of the DBN Structure for Resilience Evolution

First, according to the hierarchical framework of road operational resilience elements,
an initial hierarchical Bayesian network structure is established, as shown in Figure 3. The
nodes in the input layer correspond to the element hierarchy of the framework, specifically
including nodes for specific elements of people, vehicles, roads, and environment (such
as E1-1, E1-2, and E1-3). This hierarchical node type is an element type. The nodes in the
middle layer correspond to the framework’s factor and dimension levels, so this layer’s
node type is divided into factor and dimension types. Factor-type nodes include F1, F2, and
F3 nodes. Dimension-type nodes include the pressure resilience nodes, the state resilience
nodes, and the response resilience nodes. The nodes in the output layer correspond to the
resilience level of the framework, and the RESILIENCE node represents the final road’s
operational resilience. Then, the static relationship between each layer node is established
according to the element attribution relationship of the element hierarchical framework. The
RESILIENCE node connects to the middle layer’s pressure resilience node, state resilience
node, and response resilience node. The pressure resilience node connects to the exposure
to pressure node (F1), the pressure diversity node (F2), the uncertainty of pressure node
(F3), and the pressure hazard (F4) node in factor-type nodes. The pressure hazard node
connects to the hazardous to the vehicle involved (E4-1) node related to the input layer, the
hazardous to casualties node (E4-2), and the hazardous to facilities node (E4-3). Similarly,
the state resilience and response resilience nodes are constructed with corresponding
middle layer factor-type nodes and input layer element-type nodes’ associations.
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resilience elements.

To portray the dynamic characteristics of resilience under the evolution of road opera-
tion scenarios, in this paper we first analyze whether network nodes have time-varying
features (i.e., whether the values of variables corresponding to nodes change significantly
over time). Based on domain knowledge and data obtained from scenarios, network nodes
are divided into static nodes and dynamic nodes. For example, road width robustness (E5-1)
is a static node that does not change with time. In contrast, lane traffic robustness (E5-4)
changes with emergency events and on-site disposal and is a dynamic node. RESILIENCE
nodes in the output layer, dimension nodes in the middle layer, and some factor nodes are
all affected by input layer elements with time-varying features that are associated with
them. Therefore, these nodes are listed as dynamic nodes.

Secondly, the resilience evolution mechanism is characterized by constructing asso-
ciations between nodes at different time intervals. This paper assumes that the influence
of nodes between different time intervals depends on the state of the previous time inter-
val and that there is no influence across multiple time steps (reducing the complexity of
node-time correlations and increasing computational feasibility) [20,22].

This paper divides the node relationships between different time slices into two
categories: one is that nodes in T-time slices are influenced by their own nodes in T-1 time
slices, such as RESILIENCE node status evolution based on the resilience status of this node
in the previous time slice, for which connections between adjacent nodes of the same type
are constructed. The other is that other nodes influence nodes in the T-time slice in the T-1
time slice. For example, the RESILIENCE node under the T-time slice also depends on the
influence of the resilience state of the pressure resilience, the response resilience, and the
state resilience nodes in the previous time slice. For this type of relationship, connections
between this node and other nodes influenced by T-1 time slices are constructed. Figure 4
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shows the resilience DBN structure considering node relationships between different time
steps, and Figure 5 shows the expanded DBN structure.
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In the road operation scenario, the relationships between various element nodes are too
complicated to judge directly. The correlation between elements can be discovered based
on historical data on emergency events. Then, the relationship between nodes at different
levels of the element hierarchy can be improved to align the network structure with the
evolution law of road resilience. This paper employs the Greedy Thick Thinning algorithm
to learn the interactions between elements in the road unexpected event dataset [44], as
shown in the dashed arrows in Figure 6, and improve the node relationship. The algorithm
first initializes the correlation between all variables as none and then repeatedly performs
the dense and sparse processes to find the optimal model structure. In each stage, the
algorithm evaluates the model using the Bayesian information criterion (BIC) and selects
the best model structure based on the score. Consequently, an accurate network structure
is constructed to reflect the evolution of road resilience.
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According to the phase characteristics analysis of resilience elements in Section 2.2,
some characterization elements have time attributes and different action times, which
are included in different time slices of the network. As shown in Figure 7, at the T0
moment, only static resilience elements are involved, such as the exposure to road type
that characterizes the exposure to pressure, pavement performance that characterizes
the state robustness, and initial resource reserves that characterize the resourcefulness
of responses. At the T1 moment, elements that disrupt the function of the road system
(e.g., fire uncertainty, object throwing uncertainty) are introduced, along with elements of
state resilience that resist stress and maintain function (e.g., lane access robustness.) At
the T2 moment, elements of the response resilience that restore function (e.g., response
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disposal timeliness) and elements of the response resilience that can sustainably enhance
the function of the road system (e.g., responsive learnability) are introduced.
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3.3. DBN Parameter Learning Based on Node Resilience Status

In addition to defining the network structure, it is essential to learn the parameters of
a Dynamic Bayesian Network (DBN) to implement road operational resilience evolution
based on dynamic Bayesian methods. DBN parameter learning involves determining the
unconditional and conditional probabilities [45]. If a node in the network is not influenced
by its parent nodes, it has an unconditional probability; on the other hand, if its parent nodes
influence it, it has a conditional probability. The resilience status of input layer nodes can be
gauged based on actual data and domain expertise, and their unconditional probability can
be calculated based on the frequency of their resilience status. However, the resilience status
of middle and output layer nodes cannot be directly obtained from recorded real-world
data, making it crucial to initially determine the resilience status of these nodes before
using data containing their resilience status to calculate their conditional probability.

Given the multiple factors that impact road operational resilience, two issues need
to be addressed when determining the resilience status of each node. The first issue is
determining the weightage of each influencing factor on the node’s resilience status. The
second issue is how to incorporate numerous factors’ effects into determining the node’s
resilience status. This paper proposes a method that utilizes the Best Worst Method (BWM)
algorithm to convert domain knowledge into node weights and employs the Dempster–
Shafer (DS) evidence theory to assess the resilience status of Bayesian network nodes by
combining historical data on emergency events. Additionally, we have realized the BN
parameter learning technique based on data.
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When determining the weightage of each influencing factor concerning the resilience
status of a node, we employ the BWM method. Compared to other multi-criteria decision-
making methods, the BWM requires fewer pairwise comparisons between influencing factors,
reducing the time required for analysis and producing more dependable results [46,47].
Thus, it is more appropriate for assessing the weights of various factors that affect road
operational resilience. The influence weights of sub-nodes concerning parent nodes (i.e.,
the impact of parent nodes on sub-nodes) differ in determining the resilience status of
middle and output layer nodes. Here, we use domain expertise to score the importance of
parent nodes concerning sub-nodes and calculate the node weights using the BWM. The
specific methodological process is outlined as follows:

1. Expert Pk selects the most important node Ck
M and the least important node Ck

L from
a group of nodes C = {C 1, C2, · · · , Cn};

2. The most important node Ck
M is compared with other nodes Ck

j (j = 1, 2, · · · , n) to
determine their relative importance using a 1–9 scale, where higher values indicate
greater importance, and to calculate the ratio Vk

M set as Equation (1)

Vk
M =

(
vk

M1, vk
M2, · · · , vk

Mn
)

(1)

where vk
Mj represents the ratio of the importance of the most important node Ck

M

chosen by Pk to other nodes Ck
j (j = 1, 2, ..., n);

3. The importance of other nodes Ck
j (j = 1, 2, · · · , n) is compared with the least impor-

tant node Ck
L using the same scale. The ratio set Vk

L is calculated by Equation (2).

Vk
L =

(
vk

1L, vk
2L, · · · , vk

nL
)

(2)

where vk
jL represents the ratio of the importance of other nodes Ck

j (j = 1, 2, · · · , n) to

the least important node Ck
L selected by Pk;

4. To obtain the optimal weight αk
j ,
∣∣∣∣αk

M
αk

j
− vk

Mj

∣∣∣∣ and
∣∣∣∣αk

j

αk
L
− vk

jL

∣∣∣∣ values should be mini-

mized, and constraints should be set as Equation (3).

minξ

s.t.
∣∣∣∣αk

M
αk

j
−vk

Mj

∣∣∣∣ 6 ξ, j=1, 2, . . . , n∣∣∣∣αk
j

αk
L
−vk

jL

∣∣∣∣ 6 ξ, j=1, 2, . . . , n

∑n
j=1 α

k
j =1, j=1, 2, . . . , n

αk
j > 0, j = 1, 2, . . . , n

(3)

where αk
j represents the weight of the jth node given by expert Pk;

5. Convert ratios into node weights, and finally aggregate expert Pk opinions to obtain
weights as in Equation (4), where λk is the weight of expert Pk.

αj = ∑l
k=1λkα

k
j

(4)

As an example, the weights of pressure resilience, state resilience, and response
resilience nodes are parent nodes of road operational resilience. Experts determine their
weights by considering which factor impacts the final road’s operational resilience the most.
Some experts believe that pressure resilience is the leading cause of fluctuations in road
operational resilience. Thus, it is of high importance. On the other hand, response resilience
is critical for road operational resilience recovery, while the impact of state resilience on
road maintenance functionality is relatively low among these three factors. Therefore,
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response resilience is chosen as the most important node, and state resilience is chosen as
the least important node. The importance of response resilience is compared with that of
pressure and state resilience, respectively, and the importance of pressure and response
resilience is also compared with that of state resilience. Finally, the ratios between nodes
are transformed into weights using Equations (3) and (4). The process of evaluating node
weights is presented in Table 4. The weight calculation process for other nodes follows a
similar approach.

Table 4. Process for evaluating node weights using the BWM algorithm.

Method Step Detailed Description of Each Step

Step 1

Criteria number = 3 Criterion 1 Criterion 2 Criterion 3
Names of criteria Pressure resilience State resilience Response resilience

Select the best Response resilience
Select the worst State resilience

Step 2 Names of criteria Pressure resilience State resilience Response resilience
Best to others 2 3 1

Step 3 Others to the worst 2 1 4
Step 4 and Step 5 Calculate node weights 0.27 0.16 0.57

After obtaining the node weights, the challenge is integrating multiple factors’ impacts
on a node’s resilience state. Determining the resilience state requires integrating diverse
information on influencing factors, which is inherently subjective and thus generates
uncertainty [48]. However, the Dempster–Shafer (DS) evidence theory can overcome this
issue by combining evidence [29]. DS evidence theory is precious when assessing road
operational resilience, which involves multiple elements and hierarchical data [49]. This
paper adopts a layered approach based on the DS evidence theory to tackle this challenge.
First, the resilience-related variables of secondary-element nodes are combined at the
factor node level. Then, the resilience state of factor nodes is integrated into the resilience
state of dimension nodes. Finally, the resilience state of dimension nodes is merged into
the resilience state of road operational resilience nodes. This comprehensive evaluation
enables the determination of the resilience states of all nodes. The process includes the
following steps:

1. Determine the identification framework Θ and construct a non-empty set of resilience
element states. In this paper, the states of road operational resilience elements are
conducive to resilience (H) and detrimental to resilience evaluation (L). All sets of
identification framework Θ = {L, H} are called the power set 2Θ, and their subsets
are called focal elements.

2Θ = {ϕ, L, H, {L, H}}; (5)

2. Assign confidence between 0 and 1 to focal elements within the identification frame-
work, determining the Basic Probability Assignment or mass function m(A) as
Equation (6).

∑
A⊆Θ

m(A) = 1

∀A ⊆ Θ, 0 ≤ m(A) ≤ 1
(6)

3. The Dempster–Shafer combination rule is used to combine two independent mass
functions. This method gives us the fusion result m1,2(A) of the parent node’s re-
silience status and the upper-level node’s resilience status. The calculations are as in
Equations (7)–(9).

m1,2(A) = m1(A)⊕m2(A) (7)

m12(A) =

{
∑X∩Y=A,∀X,Y⊆Θ m1(X)m2(Y)

1−K
0, A = Φ

, A 6= Φ (8)
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K = ∑X∩Y=Φm1(X)m2(Y) < 1 (9)

where K represents conflicts between subset X and subset Y.
For the fusion of resilience states across multiple nodes, combining the states of

multiple nodes is possible as the node combination sequence does not affect the result in
the DS evidence theory [50]. The process involves layering the resilience states of multiple
nodes and fusing them in a hierarchical framework of resilience elements, as shown in
Figure 8. The rule for fusing the resilience state of an element node into the resilience
state of a factor node can be expressed as Equations (10) and (11), whereas the rule for
fusing the resilience state of a factor node into the resilience state of a dimension node can
be expressed as Equations (12) and (13). Finally, the rule for fusing the resilience state of
a dimension node into the resilience state of the road operational resilience node can be
expressed as Equations (14) and (15).

m(en
i ) = S(en

i )λEn
i

(10)

Fi = E1
i ⊕ E2

i ⊕ . . .⊕ En
i (11)

where m(en
i ) represents the mass function of state for the n-th element node under the i-th

factor. S(en
i ) evaluates the resilience status of the corresponding element node, while λEn

i
represents the weight of the corresponding element node. Fi denotes the resilience status of
the i-th factor node, and En

i represents the resilience status of the n-th element node that
influences Fi. The combination of the resilience status of the n element nodes (E1

i E2
i , . . . ,

En
i ) is used to calculate the resilience status of the i-th factor node, Fi.

m(fi) = S(fi)λFi (12)

Dl = F1 ⊕ F2 ⊕ . . .⊕ Fi (13)

where m(fi) represents the mass function of the i-th factor node. S(fi) evaluates the re-
silience status of the corresponding factor node, while λFi represents the weight of the
corresponding factor node. The combination of the resilience status of the i factor nodes
generates the resilience status of the l-th dimension node, Dl.

m(dl) = S(dl)λDl (14)

RESILIENCE = D1 ⊕D2 ⊕D3 (15)

where m(dl) represents the mass function of state for the l-th dimension node.S(dl) eval-
uates the resilience status of the corresponding dimension node, while λDl denotes the
weight of the corresponding dimension node. By combining the resilience statuses of
all three-dimensional nodes (D1, D2, and D3), we can obtain the resilience status of the
RESILIENCE node.

Finally, the determination of the conditional probability of the DBN is completed by
parameter learning with the EM algorithm [51] based on the historical data of emergency
events and the judgment data of the node resilience state. In the EM algorithm, the E-step
employs the Bayesian formula to calculate the posterior probability distribution of each
variable for an emergency event. For a given node, its posterior distribution refers to the
posterior probability of it taking different values under the condition of observing the
data of all other nodes. In the M-step, we calculate the logarithmic likelihood function
based on all known data and maximize this function to update the estimated values of the
conditional probability table. The maximum likelihood estimation method can be used to
achieve this process.
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4. Multidimensional Integration and Visualization of Road Operational
Resilience Evaluation

This chapter employs the methods introduced in Section 3 to quantify the pressure,
state, response, and road operational resilience under emergency scenarios. The pressure
resilience, YP(t), is quantified by the probability of changes in the pressure resilience state.
Similarly, the state resilience YS(t) and response resilience YR(t) are measured by the
probability of changes in their respective resilience states. These probabilities are obtained
through DBN network learning and parameter learning based on resilience state judgment
on the emergency event dataset, as described in Section 3. The pressure resilience, YP(t)
at time x = t is not only affected by the factors under the corresponding dimension at
time x = t− 1 but is also related to the pressure resilience YP(t− 1) at time x = t− 1.
The factors (H1(t− 1), H2(t− 1), . . . , Hn(t− 1)), and YP(t− 1) are used as parent nodes
of the pressure resilience YP(t), and the impact strength between nodes is measured by
conditional probability. Therefore, the calculation of pressure resilience YP(t) is shown in
Equation (16). Similarly, the calculation of state resilience YS(t) and response resilience
YR(t) is shown in Equations (17) and (18).

YP(t) = P(H1(t), H2(t), ..., Hi(t)) = ∏n
i=1 P(Hi(t) | Pa(H i(t− 1)), YP(t− 1)), (16)

YS(t) = P(S1(t), S2(t), ..., Si(t)) = ∏n
i=1 P(Si(t) | Pa(S i(t− 1)), YS(t− 1)), (17)

YR(t) = P(R1(t), R2(t), ..., Ri(t)) = ∏n
i=1 P(Ri(t) | Pa(R i(t− 1)), YR(t− 1)), (18)

YP(t), YS(t), and YR(t) represent the probability that the status of the pressure resilience,
the state resilience, and the response resilience at time t. Hn, Sn, and Rn represent the nth
elements that affect pressure resilience, state resilience, and response resilience.

The road operational resilience, Resilience(t), at time t is affected by the pressure
resilience YP(t− 1), the state resilience YS(t− 1), the response resilience YR(t− 1) at time
t− 1, and the road operational resilience, Resilience(t− 1), at the previous time, calculated
as Equation (19):

Resilience(t) = P(YP(t− 1), YS(t− 1), YR(t− 1), Resilience(t− 1)). (19)
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In order to achieve quantitative visualization of multidimensional resilience with
weight information at different stages in space, this paper proposes a method of multi-
dimensional resilience evaluation, integration, and visualization. The two-dimensional
x-y coordinate plane of the resilience curve model is expanded into an x-y-z spatial coor-
dinate system. In this system, the x-axis (horizontal axis) represents time, and the y-axis
(vertical axis) replaces the system performance value in the resilience curve model with
the probability of dimension node resilience status being in good condition. By introduc-
ing a weight for each dimension of resilience, the degree of impact on road operational
resilience can be quantified. The z-axis (depth axis) is incorporated to depict changes in
the weight of each dimension of resilience over time. In the resilience curve model, the
area of the function curve envelope of system performance concerning time represents the
resilience for a certain period. As for the three-dimensional space constructed in this paper,
by expanding the two-dimensional curves of the different dimensions of resilience with
the corresponding weight in the z-axis direction, the spatial geometric bodies with each
dimension of resilience are formed. The volume of spatial geometric bodies can reflect
multidimensional resilience for a certain period, such as in Equations (20) and (21). It
maps the state space of multidimensional resilience from 0-T1 to three-dimensional spatial
geometric bodies, as shown in Figure 9.

V(x, y, z) =
∫ ZP(x)

0

∫ T1

0
YP(x)dxdz +

∫ ZP(x)+ZS(x)

ZP(x)

∫ T1

0
YS(x)dxdz

+
∫ 1

ZP(x)+ZS(x)

∫ T1

0
YR(x)dxdz,

(20)

ZP(x) + ZS(x) + ZR(x) = 1, (21)

where x represents a time value. The z represents the weight of different resilience dimen-
sions, including pressure resilience ZP(x), state resilience ZS(x), and response resilience
ZP(x), on road operational resilience at a given time x. z ∈ [0, ZP(x)], z falls within the
range of influence for pressure resilience. z ∈ [ZP(x), ZP(x) + ZS(x)], z falls within the
range of influence for state resilience. z ∈ [ZP(x) + ZS(x), 1](x), z falls within the range
of influence for response resilience. The y represents the probability of good status for
each resilience dimension. z ∈ [0, ZP(x)], y = YP(x), YP(x) represents the probability of
good pressure resilience at time x. z ∈ [ZP(x), ZP(x) + ZS(x)], y = YS(x), YS(x) represents
the probability of good state resilience at time x. z ∈ [ZP(x) + Zs(x), 1], y = YR(x), YR(x)
represents the probability of good response resilience at time x.

When evaluating road operational resilience, it is necessary to consider the weight
of different dimensions of resilience comprehensively. Due to the different effects of
element action on different dimensions of resilience at different stages and the changes in
weight of different dimensions of resilience at different stages of road operation, the size of
the z-axis direction in spatial geometric bodies shows stage change characteristics. This
paper adopts the BWM algorithm to transform expert knowledge to determine dimension
resilience weight.

Over time, each dimension of road operational resilience will be constantly affected by
elemental action, resulting in overall changes in road operational resilience. This trend and
its characteristics can be reflected in the evolution generated along the time axis by spatial
geometric bodies. In Figure 10, three different resilience components make up the road
operational resilience cube: response resilience (blue), state resilience (green), and pressure
resilience (red). Each component is represented as a separate geometric body, integrated to
form the complete cube.
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Figure 10. Evolution of the road operational resilience cube based on PSR. Figure (a–c): Road
Operational Resilience Cube for Time Intervals T0-T1, T0-T2, T0-T3.

This paper constructs a road operational resilience cube to integrate the quantified
values of different dimensions of resilience. At the same time, through the mapping method
based on spatial projection and sectioning, the road operational resilience cube is mapped
to a two-dimensional space to extract the evaluation value of single-dimensional resilience.

Firstly, in order to extract the stage change characteristics of the weight of each dimen-
sion resilience, different dimension resilience geometric bodies can be projected onto the x-z
plane, i.e., eliminate the y-axis information in the x-y-z space system. It obtains the pressure
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resilience, the state resilience, and the response resilience projected onto the x-z plane,
respectively. The areas AP(x, z), AS(x, z), and AR(x, z), 0− T3, at time t are calculated as
Equations (22)–(24), and the projection image is shown in Figure 11a.

AP(x, z) =
∫ T3

0
ZP(x)dx (22)

AS(x, z) =
∫ T3

0
ZS(x)dx (23)

AR(x, z) =
∫ T3

0
ZR(x)dx (24)
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Secondly, different dimension resilience spatial geometric bodies are projected onto
the x-y plane to obtain the evolution law of horizontal (evaluation value) of the pressure
resilience, the state resilience, and the response resilience concerning time. The area
enveloped by two-dimensional curves of pressure resilience, state resilience, and response
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resilience concerning time is AP(x, y), AS(x, y), AR(x, y), 0− T3, at time t is calculated as
Equations (25)–(27), as shown in Figure 11c.

AP(x, y) =
∫ T3

0
YP(x)dx (25)

AS(x, y) =
∫ T3

0
YS(x)dx (26)

AR(x, y) =
∫ T3

0
YR(x)dx (27)

After obtaining the weight and evaluation value information for each dimension of
resilience at different stages, the specific performance of each dimension of resilience at a
certain moment can be obtained by making a y-z plane section. For example, suppose we
cut through the dimension resilience spatial geometric body along the x = T3 plane. In that
case, we can obtain an area AT3(y, z) as Equation (28), as shown in Figure 11b. Similarly, we
can grasp the evolution of dimension resilience by making sections at multiple moments
(such as T1, T2, and T3).

AT3(y, z) =
∫ Zp(T3)

0
Yp(T3)dz +

∫ Zp(T3)+Zs(T3)

Zp(T3)
Ys(T3)dz

+
∫ 1

Zp(T3)+Zs(T3)
Yr(T3)dz

(28)

5. Case Study
5.1. Construction of the DBN Structure

This paper uses 1050 records of emergency events on the outer ring road of Shanghai
from 3 January 2018 to 28 December 2019, as the data source. Following the method-
ology outlined in Section 3.1, the incident data is preprocessed, and the resulting data
is then imported into GeNie software for DBN modeling [52]. A hierarchical Bayesian
network structure, illustrated in Figure 12, is established as the initial model structure in
GeNie 3.0 software.

The initial hierarchical network structure nodes are divided, as shown in Table 5.

Table 5. Time-varying features of road operational resilience elements.

Dimensions Factors Elements Features of Time-Varying
(Dynamic/Static)

Pressure resilience

Exposure to pressure
Exposure to meteorology S

Exposure to road type S
Exposure to traffic flow D

Diversity of pressure Diversity of accident types S
Diversity of vehicle types S

Uncertainty of pressure Uncertainty of scattered objects S
Uncertainty of fire S

Hazardous to pressure
Hazardous to facility losses S

Hazardous to the vehicle involved S
Hazardous to facility losses S

State resilience
Robustness of states

Robustness of road width S
Robustness of road maintenance S

Robustness of pavement performance S
Robustness of lane access D

Robustness of facility functions S

Redundancy of states Redundancy of road network connectivity S
Redundancy of design traffic capacity S

Response resilience Response awareness Response awareness D
Rapidity of response Implementability of response disposal S

Response resilience

Rapidity of response Rapidity of response and disposal D

Resourcefulness of response
Availability of rescue resources S

Availability of traction resources S
Availability of firefighting resources S

Responsive learnability Emergency review capabilities S
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Figure 12. Initial hierarchical Bayesian network structure in GeNie.

Then, dynamic nodes such as RESILIENCE, pressure resilience, state resilience, and
response resilience are associated with their own nodes in the previous time slice according
to the node-relationship analysis, as shown in Figure 13.

Meanwhile, based on the processed data source, the network structure learning is
completed with the Greedy Thick Thinning algorithm (algorithm parameters). Max Parent
Count = 10 to establish the connection between elemental nodes in the same layer and form
the final DBN structure as in Figure 14.
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5.2. DBN Parameter Learning

Based on the data of experts (three professors in the field of urban infrastructure and
five road maintenance engineers) judging the importance of road operational resilience
DBN nodes, the BWM algorithm was used to calculate the node weights (as shown in
Table 6) and the weights of dimensional resilience in each phase (as shown in Table 7).
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Figure 14. Dynamic Bayesian Network structure of the hierarchical road operational resilience
in GeNie.

Then DS evidence theory is utilized to fuse parent nodes (element-type nodes) using
state data and weight information from the element node. The resulting information is then
used to assess the resilience status of the next-level factor type node, as depicted in Table 8.
Then, based on the obtained resilience status of the factor type node and weight information
of the factor node, calculate the resilience status of the dimension node similarly. Finally,
fuse the resilience status of the dimension type node to calculate the resilience status of the
RESILIENCE node, as shown in Table 9.
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Table 6. Weight of nodes.

Dimensions Weight
of Dimensions Factors Weight of Factors Elements Weight of Elements

Pressure resilience 0.34

Exposure to pressure 0.13
Exposure to meteorology 0.27

Exposure to road type 0.12
Exposure to traffic flow 0.61

Diversity of pressure 0.09 Diversity of accident types 0.7
Diversity of vehicle types 0.3

Uncertainty of pressure 0.39 Uncertainty of scattered objects 0.6
Uncertainty of fire 0.4

Hazardous to pressure 0.39
Hazardous to facility losses 0.16

Hazardous to the vehicle involved 0.42
Hazardous to casualties 0.42

State resilience 0.16
Robustness of states 0.8

Robustness of road width 0.07
Robustness of road maintenance 0.11

Robustness of pavement performance 0.12
Robustness of lane access 0.55

Robustness of facility functions 0.17
Redundancy of states 0.2 Redundancy of road network connectivity 0.7

Redundancy of design traffic capacity 0.3

Response resilience 0.50

Response awareness 0.18 Response awareness 1
Rapidity of response 0.52 Implementability of response disposal 0.25

Rapidity of response disposal 0.75

Resourcefulness of
response 0.2

Availability of rescue resources 0.51
Availability of traction resources 0.18

Availability of firefighting resources 0.31
Responsive learnability 0.1 Emergency review capabilities 1

Table 7. Weight of dimensional resilience in each stage of road operational resilience.

Defense
Disturbance Phase

Resistance
Disturbance Phase

Functional
Recovery Phase

Pressure resilience 0.51 0.33 0.15
State resilience 0.34 0.33 0.51

Response resilience 0.15 0.33 0.34

Table 8. Computational values of node resilience status in factor nodes.

Data of
Elements

Exposure to
Pressure

Diversity of
Pressure

Uncertainty
of Pressure

Hazardous
to Pressure

Robustness
of States

Redundancy
of States

Response
Awareness

Rapidity of
Response

Resourcefulness
of Response

Responsive
Learnability

emergency
event 1 1 1 0 0 0 0 0 0 0 0

emergency
event 2 1 1 0 0 1 0 0 1 0 0

emergency
event 3 1 1 0 0 0 1 0 0 0 0

emergency
event 4 1 1 0 0 0 1 0 0 0 0

emergency
event 5 1 1 0 0 1 0 0 0 0 0

emergency
event 6 1 1 0 0 0 0 0 0 0 0

emergency
event 7 1 1 0 0 0 1 0 0 0 1

emergency
event 8 1 0 1 0 0 0 0 0 0 0

emergency
event 9 1 1 0 0 0 1 1 0 0 0

emergency
event 10 0 1 0 0 0 1 0 0 0 0

emergency
event 11 1 1 0 0 0 1 0 0 0 0

Table 9. Computational values of resilience status in dimensional nodes and resilience nodes.

Data of Elements Pressure
Resilience

State
Resilience

Response
Resilience RESILIENCE

emergency event 1 0 0 0 0
emergency event 2 0 1 0 0
emergency event 3 0 0 0 0
emergency event 4 0 0 0 0
emergency event 5 0 0 0 0
emergency event 6 0 0 0 0
emergency event 7 0 0 0 1
emergency event 8 0 0 0 0
emergency event 9 1 0 0 0

emergency event 10 0 0 0 0
emergency event 11 0 0 0 0
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Finally, the judgment data of the node resilience state and the emergency event data
are loaded into GeNie software. The EM algorithm is utilized to calculate the conditional
probability table for obtaining road operational resilience, as shown in Figure 15.
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5.3. Resilience Evolution Analysis

According to the DBN network structure and network parameters constructed in
the previous text, the results of calculating the evolution of road operational resilience
are shown in Figure 16. The road’s operational resilience in time slices 0–1 is affected by
pressure disturbances and shows a downward trend. In time slices 1–3, the road relies on its
physical and topological properties and emergency response disposal to restore resilience
to normal levels. In time slices 3–5, resilience returns to normal levels. The integration of
resilience inference results into the road operational resilience cube is shown in Figure 17.
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Figure 17. Road operational resilience cube of the Shanghai expressway. Figure (a–c) respectively
represent the x-z plane projection, y-z plane cross-section, and x-y plane projection.

This paper employed the 10-fold cross-validation method to evaluate the accuracy
of the model. The main idea is to randomly divide the original data into ten subsets of
equal size, with nine subsets used for training the model and the remaining one for testing.
This process was repeated ten times, with each subset serving as the test set once, and the
evaluation results were averaged over the ten rounds. In the model validation process, the
road operation resilience result nodes from each time step were taken as the target nodes
for model prediction. The overall prediction accuracy, prediction accuracy of each node
status, AUC (Area Under the Curve) metric, and ROC (Receiver Operating Characteristic
curve) curve were output and used to evaluate the model’s performance.

The Dynamic Bayesian Network model constructed in this paper was found to have
high prediction accuracy, with an overall accuracy of 92.19% for the road operation re-
silience nodes across five time steps. The specific accuracies are shown in Table 10. The
ROC curve is a visualization tool that describes the performance of a binary classifier at
different thresholds. The gray diagonal line on the ROC curve represents the performance
of a random classifier, with a better classifier corresponding to a higher curve on the left.
AUC is often used as an evaluation index, representing the area under the ROC curve. The
larger the AUC value, the better the classifier’s performance. The ROC curve in Figure 18
shows the excellent accuracy of the model for the road operation resilience node at t = 1,
with AUC values of 0.96 for both State0 and State1.
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Table 10. Accuracy of node status prediction.

Resilience t = 1 t = 2 t = 3 t = 4 t = 5

Overall accuracy 0.970682 0.933369 0.953092 0.833156 0.918977
The accuracy of State0 0.974576 0.965708 0.992072 0.986154 0.886105
The accuracy of State1 0.966738 0.903292 0.918429 0.752039 0.929019
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Figure 18. ROC curve of node resilience at t = 1.

Sensitivity analysis can measure the degree of influence of nodes on target events and
identify factors that significantly impact them. The BN model’s results on critical factor
analysis were verified through domain knowledge. After experimental verification, “scat-
tered objects”, “casualties”, and “availability of rescue resources” sensitivity to “Rapidity
of response disposal” decreased in turn. The results are shown in Figure 19. Their slight
changes would have a significant impact on traffic accident recovery and disposal.
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6. Discussion

Resilience evaluation involves multiple factors, and PSR theory is commonly used
to analyze the influencing factors in three dimensions: pressure, state, and response. The
deterministic methods used to calculate the final resilience based on this theory can capture
resilience relatively comprehensively and reflect both positive and negative feedback effects
of resilience under pressure disturbances and emergency responses [37,53,54]. However,
these studies often use broad statistical data as calculation indicators, making capturing
resilience under specific event impacts challenging. In addition, some studies have not
fully considered uncertainty in the resilience evaluation process, and there are fewer
examinations of correlations between resilience-influencing factors.

In the road traffic field, resilience research mainly constructs models focused on func-
tional changes in roads and relevant variables as resilience attributes [17,18]. However,
these models cannot demonstrate the multidimensional effects of pressure disturbances,
state resistance, and response recovery that roads face during emergency events. Fur-
thermore, measuring dynamic changes in resilience has been constrained by using static
Bayesian networks or rough-grained indicators.

This study proposes a novel road resilience modeling and evaluation method, com-
bining domain knowledge with historical data on emergency events using PSR and DBN
theories. Cross-validation and sensitivity analysis verified the model’s accuracy and exam-
ined key factors affecting resilience.

However, this paper acknowledges that some limitations of the current method cannot
be ignored and that there is room for improving model accuracy and application scenarios.
Data quality and accuracy may be improved by strengthening data collection methods,
especially for manual text records. A more refined classification of node resilience status
could achieve a more precise resilience measurement. Additionally, future work could focus
on measuring resilience for a particular type of severe disaster event, such as a hazardous
chemical accident, through a more targeted Dynamic Bayesian Network model.

7. Conclusions

This article proposes a new definition for road resilience in terms of operational
resilience modeling. It identifies influential factors in different dimensions (pressure, state,
and response). It establishes interaction mechanisms between elements, achieving three-
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stage modeling and integrated visualization for “defensive disturbance, rapid absorption,
and immediate recovery” in different dimensions. The article solves the problem of the
difficulty of multidimensional resilience modeling.

Regarding the quantification of road resilience, the article proposes a layered DBN
network structure based on domain knowledge, describing the dependence relationships
and dynamic features of multidimensional factors affecting road resilience. Using BWM
and D–S evidence theory, the article addresses the issue of incomplete data and complex
dependence relationships between resilience factors in DBN node resilience status judgment.
It implements a new method for measuring road operational resilience driven by a fusion
of domain knowledge and data.

Furthermore, sensitivity analysis using Bayesian networks showed that the key fac-
tors affecting the response time are “scattered objects”, “casualties”, and “availability
of rescue resources”, which can help managers take targeted measures to enhance road
operational resilience.

The methods proposed in this article have been validated and applied to Shanghai’s
urban expressway network and will be further promoted by providing more road facilities.
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