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Abstract: Image copy-move forgery is a common simple tampering technique. To address issues such
as high time complexity in most copy-move forgery detection algorithms and difficulty detecting
forgeries in smooth regions, this paper proposes an image copy-move forgery detection algorithm
based on fused features and density clustering. Firstly, the algorithm combines two detection methods,
speeded up robust features (SURF) and accelerated KAZE (A-KAZE), to extract descriptive features
by setting a low contrast threshold. Then, the density-based spatial clustering of applications with
noise (DBSCAN) algorithm removes mismatched pairs and reduces false positives. To improve the
accuracy of forgery localization, the algorithm uses the original image and the image transformed
by the affine matrix to compare similarities in the same position in order to locate the forged region.
The proposed method was tested on two datasets (Ardizzone and CoMoFoD). The experimental
results show that the method effectively improved the accuracy of forgery detection in smooth
regions, reduced computational complexity, and exhibited strong robustness against post-processing
operations such as rotation, scaling, and noise addition.

Keywords: copy-move; A-KAZE; density clustering algorithm; affine matrix transformation; location
similarity

1. Introduction

With the rapid development of information technology and the widespread adoption
of new computer techniques, digital images have become an important means of obtaining
information. People can access high-resolution images and videos through Internet tech-
nology, and can capture high-quality images or videos using mobile devices or cameras.
Moreover, image processing and editing software such as Adobe Photoshop and Lightroom
enable people to manipulate and edit images more easily and quickly. However, not only
do these advanced software processing techniques bring convenience, but they also pro-
vide criminals with the opportunity to commit crimes. The issue of image tampering and
manipulation is common and has caused serious problems in news dissemination, design,
social media, and even digital forensic investigation [1]. The credibility and integrity of
digital images are especially being questioned in areas such as medical records, scientific
publications, celebrity magazines, news reports, political activities, and judicial appraisals.
Image copy-move forgery is currently one of the most commonly used methods of tam-
pering [2]. The technique involves copying and pasting a specific region of an image to
other regions of the same image for the purpose of emphasizing certain visual information
or concealing certain image content. Figure 1 provides an example of image copy-move
forgery [3].

In image copy-move forgery, the tampered area may not be identical to the source area,
as it often undergoes post-processing operations such as rotation, scaling, edge softening,
blurring, noise addition, and JPEG compression. Therefore, the human eye can easily be
deceived by tampered images, leading to misdirection [4].
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Many researchers have explored image copy-move forgery detection in detail. 
Currently, there are two main types of methods to detect copy-move forgery: divide the 
image into image blocks or extract feature points from the image [5]. It was found that the 
block-based method, which requires matching a large number of overlapping blocks, is 
inefficient when it comes to geometric transformation attacks because block features are 
very sensitive to scale and rotation transformations, which ultimately results in high 
computational cost. Feature point-based methods are commonly used in copy-move 
forgery detection because they are unaffected by rotation and scaling, making them highly 
reliable. 

This paper proposes a forgery detection method based on two detection approaches, 
speeded up robust features (SURF) and accelerated KAZE (A-KAZE), to reduce the 
computational cost and extract more feature points in smooth regions. The SURF detector 
has a lower-dimensional feature descriptor and is invariant to rotation and scaling, 
resulting in faster speed. On the other hand, A-KAZE can extract a large number of useful 
feature points in smooth regions, allowing for improved accuracy of forgery detection in 
these regions. After feature matching with g2NN for the two detectors, we adopted the 
DBSCAN algorithm to eliminate mismatched pairs and locate tampered areas by 
comparing similarities between the original image and the image transformed by the 
affine matrix. The experimental results demonstrate that the method proposed in this 
paper improved the accuracy of smooth region forgery detection by combining the two 
detection approaches and exhibited strong robustness to geometric transformations such 
as rotation and scaling. 
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Figure 1. Image copy-move forgery examples: (a) original images; (b) forged images; (c) binarized 
truth images. 

The rest of this article is arranged as follows: Section 2 provides an overview of the 
latest research on image copy-move forgery. Section 3 describes SURF and A-KAZE in 
detail. In Section 4, the proposed image copy-move forgery detection method based on 
fused features and density clustering is described in detail. Section 5 analyzes the 
performance of the proposed method and compares it with other algorithms through 
experiments. Finally, Section 6 summarizes the method proposed in this article. 

Figure 1. Image copy-move forgery examples: (a) original images; (b) forged images; (c) binarized
truth images.

Many researchers have explored image copy-move forgery detection in detail. Cur-
rently, there are two main types of methods to detect copy-move forgery: divide the image
into image blocks or extract feature points from the image [5]. It was found that the block-
based method, which requires matching a large number of overlapping blocks, is inefficient
when it comes to geometric transformation attacks because block features are very sensitive
to scale and rotation transformations, which ultimately results in high computational cost.
Feature point-based methods are commonly used in copy-move forgery detection because
they are unaffected by rotation and scaling, making them highly reliable.

This paper proposes a forgery detection method based on two detection approaches,
speeded up robust features (SURF) and accelerated KAZE (A-KAZE), to reduce the com-
putational cost and extract more feature points in smooth regions. The SURF detector has
a lower-dimensional feature descriptor and is invariant to rotation and scaling, resulting
in faster speed. On the other hand, A-KAZE can extract a large number of useful feature
points in smooth regions, allowing for improved accuracy of forgery detection in these
regions. After feature matching with g2NN for the two detectors, we adopted the DBSCAN
algorithm to eliminate mismatched pairs and locate tampered areas by comparing simi-
larities between the original image and the image transformed by the affine matrix. The
experimental results demonstrate that the method proposed in this paper improved the
accuracy of smooth region forgery detection by combining the two detection approaches
and exhibited strong robustness to geometric transformations such as rotation and scaling.

The rest of this article is arranged as follows: Section 2 provides an overview of the
latest research on image copy-move forgery. Section 3 describes SURF and A-KAZE in detail.
In Section 4, the proposed image copy-move forgery detection method based on fused
features and density clustering is described in detail. Section 5 analyzes the performance of
the proposed method and compares it with other algorithms through experiments. Finally,
Section 6 summarizes the method proposed in this article.

2. Related Works

At present, copy-move forgery detection (CMFD) is divided into image block-based
and feature point-based methods. Using the method of image blocks, the image is typically
segmented into overlapping rectangular or circular blocks, from which feature points are
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extracted, and then feature matching is conducted. Fridrich et al. [6] first proposed a block-
based method that uses CMFD with discrete cosine transform (DCT) in this algorithm.
Several features were proposed to describe these blocks. For example, Kumar et al. [7]
proposed a method based on principal component analysis (PCA) for image CMFD. This
method extracts image features using the Haar transform, simplifies the features through
PCA to reduce computational complexity, and then detects, locates, and removes false
boundaries. Additionally, the texture features of the input image are analyzed using
the gray-level co-occurrence matrix (GLCM). Fattah et al. [8] applied a two-dimensional
discrete wavelet transform (DWT) to tampered images, considering only the approximate
DWT coefficients for block segmentation, and matching was carried out by computing
the distance between pairs of blocks. The results showed that the algorithm was not
suitable for forgery detection under geometric transformation attack. Finally, the features
were matched using Euclidean distance, and non-matching feature points were identified.
Sabeena et al. [9] proposed a method for image CMFD that utilizes local binary patterns
(LBP) and Harlick features for feature extraction. In order to verify the authenticity of the
image, various supervised machine learning classifiers, such as support vector machines
(SVMs), random forest (RF), and gradient boosting classifiers, were used, and the forgery
detection performance based on these classifiers was analyzed. In order to address the
problem of tampering operations such as rotation and scaling in the tampered area, many
local invariant features have been applied in the research of CMFD forensics, such as
Zernike moments, Hu moments, and so on [10,11]. Lee et al. utilized statistical features
based on a histogram of gradients (HOG) for CMFD [12]. As can be seen from the results,
the algorithm’s performance in detecting forgeries in the case of rotation and scaling of
large regions needs improvement. A perceptual image hashing scheme based on block
truncated coding is presented in [13]. In this paper, centrosymmetric local binary patterns
are used as image feature descriptors. This method requires a small amount of calculation
and is not sensitive to grayscale changes. Wang et al. [14] proposed a CMFD algorithm
based on the polar complex exponential transform (PCET). In this algorithm, the suspicious
image is first divided into overlapping circular blocks, and PCET is used to extract the
geometric invariant features of each block. However, dividing the image into circular
blocks results in some loss of image information, which may have a certain impact on the
detection performance of the algorithm.

Due to the high computational complexity of block-based methods and their limita-
tions in detecting scale displacement tampering, researchers have shown increasing interest
in feature point-based methods for image CMFD to address these problems. These methods
first extract feature points from high-entropy regions of the image, then calculate and match
feature vectors corresponding to each point, and finally identify tampered regions. The
advantage of these methods lies in the point extraction, point description, point matching,
and positioning methods applied [15–20]. In order to enhance the sensitivity of copy-move
detection algorithms to manipulations such as rotation and scaling, Pun et al. [21] proposed
an early feature point-based CMFD method. This method utilizes scale-invariant feature
transform (SIFT) [22,23] to extract feature points and applies the random sample consensus
(RANSAC) algorithm [24] to remove mismatched pairs through affine transformations.
However, the time complexity of this algorithm is relatively high, and it cannot detect multi-
ple types of tampering operations. Subsequently, researchers conducted studies on various
tampering operations. However, the location accuracy of this algorithm on pixel-level
datasets is still slightly insufficient.

Currently, feature-point-based methods are not effective at detecting tampering in
small or smooth areas. To address this issue, Liu et al. [25] proposed a detection method
based on k-means clustering. This method divides the image into smooth and complex
regions and uses SIFT and sector mask features to detect tampering in each region. However,
the accuracy of this algorithm needs to be improved. When compared to methods based on
blocks, methods based on feature points have numerous advantages [26]. For instance, the
most representative key points in the target region can be retrieved using the feature point
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method, enabling more precise detection and positioning of the target region. Feature point
extraction methods typically have a certain robustness and can withstand post-processing
operations such as rotation and scaling [27].

Compared to block-matching methods, the time required for feature point extraction
and matching is usually shorter, resulting in lower computational complexity. However,
there are still some issues with feature point-based methods. For example, matching time
increases accordingly when the extracted key points are dense, and tampering that occurs
in smooth areas is difficult to detect accurately [28].

3. SURF and A-KAZE Descriptors

This section mainly summarizes the feature descriptors SURF and A-KAZE [29].

3.1. SURF Descriptor

At present, the image CMFD algorithms based on feature points are mainly the SIFT
and SURF algorithms. The SURF algorithm uses the Hessian matrix for efficient calculations,
which overcomes the shortcomings of SIFT in terms of too high feature dimension and long
calculation time [30]. The SURF algorithm simplifies the Gaussian second-order differential
template in the Hessian determinant, i.e., converts the convolution smoothing operation,
to an addition and subtraction operation. Furthermore, the SURF algorithm has better
robustness and lower time complexity compared to the SIFT algorithm. SURF cannot
maintain the scale and rotation invariance of SIFT, but it has strong robustness to changes
in lighting and affine distortion [31]. SURF determines the key points by computing the
extreme points of the scale space through calculating the relevant Hessian matrix. The
Hessian matrix H(x, σ) can be represented as:

H(x, σ) =

[
Cxx(x, σ) Cxy(x, σ)
Cxy(x, σ) Cyy(x, σ)

]
(1)

In the formula, x = (x, y), Cxx(x, σ) is the convolution of the second-order partial
derivative ∂G(x, y, σ)/∂x2 of the Gaussian function and the image at the pixel point. The
determinant of matrix H(x, σ) is expressed as:

det(H) = Cxx(x, σ)·Cyy(x, σ)−
[
Cxy(x, σ)

]2
(2)

Due to the high time complexity of computing second-order partial derivatives of
images, SURF uses rectangular box filters to approximate the second-order partial deriva-
tives of Gaussian functions. The box filter is composed of a simple rectangular template,
which speeds up the convolution calculation and reduces the time complexity. Filtering
the image with the rectangular box filter can obtain Cxx(x, σ), Cxy(x, σ), and Cyy(x, σ), and
the Hessian matrix determinant for each coordinate point can be calculated to obtain the
Hessian determinant image. By changing the size of the rectangular box-shaped filter and
the scale of the Gaussian function σ, scale changes are achieved, thus generating multiple
Hessian determinant images and constructing a pyramid image. Using non-maximum
suppression to filter key points, we can compare each point with eight neighboring points
in the same scale and 18 neighboring points in adjacent scales. If the value of the point is
greater than the value of its 26 neighbors and the preset threshold TS (subscript S indicates
SURF), the point is determined as a key point.

The direction of SURF feature points depends on the response of a circular region
with a radius of 6 centered on the key point. With the key point as the center, a sector
region with an angle of π/3 is scanned within the circular region to calculate the total
horizontal and vertical Harr feature points of all points in the sector region. The longest
vector direction is selected as the main direction of the key point. After determining the
direction of the key point, a SURF descriptor is generated. Specifically, a square region
in the neighborhood with a side length of 20σ is selected around and aligned with the
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main direction of the key point. The square region is divided into 4 × 4 sub-regions, and
4-dimensional features are calculated for each of the 5σ × 5σ grids, including the horizontal
and vertical responses of the Harr wavelet in directions ∑ dx and ∑ dy, as well as the
absolute values of the responses in directions ∑|dx| and ∑|dy|. Finally, the 4-dimensional
features of each sub-region are accumulated into a 64-dimensional feature vector descriptor
by dividing it into 16 sub-regions.

3.2. A-KAZE Descriptor

A-KAZE is a feature-based image matching algorithm used for tasks such as image
feature detection, matching, and object tracking. The A-KAZE algorithm was developed
from the KAZE algorithm and employs a new feature detection method called accelerated
scale space extrema detection (ASSED), which can detect local extrema points in scale
space faster [32]. ASSED searches for local extrema points by comparing the Laplacian
of the Gaussian transformation at different scales. In smooth areas, the response of the
Gaussian Laplacian transformation is small, so only local extrema points can be detected in
larger scale spaces. The design of ASSED enables the A-KAZE algorithm to detect local
extrema points in larger scale spaces quickly, thus extracting features in smooth regions. A-
KAZE’s feature descriptor includes multi-scale and multi-directional features. The feature
descriptor, particularly for smooth regions, has distinct response values at different scales,
making it robust at various scales and enabling it to extract features in smooth regions. At
the same time, the feature descriptor can also calculate the main direction, making them
invariant to orientation and allowing them to match the same feature points at multiple
rotation angles, enhancing feature stability and discriminability.

In the A-KAZE feature detection method, a non-linear scale space is constructed using
non-linear diffusion filtering. Non-linear diffusion filtering considers the changes in pixel
intensity at different scales as the divergence of some form of flow function. The classical
non-linear diffusion formula is defined as:

∂L
∂t

= div[c(x, y, t)·∇L] (3)

In the formula, div represents the divergence operator, ∇ represents the gradient
operator, L represents the brightness information of the image, and c(x, y, t) represents the
transfer function, which can be expressed as:

c(x, y, t) = g(|∇Lσ(x, y, t)|) (4)

where ∇Lσ represents the gradient of image Lσ after Gaussian smoothing and time t is
used as a scale parameter; the larger its value, the simpler the representation of the image.
In this article, the conduction function used to extract key points with A-KAZE detector
is [33]:

g2 =
1

1 + |∇Lσ |2
λ2

(5)

In the formula, λ is the contrast factor that controls the level of diffusion; the larger its
value, the less corresponding edge information will be retained. The fast explicit diffusion
(FED) algorithm is used to build an image pyramid and obtain one group of images,
each with two layers. Then, group O and layer S are mapped to scale σ through the
corresponding formula:

σi(o, s) = 2o+ s
S , o = 0, 1, . . . , O− 1, s = 0, 1, . . . , S− 1, i = 0, 1, . . . , M− 1 (6)
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where M is the number of images in the image pyramid, and M = O× S. The unit of linear
filtering is scale σi, and the unit of non-linear diffusion filtering is time. The transformation
of σi → ti is realized by the following formula:

ti =
1
2

σ2
i , i = 0, 1, . . . , M− 1 (7)

where ti is evolutionary time. A set of evolutionary time values is obtained through this
mapping, and a non-linear scale space is constructed through these time values.

The key point detection of A-KAZE is similar to SURF; it calculates the Hessian
determinant of image Li in the non-linear scale space as follows:

Li
Hessian = σ2

i.n

(
Li

xxLi
yy − Li

xyLi
xy

)
(8)

In the formula, σi.n represents the scale-normalized scaling factor, and σi.n = σi/2oi
.

A-KAZE determines the key points in the same way as SURF.
However, unlike SURF, A-KAZE computes all first-order differentials within π/3

circular sectors and applies Gaussian weighting to make the response near the key points
most useful and the response far from the key points contribute the least. The response
values within the π/3 circular sectors are then vector-summed, and the angle of the
maximum vector over the entire circular region is the main orientation. A-KAZE uses
M-LDB as the descriptor of the key point. LDB divides a q× q square region centered on
the key point into p× p sub-squares, extracts the mean and gradient information of pixel
intensity (grayscale) within each sub-square, and performs binary testing, as follows:

τ
(

Ff unction(i), Ff unction(j)
)
=

{
1,
(

Ff unction(i)− Ff unction(j)
)
> 0, i 6= j

0, other
(9)

where Ff unction(·) represents the function that extracts the mean and gradient information
of pixel intensity, defined as:

Ff unction(·) =
{

Fintensity(·), Fdx(·), Fdy(·)
}

(10)

Fintensity(i) =
1
m

m

∑
k=1

Intensity(k), Fdx(i) = Gradientx(i), Fdy(i) =Gradienty(i) (11)

In the formula, Fintensity(i) represents the average pixel intensity information of the
ith sub-box, m represents the number of pixels in the ith sub-box, and Fdx(i) and Fdy(i)
represent the gradient information of the ith sub-box in the x and y directions, respectively.

Later, we rotated the sub-boxes to the main direction and adaptively down-sampled
them based on the scale space where the feature points were located in the sub-box. This
greatly improved the robustness of M-LDB, because it is no longer necessary to calculate
the mean of all pixel intensity information within the sub-box.

4. The Proposed Scheme

The general flow of the method proposed in this article is shown in Figure 2, which
includes first using two detection methods, SURF and A-KAZE, to extract feature points
from the input image. To solve the problem of insufficient feature point extraction in smooth
areas, we lowered the contrast threshold and combined the two detection methods to extract
feature points. Then, g2NN is used for feature matching to find similar feature vectors.
To improve the accuracy of tampering localization, we used the DBSCAN algorithm to
remove false matches. Finally, the tampered area is located by comparing the similarity
between the original image and the image after affine transformation.
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4.1. SURF and A-KAZE Feature Extraction

To address the issues of difficult detection and high computational complexity that
occur in smooth regions with tampering at the present stage, we combined two detection
methods, SURF and A-KAZE. Specifically, these methods are used to extract feature points
from tampered images, and descriptions of them are provided in Section 3 [34].

When using SURF to extract feature points from an image, we set the contrast to Ps
and store the extracted feature points in matrix xs = {x1, x2, . . . , xn}. To better represent
the coordinates of each feature point, the coordinates of the ith feature point are repre-
sented as xi

s =
(

xi
x, yi

s
)
. When extracting feature points from an image using A-KAZE,

the contrast threshold is set to PA and the extracted feature points are stored in matrix
xA = {x1, x2, . . . , xm}. To better represent the coordinates of each feature point, the coordi-
nates of the ith feature point are represented as xi

A =
(
xi

x, yi
s
)
. Then, SURF feature matrix

fs = { f1, f2, . . . , fn} and A-KAZE matrix fA = { f1, f2, . . . , fm} are calculated separately. In
this article, contrast threshold Ps is set to 0.1 and contrast threshold PA is set to 0.0001.

4.2. g2NN Feature Matching

After extracting feature points in the previous stage, g2NN is used to perform feature
matching on SURF feature fs = { f1, f2, . . . , fn} and A-KAZE feature fA = { f1, f2, . . . , fm}
to search for similar feature vectors [35]. Assuming there are n features, f = { f1, f2, . . . , fn},
the Euclidean distance is used to determine the similarity between two feature vectors. For
the ith key point, its corresponding feature is represented by fi, and the Euclidean distance
between fi and the remaining features { f1, f2, . . . , fi−1, fi+1, . . . , fn} is calculated. The
results are sorted in ascending order to obtain D = {d1, d2, . . . , dn−1}. In D, the ratio of dj
and dj+1 is calculated and evaluated using threshold Vt, as shown in the following formula:

dj

dj+1
< Vt, Vt ∈ (0, 1), j = 1, 2, . . . , n− 1 (12)

When the iteration reaches step k + 1, the process of this iteration will terminate, and
key point k will be considered as a candidate similar point matching the ith key point.
The value of Vt is 0.6. In the algorithm in this section, the k-d tree and nearest neighbor
algorithm are used to search for the Nkd points closest to the key point. g2NN feature
matching is then used on these points to find similar feature vectors to obtain the matching
key point pair matrix xw. However, there are still some mismatches in the obtained matrix
xw, which requires removing the mismatched pairs.

4.3. Removing Mismatched Pairs

Matching point pairs were obtained in the previous step, but many of them contain
errors. At this point, an effective method is needed to eliminate the mismatched pairs
in order to improve the accuracy of forgery detection and localization. Currently, the k-
means clustering algorithm or the hierarchical clustering algorithm are commonly used to
eliminate mismatches, but the problem is that they only consider the positional information
of the matching point pairs and ignore the constraints between the point pairs. The number
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of clusters needs to be set before clustering. Ester et al. [36] proposed a density-based
clustering algorithm, DBSCAN, which considers clusters as sets of maximum density-
connected points and partitions the dense areas accordingly. DBSCAN does not require the
extraction or setting of clustering parameters and can handle clusters of any shape even in
the presence of noise. Therefore, in this paper, DBSCAN is used for feature clustering to
eliminate mismatched pairs.

DBSCAN requires setting two important parameters, Eps and MinPts, respectively
denoting the radius of density and the threshold of core points, which is the minimum
number of points required to form a cluster. In this paper, Eps and MinPts are represented
as τ and M, respectively. In DBSCAN, point sets are defined based on the following three
categories, as shown in Figure 3:
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1. Core point: If point Xi has at least M points in its neighborhood, then Xi is a core point.
We can define the sets of all core points as Pc and the set of non-core points as Pnc.

2. Boundary point: If Xi satisfies Xi ∈ Pnc and is in the τ neighborhood of a core
point, then Xi is a boundary point. Boundary points can be located within the τ
neighborhood of one or more core points at the same time.

3. Outlier: This is neither a core point nor a boundary point.

The relationships between points are classified into three types: density direct, density
reachable, and density connected, as shown in Figure 3. The main process of the DBSCAN
algorithm is to classify the input points into different categories, iteratively search for
density-reachable objects of core points, form a new cluster, and then produce the final
clustering result through density connectivity. Figure 3 illustrates the relationships be-
tween points, where density reachable is a transitive relationship but not symmetric. Two
boundary points in the same cluster may not be density reachable to each other because
the core point condition may not be satisfied for both of them. However, there must be
at least one core point within a cluster from which all points are density reachable. In
Figure 3c, both boundary points are density reachable. Therefore, we introduce the concept
of density connectedness, which encompasses this relationship between boundary points.
The steps to transition from density reachable to density connected are as follows: First,
we calculate the density of each region and label them as density reachable based on a set
density threshold. At this stage, we focus on the internal density of each region. Building
upon density reachable, we further consider the adjacency relationships between regions.
If two density reachable regions have sufficient neighboring regions that can be connected
through density reachability, they are considered density connected. In this stage, we
emphasize the connectivity between regions.

Specifically, the goal of the algorithm is to divide set P into k effective clusters (where
k is obtained through the algorithm and does not need to be set in advance) and a cluster of
outliers. The calculation of the clustering identification array mi is as follows:

mi =

{
j(j > 0), i f Xi belongs to cluster j
−1, i f Xi is an outlier

(13)
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The goal of DBSCAN is transformed into generating clustering identification array mi,
where i = 1, 2, . . . , n and k is the number of all non-negative values in the {mi}n

i=1 types
(negative values represent outliers). The outliers in clustering identification array mi are
mismatched points. Finally, removing outliers produces an accurate matching sequence.

4.4. Tampered Region Localization

To further improve the accuracy of tampered region localization, in this paper we
compute the affine matrix of matching pairs and apply this transformation to the dense
regions of the image at the pixel level. The final tampered region is located by compar-
ing the similarity between the transformed image and the original image at the same
unknown location.

Estimation of affine transformation: An affine transformation matrix can reveal geo-
metric changes that occur between objects, such as rotation, scaling, and so on. Based on
feature point matching, the affine transformation between original and tampered regions
can be estimated using the coordinates of the matching pairs. Given two corresponding
sets of matching pair coordinates X = (x, y) and X̃ = (x̃, ỹ), their relationship is shown
as follows: x̃

ỹ
1

 =

a b tx
c d ty
0 0 1

x
y
1

 = T

x
y
1

 (14)

In the formula, tx and ty are translation parameters, while a, b, c, and d are scale
and rotation transformation parameters. Matrix T can be calculated using at least three
non-collinear matching pairs.

The set of matching pairs after removing the mismatched pairs is denoted as{(
X1, X̃1

)
,
(

X2, X̃2

)
, . . . ,

(
Xn, X̃n

)}
. Three points are randomly selected from each cluster,

their corresponding points are found in the matching list, and an affine transformation
matrix Ti is estimated from the three pairs of points. All matrices are then computed, and
an optimal matrix T is found that minimizes the error, as shown in the following formula:

argmin
T
‖X̃− TiX‖

2
(15)

Using the obtained optimal affine matrix T, the transformation is applied to all pixels
in the entire image. Then, the transformed image is overlaid with the original image,
with the original region YO overlapping the tampered region YD. Similarly, the inverse
transformation is applied to region T−1, with the tampered region YD overlapping the
original region YO in the same way.

YD = TYO, YO = T−1YD (16)

To locate the tampered regions, we utilize the polar cosine transform (PCT) feature as
the similarity measure and compute it for corresponding positions in both the original and
transformed images. When the difference between the two features is less than a certain
threshold, the location is marked to obtain a region-of-interest map. The PCT feature
calculation of the n-order continuous image g for l consecutive times is as follows:

f =
{∣∣Mn,l

∣∣such that n + l ≤ 3, 0 ≤ n, l < 3
}

(17)

In the formula:

Mn,l = Ωn

∫ 2π

0

∫ 1

0
[Hn,l(r, θ)]× g(r, θ)rdrdθ (18)

Ωn =

{
1/πn = 0
2/π n 6= 0

, Hn,l(r, θ) = cos
(

πnr2
)

ejlθ (19)
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where g(r, θ) is the image representation in polar coordinates.
Using a threshold value t to compare the feature differences in the overlapping areas,

the region is identified, and the final correlation map is obtained. Then, a Gaussian filter is
applied with a window size of 7× 7 and a standard deviation of 0.5 for denoising and detail
processing. Finally, the closing operation is performed to obtain the final detection result.

5. Experimental Results

This section describes the experimental tests conducted on public image datasets,
and the comparative analysis performed using evaluation indicators and detection effect
diagrams. This section verifies the advantages of the proposed method in terms of accuracy
and robustness against geometric transformations and shows that it is comparable to
existing research methods.

5.1. Datasets

In our experiments, we used two challenging datasets for evaluation: Ardizzone [37]
and CoMoFoD.

5.1.1. Ardizzone

This dataset is composed of medium-sized images, most of them with a size of either
1000× 700 or 700× 1000 pixels. The Ardizzone dataset is divided into several subsets:
Subset D0 contains 50 images with simple tampering that only involves basic translation
transformations; subsets D1 and D2 contain tampered images with additional rotations
and scaling transformations; and subset D3 contains the corresponding original images of
the tampered images in D0.

5.1.2. CoMoFoD

This dataset contains 200 original images with a size of 512× 512 pixels that have un-
dergone various geometric transformations, which are divided into five categories: scaling,
rotation, translation, deformation, and combination. Each category contains 40 examples
of tampered images, with different tampering methods applied to each category, including
noise, blur, JPEG compression, rotation, and scaling. The CoMoFoD dataset contains a total
of 10,400 images, in which the area of the replicated region ranges from 0.14 to 14.3% of the
image area.

Figure 4 displays original images, tampered images, and corresponding binary ground
truth maps from both datasets.
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5.2. Evaluation Metrics

The three most commonly used evaluation metrics—precision, recall, and F1 score—are
used in this paper to comprehensively analyze the detection performance of the proposed
method. These evaluation metrics are represented by P, R, and F1, respectively, and their
specific formulas are as follows:

P =
NFF

NFF + NAF
, R =

NFF
NFF + NFA

, F1 = 2× P× R
P + R

(20)

where NFF represents the number of tampered images/pixels that are considered to be
tampered; NAF represents the number of real images/pixels that are considered to be
tampered; and NFA represents the number of tampered images/pixels that are determined
to be real. On the basis of comparison with other relevant algorithms, the superiority
of the proposed method can be objectively evaluated. This approach not only relies on
intuitive detection results, it also enables a comprehensive evaluation of the proposed
method through objective data.

5.3. Lab Environment

The experimental environment was Core i5-6200U CPU (2.30 GHz), 8 GB memory,
and the software environment was Windows 10 + MATLAB R2019a.

5.4. Copy-Move Forgery Detection

This section presents the experimental detection results. The effectiveness of the
algorithm was validated by comparing the detection results with the given binary ground
truth image in the dataset. The first row of each detection result represents the tampered
image, the second row represents the binary ground truth image in the dataset, which
indicates the real tampered region, and the third row represents the experimental detection
result of the method in this paper. The blue area represents the correctly detected tampered
region, the red area represents the falsely detected region, the white area represents the
missed detection region, the dark gray area represents the real tampered region, and
the light gray area represents the tampered region after boundary post-processing. In
order to verify the effectiveness of the algorithm, two comparison algorithms were used
to comprehensively evaluate the detection performance of the proposed method. These
were the feature point method combining SIFT and KAZE, proposed by Aydan et al. [38],
followed by the feature extraction method using SURF proposed by Badr et al. [17]. The
experimental comparison results are presented in tables or figures.

Compared with block-based methods, the feature point extraction stage is extremely
important in feature point-based methods, especially the number of feature points extracted
in smooth areas. In this experiment, we tested SIFT, SURF, A-KAZE, and BRISK. For
traditional methods, a contrast threshold does not need to be set in advance during feature
extraction, and feature matching can be completed using functions in the OpenCV database.
After wrong matches have been eliminated, the set of matched pairs is then counted, as
shown in Table 1. We selected photos from the dataset for testing; the images in the first
and second columns came from the Ardizzone dataset, and those in the third and fourth
columns came from the CoMoFoD dataset. Among them, the first and third columns
show occlusion tampering on the original image, and the second and fourth columns show
addition tampering on the original image. Specific test photos are shown in Figure 5.

Table 1 presents the experimental results for the four columns of images in Figure 5,
clearly showing that the proposed SURF and A-KAZE feature points have significant
advantages compared to other feature points. Compared to some traditional feature points
that do not require setting a contrast threshold, a small contrast threshold was set in
the method proposed in this paper and SURF and A-KAZE were fused to obtain more
matching feature points in the feature extraction stage. Especially for the test image in
the first column of Figure 5, where tampering occurs in the smooth area of the sky, only
the proposed method detects the correct matching pairs, while other feature extraction
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methods do not detect any tampering. This leads to the tampering operations in the smooth
area being ignored, resulting in reduced detection effectiveness.

Table 1. Number of matching points of different feature points in tampered area.

Feature
Row

First Row Second Row Third Row Fourth Row

SIFT 0 16 215 16
SURF 0 2 124 5

A-KAZE 0 23 175 5
BRISK 0 17 96 4

SURF + A-KAZE 98 145 325 18
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5.4.1. Geometric Transformation Forgery Detection

This paper mainly focuses on the experimentation and testing of geometric transfor-
mation forgery, including simple translation forgery detection, rotation forgery detection
and scaling forgery detection. A certain number of photos were selected from the dataset
for each type of tampering, and the experimental detection results are presented in the
form of detection effect images.

Simple translation forgery detection: We conducted experimental tests on geometric
transformation forgery, including simple translation forgery detection, rotation forgery
detection, and scaling forgery detection. For each type of tampering, a certain number of
photos were selected from the dataset for experiments, and the results of the experimental
detection are displayed. Partial experimental results are given below, and are shown in
Figure 6. The first row of images in the figure represent the original image, the second
row comprises the binarized truth images provided in the dataset (used for comparison
with the detection results), and the third row presents the effect images. The third row
shows the detection results of the proposed algorithm, which was mainly used to test for
simple translation forgery operations. From Figure 6, it can be intuitively seen that the
experimental effect image of the proposed method almost coincides with the binary image
given in the dataset, and there are no missed detection areas. For images that have not
undergone complex tampering, the proposed method can more accurately locate tampered
areas, and there is no occurrence of false detection or missed detection in simple tampering.
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Figure 6. Experimental results of simple translational forgery detection. First row: original images;
second row: binarized truth images; third row: effect images of forgery detection.

Rotation transform forgery detection: We conducted forgery detection experiments
on images from two publicly available datasets, with the images subjected to rotation-
based tampering at angles of ±1

◦
, ±2

◦
, ±3

◦
, ±4

◦
, ±5

◦
, and ±10

◦
. The images in Figure 7

demonstrate the detection results for rotation angles of 1
◦
, 3
◦
, 5
◦
, and 10

◦
. The first row of

the figure shows the original images, the second row shows the binarized truth images
provided in the dataset (used for comparison with the detection algorithm), and the third
row shows the detection results of the method proposed in this paper; the detection results
are shown at different rotation angles. The comparison with the binarized truth images
from the dataset indicates that the proposed method maintains high detection accuracy
even at different rotation angles. The comparison with the binarized truth images in the
second row shows that there are almost no missed detections. This advantage is particularly
evident in small-scale rotations, and the proposed method has good detection performance.
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Scale transform forgery detection: We conducted scale manipulation experiments on
images from two publicly available datasets. The scaling factors used were 0.9, 0.95, 1.05,
1.25, and 1.5. Figure 8 presents the experimental results for these scaling factors, from left to
right. The first row represents the original image, the second row shows the binary ground
truth provided in the dataset, and the third row displays the experimental results of the
proposed method.
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By comparing the detection results in the figure (third row) with the binary images
provided in the dataset (second row), it is clear that the proposed method still has good
detection performance in scaling forgery detection. Especially for small compression factors,
the detection results almost have no missed detection areas. However, as the scaling factor
increases, for example, at a scaling factor of 1.5, it can be observed that there are missed
detection areas in the boundary of the detection results.

In summary, after conducting experiments on simple translation forgery, rotation
forgery at different angles, and compression factor forgery, it can be seen by comparison
with the binary images provided in the dataset that the method proposed in this paper is an
effective detection algorithm. For geometric transformation forgery, the proposed method
can accurately locate tampered regions, especially in smooth areas, where the detection
performance still shows good results. In addition, it also performs well in small-scale
rotation and compression tampering scenarios.

In addition to using intuitive effect diagrams to demonstrate the effectiveness of the
proposed method, we also conducted experiments at the image level. All images from the
Ardizzone and CoMoFoD datasets were tested to calculate the number of tampered images
correctly identified as tampered, the number of tampered images incorrectly identified
as real, and the number of real images incorrectly identified as tampered. In comparison
with other methods in the literature, precision, recall, and F1 were calculated, and the
experimental results are listed in Tables 2 and 3. The standard deviations of the three
evaluation metrics were also calculated, and the data are presented in Table 4.
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Table 2. Experimental results of precision (P), recall (R), and F1 evaluation metrics for images in the
Ardizzone dataset.

Method P (%) R (%) F1 (%)

Badr et al. [17] 89.52 91.23 90.37
Aydin et al. [38] 90.23 90.56 90.39

Proposed method 92.75 92.43 92.89

Table 3. Experimental results of precision (P), recall (R), and F1 evaluation metrics for images in the
CoMoFoD dataset.

Method P (%) R (%) F1 (%)

Badr et al. [17] 88.56 90.54 89.58
Aydin et al. [38] 89.46 91.56 90.50

Proposed method 95.23 93.78 95.12

Table 4. Standard deviation of three evaluation indicators on the two datasets.

Image Dataset Precision Recall F1

Ardizzone ±0.14 ±0.20 ±0.21
CoMoFoD ±0.15 ±0.24 ±0.28

We comprehensively analyzed the performance of the proposed algorithm through
three evaluation metrics and compared it with the algorithms proposed in [17,38]. Table 2
presents the experimental data obtained by testing the proposed method and the compari-
son algorithms on the Ardizzone dataset [37], where it can be clearly seen that the method
has certain advantages. Compared with the other algorithms, the precision of our proposed
algorithm is higher. Although the recall rate is slightly lower than that of the algorithm
in [17], the F1 value of the proposed algorithm indicates a significant advantage. This is
mainly because in the feature extraction stage, we used two detection methods, and the
A-KAZE detector extracted more features in smooth areas, resulting in better detection
performance in the tampering localization stage.

Table 3 shows the results of experimental testing on the CoMoFoD dataset. The
proposed algorithm has significant advantages in precision, which is higher than that of
the two comparison algorithms. The proposed method also has significant advantages in
recall and overall F1 value. The main reason for this is that the method proposed in [17]
only uses SURF for feature point extraction, determines suspicious areas by replacing
matching feature points with corresponding superpixel blocks, and then merges adjacent
blocks based on similar local color features. This method is less robust to rotation and
scale invariance and does not perform well in geometric transformation forgery detection.
In this paper, we combined SURF and A-KAZE in the feature extraction stage to obtain
enough feature points in smooth areas, and removed mismatches through a density-based
clustering method, thereby effectively and accurately locating tampered areas.

To further test the superiority of the proposed method in terms of time complexity,
we conducted tests on images in the Ardizzone and CoMoFoD datasets, and recorded
the time required for the proposed method and the comparison algorithms to detect a
single image. Table 5 presents the data. The proposed method required an average of
2.54 s for feature extraction on the Ardizzone dataset, and 61.58 s on average for feature
matching and detection of mismatched pairs. On the CoMoFoD dataset, the average time
for feature extraction was 2.24 s, and the time required for other detections was 51.99 s. The
method proposed in [38] required a longer time for feature extraction due to the greater
number of iterations and redundant feature points extracted, resulting in longer detection
time. The average detection time was 122.12 s on the Ardizzone dataset and 99.25 s on
the CoMoFoD dataset. The method proposed in [17] segmented the image equally and
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without overlapping, and used a segmentation algorithm to divide the entire image into
superpixel blocks, which undoubtedly increased the computational complexity of the
algorithm. Consequently, the average time required for this method was 184.23 s on the
Ardizzone dataset and 145.23 s on the CoMoFoD dataset. In summary, as a result of
combining SURF and A-KAZE, which has the advantage of two detectors complementing
one another, the proposed method outperformed the two comparison algorithms in terms
of time complexity.

Table 5. Time complexity comparison.

Image Dataset Badr et al. [17] Aydin et al. [38] Proposed Method

Ardizzone 184.23 s 122.12 s 65.12 s
CoMoFoD 145.23 s 99.25 s 54.23 s

5.4.2. Post-Processing Forgery Detection

This paper focuses primarily on post-processing operations for detecting tampering in
images using two methods: noise and Gaussian blur. The detection results were compared
and analyzed by comparing the visual detection effect with the binary image given in
the dataset.

Gaussian blur forgery detection: To evaluate the detection performance of the pro-
posed method on Gaussian blur forgery, we selected two blur factors, σ = 0.5 and σ = 2.
The detection results are shown in Figure 9. The first row in the figure shows the original
images, the second row shows the binarized truth images provided in the dataset, and
the third row shows the detection results of the proposed method. When the Gaussian
blur factor is set to σ = 2, it can be observed from the comparison between the detection
results of the proposed method (Figure 9, third row) and the binary images from the dataset
(Figure 9, second row) that there was no missed detection with the proposed method, and
it accurately located the tampered regions in the dataset. This indicates that the proposed
method has good detection performance on Gaussian blur forgery.
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Gaussian white noise forgery detection: To verify the detection performance of the
proposed method on Gaussian white noise tampering, we also tested the images in the
dataset by adding Gaussian white noise with mean m = 0 and variance v = 0.001 and
v = 0.0005. The detection results with Gaussian white noise forgery detection are shown
in Figure 10. The first row shows the original images, the second row shows the binary
images provided in the dataset, and the third row shows the experimental test results
obtained in this study. It can be observed from the comparison between the experimental
detection results (Figure 10, third row) and the binary images (Figure 10, second row) that
the proposed method had no missed detection and accurately located the tampered regions
with Gaussian white noise, demonstrating its effectiveness in detecting Gaussian white
noise forgery.
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The comparison between binarized truth images and detection results in Figures 9
and 10 shows that there are almost no missed detection regions with the proposed method.
Whether in noise forgery or Gaussian blur forgery detection, the detection results of this
paper are almost identical to the binary images provided in the dataset. This indicates that
the proposed method demonstrates excellent performance in post-processing operations,
such as Gaussian blur forgery and Gaussian white noise. Overall, the proposed method
can accurately locate tampered regions, especially when the selected blur factor and noise
variance are small, and the detection results are more accurate.

The results of the F1 score for the proposed method and the two comparison algorithms
are shown in Figure 11. From the figure, it can be observed that the proposed method has a
significant advantage in detecting Gaussian noise and blur forgery.
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6. Conclusions

In this paper, we combined SURF and A-KAZE detectors and used g2NN for feature
matching. To improve the localization accuracy, the DBSCAN algorithm was applied to
remove erroneous matches and reduce false positives. The experimental results show
that the proposed method has good detection performance. SURF and A-KAZE can
extract effective feature points in smooth areas, and the DBSCAN algorithm can remove
incorrect matchings, thus reducing false alarms. The proposed method demonstrates strong
robustness against various tampering types such as rotation and scaling, and achieves
improved detection accuracy in smooth areas. When small blur factors and noise variances
are used in tampering operations, this method exhibits good detection performance.
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