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Abstract: This study presents an innovative, intelligent obstacle avoidance module intended to
significantly enhance the collision prevention capabilities of the robotic arm mechanism onboard a
high-speed rail tunnel lining inspection train. The proposed module employs a fusion of ORB-SLAM3
and Normal Distribution Transform (NDT) point cloud registration techniques to achieve real-time
point cloud densification, ensuring reliable detection of small-volume targets. By leveraging spatial
filtering, cluster computation, and feature extraction, precise obstacle localization information is
further obtained. A fusion of multi-modal data is achieved by jointly calibrating 3D LiDAR and
camera images. Upon validation through field testing, it is demonstrated that the module can
effectively detect obstacles with a minimum diameter of 0.5 cm, with an average deviation controlled
within a 1–2 cm range and a safety margin of 3 cm, effectively preventing collisions. Compared to
traditional obstacle avoidance sensors, this module provides information across more dimensions,
offering robust support for the construction of powerful automated tunnel inspection control systems
and digital twin lifecycle analysis techniques for railway tunnels.

Keywords: tunnel lining inspection; intelligent obstacle avoidance; vehicle-mounted robotic arm; 3D
LiDAR; point cloud registration; spatial localization

1. Introduction

Obstacle detection is one of the key technologies in intelligent obstacle avoidance,
which is of great significance for the realization of autonomous driving, intelligent trans-
portation, and robotics. At present, widely applied technologies include obstacle sensing
technology [1] and digital twin technology [2–5]. Obstacle sensing technology mainly
collects environmental data through sensors, such as LiDAR (Light Detection and Rang-
ing), millimeter-wave radar, and cameras, and then uses algorithms based on point cloud
recognition and machine vision image recognition for obstacle detection and tracking.
Digital twin technology is a method for comparing real-world scenarios with virtual ones,
which can improve the accuracy of obstacle detection. Many scholars have made signifi-
cant contributions to the intelligent obstacle avoidance field in terms of sensor usage and
algorithm improvement.

In regard to sensor usage, Z.Q. et al. [6] proposed an intelligent obstacle detection
system using industrial cameras and LiDAR, enhancing safety in fully automated train
operation systems. Milioto et al. [7] presented an improved semantic segmentation method
for LiDAR data to address discretization errors and blurry CNN outputs. Multi-sensor
fusion approaches [8,9] have increased the reliability of obstacle detection and avoidance.
Yang et al. [10] introduced PIXOR, a single-stage detector for real-time object detection
in point clouds for autonomous driving, offering accuracy and real-time performance.
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X.D. et al. [11] improved the reliability of autonomous vehicles with a 3D LiDAR-based
obstacle detection and tracking method. Defauw, Nils, et al. [12] proposed real-time vehicle
detection on occupancy grid maps, contributing to a dependable environmental model for
autonomous driving.

Moreover, deep learning has achieved significant progress in point cloud recognition,
as exemplified by PointNet [13], PointNet++ [14], and PointCNN [15]. However, chal-
lenges, such as point cloud density, small objects, occlusions, and noise, persist [13–15].
In machine vision image recognition, Li, Peiliang, et al. [16] improved obstacle detection
with a 3D object detection method based on stereo imagery. Deep learning-based image
recognition methods, such as YOLO [17], SSD [18], DeepLab [19], and PSPNet [20], have
been extensively applied, enabling obstacle detection through pixel classification. In ad-
dition, DK Dewangan et al. [21–24] applied the advanced methods of deep learning to
the field of road detection and also achieved remarkable results. Nonetheless, complex
environments with varying illumination and shadows impact the accuracy of machine
vision-based technologies.

As for the application of digital twin technology, it offers the potential for testing ob-
stacle detection algorithms in virtual environments through data collection, modeling, and
simulation [25,26]. However, challenges such as data quality, model reliability and accuracy,
data privacy, and security remain [27,28], necessitating further research in this field.

Although obstacle detection technology has been widely applied in fields such as
autonomous driving and intelligent transportation, it still lacks effective applications in
high-speed rail tunnel non-destructive testing. Currently, for vehicle-mounted GPR to
inspect high-speed rail tunnel lining, it is crucial to maintain a continuous operating
distance of 10 cm ± 2 cm from the lining surface [29,30]. Real-time and accurate detection
of visual obstacles, such as the “anchor section” of the railway contact network (Figure 1a),
surface cables of the lining (Figure 1b), and protruding objects (Figure 1c), is necessary
to avoid damage to the detection device and to ensure the quality of the collected data.
Therefore, research on intelligent obstacle avoidance for vehicle-mounted GPR detection
devices is of utmost importance.
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contact network. (b) Surface cables of the lining. (c) Protruding objects.

Currently, the collision risk warning for vehicle-mounted GPR detection equipment
primarily relies on 2D scanning, which results in blind spots in the detection and warning
of critical collision risks posed by the protrusion size of obstacles. Additionally, real-time
manual attention to front-end risks is required during practical operations. This, combined
with the limited recognition capacity of the human eye, hinders the improvement of
detection efficiency.
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In response to these issues, this study conducts comprehensive research on upgrading
the obstacle avoidance system. Firstly, through the analysis of overall technical parame-
ter requirements and structure, the fundamental preconditions for module development
are proposed. Then, by integrating research on ORB-SLAM3 and Normal Distribution
Transform (NDT) techniques for point cloud alignment and thickening method study,
obstacle risk detection and localization based on safety boundary models, and multi-modal
data fusion technologies, collision risks for the robotic arm are timely warned. The obsta-
cle avoidance instruction is instantly fed back to the control system, achieving real-time
monitoring of the space ahead and intelligent obstacle avoidance.

Finally, through the development and testing of prototypes, the system’s adaptability
and reliability are validated. Results indicate that the system can accurately and effectively
identify and avoid obstacles in the detection direction. Moreover, it can not only qualita-
tively detect obstacles present in the environment but also output accurate quantitative
results for their spatial relative intrusion size. This lays the informational groundwork for
subsequent prediction and health management over the full lifecycle of the tunnel.

2. Overall Technical Parameter Requirements and Architecture Analysis

At present, the obstacle avoidance system of high-speed railway tunnel inspection
vehicles still relies on a combination of single-line laser 2D plane scanning and manual
real-time monitoring for detection and obstacle avoidance. This approach has insuffi-
cient detection capabilities for small obstacles generating sparse point clouds, and the risk
warning methods are relatively singular. To adapt to the obstacle avoidance requirements
of high-speed railway tunnel inspection, as shown in Table 1, according to the obstacle
avoidance requirements of the tunnel inspection vehicle in many practical applications, this
paper analyzes and summarizes the technical indicators required for the vehicle-mounted
Ground Penetrating Radar (GPR) detection device’s obstacle avoidance system. A hierar-
chical architecture (as shown in Figure 2) is adopted, and a comprehensive upgrade of the
hardware, software, and basic interface design is conducted based on the existing system.

Table 1. Obstacle avoidance system required technical indicators.

Parameter Type Requirement Parameters for
the Design System

Technical Parameters of
Existing System

Raised Object Detection

Size: Width ≥ 5 mm, Height ≥ 60 mm
/Early warning distance: 3~20 m

Detection width range: 5 m (containing 3 GPRs)

Anchor-section Detection
Early warning infringement amount ≥ 20 mm, Single-line qualitative detection (unable to

guide the movement of the manipulator)Early warning distance: 3~20 m

Special Cable Detection

Size: Width ≥ 5 mm, Height ≥ 60 mm
/Early warning distance: 3~20 m

Detection width range: 5 m (containing 3 GPRs)

Catenary frame detection
Early warning infringement amount ≥ 20 mm, Qualitative detection, no guidance for

mechanical armEarly warning distance: 3~20 m

Variable Cross-Section Detection
Early warning infringement amount ≥ 20 mm, Qualitative detection, no guidance for

mechanical armEarly warning distance: 3~20 m

Bi-directional detection requirement Bi-directional warning detection supported Unidirectional detection

Obstacle Positioning and volume
estimation

Positioning accuracy: ≤5 cm Two-dimensional plane positioning
(unable to estimate volume)Volume accuracy: ≤5%

Warning Visualization Real-time video display with Bounding Box, risk
distance annotation, and alarm prompt sound

Simple two-dimensional plane
visualization
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2.1. Hardware Model

The hardware model mainly includes the following devices:

(1) Front-end sensors: these consist of 3D LiDAR and cameras for real-time detection of
obstacles in the environment and capturing image information to obtain the three-
dimensional position information of objects and improve system detection accuracy.

(2) Processors: responsible for receiving data collected by sensors and conducting algo-
rithmic processing for multi-modal data fusion, obstacle detection, and identification.

(3) Communication module: this ensures real-time communication between LiDAR,
cameras, and processors.

(4) Human–machine interaction interface: the interface displays detection results, allow-
ing operators to view obstacle information and alarm prompts.

2.2. Software Configuration

The software configuration mainly includes the following aspects:

(1) Data collection and processing: preprocessing, time synchronization, and spatial
registration operations are performed on the data collected by LiDAR and cameras to
facilitate subsequent data fusion and processing.

(2) Multi-modal data fusion: by integrating 3D LiDAR detection results with image data,
the system achieves complementary data advantages and improves detection accuracy.

(3) Obstacle detection and identification: design and implementation of obstacle detection
and identification methods based on the information obtained from multi-modal
data fusion.

(4) Human–machine interaction interface: develop a user-friendly human–machine inter-
action interface for displaying obstacle detection results and alarm information.

(5) System integration and testing: integrate various modules and perform performance
testing and validation of the entire system.

Through the above overall architectural design, an intelligent detection and obstacle
avoidance system integrating 3D stereoscopic visualization safety monitoring, real-time
high-density point cloud detection, and hierarchical refined risk warning is formed. This
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system provides high-precision obstacle avoidance feedback and collision risk warning for
subsequent robotic arms.

3. Main Technical Research
3.1. Research on Point Cloud Registration and Thickening Method Combining ORB-SLAM3 and
NDT Technology

Addressing the issue of the sparseness of target object point clouds acquired by single-
frame LiDAR that fails to meet the detection requirements of small-volume obstacles in
high-speed rail tunnels, this study introduces a point cloud registration and densification
method integrating Oriented FAST and Rotated BRIEF Simultaneous Localization and
Mapping 3 (ORB-SLAM3) [31] and Normal Distributions Transform (NDT) techniques.
This method, by computing the transformation matrix between adjacent frames, aligns
multi-frame consecutive point cloud data within a certain time window to the coordinate
system of the real-time frame. As a result, real-time point cloud registration and multi-
frame accumulation are realized, enhancing the point cloud density and enabling the
reliable detection of small-volume obstacles in high-speed rail tunnels.

3.1.1. Point Cloud Registration

Point cloud registration refers to the process of transforming the overlapping parts of
point clouds into a unified coordinate system by solving the transformation matrix. Regis-
tration includes coarse registration and fine registration. Coarse registration is performed
when the position difference between two frames of point clouds is large, and the relative
pose is completely unknown, providing a better transformation initial value for subsequent
fine registration. Fine registration further optimizes the given initial transformation matrix
to obtain a more accurate transformation. Currently, widely used point cloud registra-
tion methods include iterative closest point (ICP) and normal distribution transformation
(NDT) [32].

For ICP registration, it minimizes the distance between two sets of point clouds by
finding the closest point pairs and iteratively calculating and applying translation and
rotation transformations. NDT is a probability distribution-based point cloud registration
method. It first divides the point cloud data into multiple grids and models the point cloud
data in each grid with Gaussian distribution. Then, it achieves registration by finding the
transformation that maximizes the overlap between the probability distributions of the two
sets of point cloud data. Furthermore, its primary steps are as follows:

(1) Acquisition and Preprocessing of Point Cloud: acquire the target point cloud and the
point cloud to be registered and preprocess them.

(2) Division of Target Point Cloud: divide the target point cloud into standard grids, with
each grid containing at least six points.

(3) Modeling: For each point x in the grid, a Gaussian probability density function
P(x) is modeled based on normal distribution by calculating the mean vector q and
covariance matrix C. This results in a Gaussian probability density function for each
grid point:

P(x) = c · e[−
1
2 (x−q)TC−1(x−q)] (1)

Here, c is a normalization constant.
(4) Setting the Initial Transformation Matrix: bring the point cloud to be registered close

to the target point cloud.
(5) Calculation of Score: Insert the points from the point cloud to be registered into P(x)

and calculate the probability values in each grid unit. Calculate these to obtain the
total score.

(6) Solution for Optimal Parameters: maximize the objective function obtained by multi-
plying all score values to find the optimal parameters.

In order to compare the applicability of the two methods in high-speed rail tunnel de-
tection, this paper selects the road point cloud data of the KITTI dataset [33] for comparative
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testing of the two methods. Considering the characteristics of high-speed rail tunnels with
few plane structures, the experimental data is rotated 10◦ along the Z-axis, and then point
cloud registration is performed separately. The experimental results are shown in Figure 3.
After registration, the root mean square error (RMSE) of the ICP method is significantly
larger than that of the NDT method. In order to further compare the applicability of the
two methods to the registration of rotating planes, this paper conducted eight experiments
from 0 to 30 degrees, and the RMSE of the two methods is shown in Figure 4. As can
be seen from the figure, the registration error of the ICP method increases sharply from
0.4 m at 8◦ to 1.12 m at 10◦, while the registration error of the NDT method remains stable
at around 0.45. The standard deviations of RMSE for the two groups of experiments are
0.52 (ICP) and 0.02 (NDT), indicating that the NDT method is more suitable for point cloud
registration in the presence of rotation. Therefore, this paper selects the NDT method as
the point cloud registration algorithm.
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3.1.2. Optimization and Densification of Point Cloud Registration

In order to enhance the accuracy of point cloud registration and achieve real-time
densification, this study first employs a spatial filtering algorithm to eliminate vehicular
interference from the point cloud, retaining the fundamental point cloud of the tunnel and
tunnel wall to improve matching precision. Following this, the ORB-SLAM3 technique
is integrated, combining vehicular camera information with point cloud data for joint
analysis. When leveraging the coupling relationship between the point cloud and the
image, distinctive features in the visual images are extracted, and the results of ORB-
SLAM3 computation are utilized to constrain the outcomes of point cloud registration.
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Lastly, using a real-time mapping computation method, an adjustable mapping frame
threshold N (information on the number of data frames contained in real-time mapping)
is designed. The first frame of mapping data, Map1, is obtained, and subsequent frame
data are cumulatively transformed into Map1 via the interframe transformation matrix,
generating a new mapping (Map2). If the number of frames in Map2 is less than the
predetermined threshold N, the computation of the transformation matrix for the next
frame continues. This process is repeated, integrating each frame of data into the current
mapping dataset via cumulative matrix transformation until the frame count reaches the
threshold N, thus achieving real-time densification of the point cloud. The degree of
interframe registration error is defined by the score size: a smaller score corresponds to a
smaller registration error and higher matching precision, and vice versa.

In summary, the NDT point cloud registration algorithm, with the support of grid
division technology and its independence from corresponding point feature computation
and matching, is advantageous. It is applicable for registering large, dense point cloud maps
and non-rigid point cloud data. For high-speed rail tunnels characterized by low overlap
rates and minimal plane structure, the point cloud registration and densification method
integrating ORB-SLAM3 and NDT techniques can effectively acquire dense, real-time point
cloud data.

3.2. Research on Obstacle Risk Detection and Localization Based on Security Boundary Model

To robustly and precisely evaluate potential collision risks, this paper proposes an
obstacle risk identification and positioning method based on a safety boundary model,
as depicted in Figure 5. Initially, a two-dimensional contour model is constructed, in-
corporating the mechanical arm, as well as the attached GPRs and sensors. When using
sensor data, the motion path of the mechanical arm relative to the tunnel is predicted
in real time. Subsequently, a safety margin of 3 cm is set, an inflation transformation is
performed on the two-dimensional contour, and spatial envelope segmentation is carried
out along the predicted motion direction to determine the safety boundary area and risk
monitoring area. Finally, spatial filtering and clustering computations are conducted to
eliminate accumulated point cloud data within the safety boundary area, and the pose and
size information of potential invading objects within the risk monitoring area is fed back to
the mechanical arm control system to evaluate collision risks. This method significantly
reduces the amount of invalid point cloud data, lowers the frequency of missed and false
reports, and enhances the efficiency and reliability of obstacle avoidance warnings.
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3.2.1. Research on Obstacle Detection Based on KD-Tree Nearest Search and Euclidean Clustering

In order to address the detection of invading foreign object point clouds, this paper
employs a method based on KD-tree (K-Dimensional tree) nearest search and Euclidean
clustering for accurate positioning and multi-object pose detection and localization. KD-
tree, a balanced binary tree structure that divides k-dimensional spatial data points, adopts
a divide-and-conquer strategy to partition space into multiple subparts. The core idea of
the KD-tree nearest point search algorithm can be divided into two stages: constructing the
KD-tree and searching for the nearest point.

Constructing the KD-tree: As illustrated in Figure 6, for a dataset composed of n-
dimensional data, the dataset is divided into two subsets, the left and right subtrees,
through a recursive process by selecting the splitting dimension and splitting point. The
dimension with the highest data variance is usually chosen as the splitting dimension, and
the median of the data in the splitting dimension is selected as the splitting point. The
above process is recursively applied to the left and right subtrees until the amount of data
in each subtree is smaller than the system-set maximum threshold.
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Figure 6. KD-tree Partitioning Process (a–d).

Searching for the nearest point: Starting from the root node of the KD-tree, the search
proceeds downward along the tree structure until the leaf node containing the target point
is found. Then, other subtrees are examined during backtracking to find closer points. By
comparing the distance between the target point and the current node and the distance
between the target point and the current node’s splitting dimension, it is determined
whether to search the other subtree. If a closer point is found during backtracking, the
current nearest point is updated.

As shown in Figure 7, Euclidean clustering is performed after completing the KD-tree
nearest point search. First, a point in space is located, and the nearest n points are found
using the KD-tree. The distances are then assessed, and points satisfying the threshold
condition are grouped into a cluster. This operation is repeated until no new points are
added to the cluster, resulting in a clustering subset.



Appl. Sci. 2023, 13, 7689 9 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21 
 

 
Figure 6. KD-tree Partitioning Process (a–d). 

Searching for the nearest point: Starting from the root node of the KD-tree, the search 
proceeds downward along the tree structure until the leaf node containing the target point 
is found. Then, other subtrees are examined during backtracking to find closer points. By 
comparing the distance between the target point and the current node and the distance 
between the target point and the current node’s splitting dimension, it is determined 
whether to search the other subtree. If a closer point is found during backtracking, the 
current nearest point is updated. 

As shown in Figure 7, Euclidean clustering is performed after completing the KD-
tree nearest point search. First, a point in space is located, and the nearest n points are 
found using the KD-tree. The distances are then assessed, and points satisfying the thresh-
old condition are grouped into a cluster. This operation is repeated until no new points 
are added to the cluster, resulting in a clustering subset. 

 
Figure 7. Flowchart of Euclidean Clustering Algorithm. 

  

X (cm) X (cm)

X (cm) X (cm)

(a)

(c)

(b)

(d)

Figure 7. Flowchart of Euclidean Clustering Algorithm.

3.2.2. Study on Obstacle Pose Localization

This paper applies the Oriented Bounding Box (OBB) algorithm to the clustering
subset’s point cloud for feature extraction, constructing a 3D Box bounding box to obtain
more precise obstacle localization information. The OBB algorithm considers the spatial
distribution of object vertices and finds the optimal direction and size to generate a compact
bounding box. The main steps include:

(1) Using the PCA method to obtain the point cloud’s three principal directions, centroid,
covariance matrix, and eigenvectors;

(2) Transforming the input point cloud to the origin, and constructing a bounding box
for the origin point cloud;

(3) Setting the input point cloud’s principal direction and bounding box and obtaining
the bounding box vertex coordinates of the original input point cloud through inverse
transformation.

As shown in Figure 8, the visual effect of a triangular frame point cloud before and
after the OBB algorithm is given, then its more accurate position and attitude are obtained.
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3.3. Study on Multi-Modal Data Fusion Technology for Obstacle Avoidance System

In order to quickly and intuitively view the warning information, the fusion display
of point cloud and camera data is particularly important. Therefore, how to effectively
merge point cloud and camera data is the focus of this research. This paper proposes a
multi-modal data fusion scheme based on time synchronization and spatial registration,
addressing the issue of fusing LiDAR and camera data within the system.
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In terms of time synchronization, due to the different data acquisition rates of LiDAR
and cameras, it is not feasible to employ multi-camera synchronization strategies typically
found in the field of machine vision. Instead, this paper adopts a method of adding
timestamps, thus actively searching for the nearest neighbor data in the data stream for
synchronization. Specifically, a nearest-time matching strategy is implemented for time
fusion. The time of the LiDAR data frame is taken as the baseline, matching the image
closest to it in time to meet the system’s application requirements.

In spatial registration, LiDAR point cloud data and image pixel points need to be
matched one-to-one to determine the coordinate transformation relationship between
the LiDAR and the camera. The transformation relationship between the LiDAR’s three-
dimensional world coordinates and the image pixel coordinates is then solved based on
the camera’s intrinsic and extrinsic parameters. This paper uses the Zhang Zhengyou
calibration method [34] to correct camera distortion and employs an algorithm based on a
calibration board to calculate the extrinsic parameters of the camera and LiDAR using the
feature point matching of 3D LiDAR point cloud and camera images. Through combined
calibration and spatial registration, the 3D LiDAR point cloud targets can be remapped to
the image target position according to the extrinsic parameters.

Figure 9 shows the remapping image of point clouds and images in the KITTI dataset.
After temporal synchronization and spatial registration, the matching error reaches to the
centimeter level, which meets the requirements of the system.
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By implementing the above methods, the advantages of 3D LiDAR and image data
are complementary, enabling more accurate detection and localization of tunnel obstacles.

4. System Development and Experimental Verification
4.1. System Development

To meet the overall technical parameter requirements and architecture analysis pro-
posed in this paper, software and hardware system development was conducted based on
the proposed high-speed rail tunnel obstacle detection and identification method.

4.1.1. Hardware System Development

The hardware system is the foundation of intelligent obstacle avoidance design, primar-
ily consisting of front-end sensors and onboard hardware. The front-end sensor integrates
high-performance LiDAR and high-definition cameras (as shown in Figure 10), including
eight onboard cameras and eight LiDARs. The LiDAR can perform area scanning within an
80◦ × 25◦ range, with a high scanning point density of up to 240,000 points per second. It
can accurately obtain the distance and orientation information of obstacles and can monitor
the space ahead in real time. The high-resolution (5 M) and high frame rate (30 fps) of
the cameras provide users with rich image information, assisting in identifying the shape
and nature of obstacles. The onboard hardware, including servers, power supply boxes,
displays, amplifiers and speakers, routers, etc., is primarily responsible for processing the
data collected by the sensors and implementing corresponding obstacle avoidance strate-
gies. The server, as the core of the entire system, runs the obstacle avoidance algorithm
and coordinates the work of various modules. The power supply box provides stable
electrical support to all components, ensuring the stable operation of the system under
harsh conditions. The display is used to show the operating status and alarm information
of the obstacle avoidance system in real time, helping operators understand the working
conditions of the system. The amplifier and speaker are used to emit sound alerts, remind-
ing operators of potential risks. The router is responsible for ensuring communication
between the various components, ensuring efficient and stable data transmission.
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Figure 10. Front-end Sensor. (a) Sensor appearance model. (b) Internal sensor layout. (c) Front-end
sensor prototype.

4.1.2. Software System Development

The software system comprises four main levels: collection, perception, decision, and
HMI interaction layers. The collection layer is responsible for base code, image distortion
correction, sensor external parameter calibration, point cloud coordinate transformation,
LiDAR PTP synchronization, data collection, and outputs registered images and point cloud
data streams in real time. The perception layer is responsible for modules such as real-time
point cloud registration densification, real-time drawing of the robotic arm’s 3D passable
area, abnormal point cloud cluster detection, AI recognition of hazardous objects based
on images, hazardous object classification, and equipment status self-check. The decision
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layer assesses the risk level, calculates the adjustment amount required by the robotic arm
to avoid collisions, and generates and saves log information. The HMI interaction layer
executes the commands of the decision layer, generates prompt videos and sound alerts,
and sends avoidance action information via the communication interface, completing the
risk warning process. The specific software process is shown in the Figure 11 below:
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4.1.3. Communication Interface and HMI Interaction Design

This system uses the Modbus-TCP communication protocol for data transmission
between it and the robotic arm control system. Modbus is a communication protocol
applied to the seventh layer of the OSI model, used to achieve client/server communication
between devices of different types of buses or networks. MODBUS is a request/response
protocol and provides services specified by function codes. MODBUS function codes are
elements of MODBUS request/response PDUs. In the communication process, the host
(this system) sends request information, including address code, function code, data, and
CRC check to the slave (robotic arm control system). The address code is used to identify
the address of the slave; the function code is used to specify the type of operation requested,
and the data represents the registered address and quantity to be read or written. CRC
check ensures the correctness of data transmission. After the slave receives the request, it
parses and processes it and executes the corresponding operation according to the function
code. After the operation is completed, the slave returns the result to the host. The returned
data includes address code, function code, data, and CRC check information. After the host
receives the response data, it parses the data. During system operation, access to external
networks is prohibited, and communication within the local area network is only allowed
with the robotic arm system, thereby achieving secure communication with the robotic arm
control system.

As shown in Figure 12, the HMI interaction design includes camera imaging modules,
radar imaging modules, equipment status modules, obstacle warning modules, accessory
control modules, and data processing modules. Users can independently configure UI
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display modes and point cloud display parameters, manually start the camera and LiDAR
devices, and control data processing functions.
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4.2. Experimental Verification

The purpose of the experiment was to carry out dynamic data collection in a real
tunnel environment, to verify the performance of each software and algorithmic submodule,
to fully test the system to meet the requirements of real-time detection, to evaluate the
processing performance of the algorithm on obstacles of different scales, and to confirm
the warning function of the system. The experiment mainly used a high-speed rail tunnel
detection vehicle, which was equipped with a set of geological radar equipment integrated
with a new generation of intelligent obstacle avoidance systems (see Figure 13a). Through
the danger warning information fed back by the sensors, the mechanical arm system was
guided to extend and retract the radar support and bending arm to avoid obstacles. The
experiment mainly conducted on-site intelligent obstacle avoidance tests on protrusions on
the tunnel wall and contact network frames (see Figure 13b,c).
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4.2.1. Experimental Verification of Point Cloud Registration and Densification Method

To verify the effectiveness of the NDT point cloud registration and densification
method fused with ORB-SLAM3 technology, the spatial ROI filtering algorithm was first
applied to remove the interfering point cloud of the car body. The experimental results, as
shown in Figure 14, effectively remove the point cloud information of the car body after
filtering and only retain the basic point cloud of the tunnel and tunnel wall, making the
point cloud registration more focused on the target area.
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Secondly, to balance the detection efficiency and obstacle recognition, we set the
mapping frame threshold N to 10. The experimental results are shown in Figure 15: images
a and b show the tunnel point cloud registration situation with registration error scores of
21.18 and 0.04, respectively. The point cloud information of the tunnel wall and contact
network line in these two pictures is clearly visible.
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Figure 15. Tunnel Point Cloud Registration Results. (a) Tunnel point cloud registration image with a
score of 21.18. (b) Tunnel point cloud registration image with a score of 0.04.

After completing the point cloud registration of all collected adjacent frame data, we
obtained the analysis result in Figure 16. Figure 16 shows that during the forward process
of the detection device, the registration error score of the adjacent frames gradually drops
from the highest of 21.18 to close to zero, indicating that the registration accuracy continues
to improve.
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Figure 16. Registration accuracy score results of adjacent frames in the experimental tunnel.

Finally, a point cloud densification enhancement experiment was conducted based
on single-frame registration results. The results are shown in Figure 17: The left image is
the original point cloud information image, with a total of 24,000 point cloud data, and the
right image is the point cloud information image after densification, with the point cloud
data increased to 240,000. As can be seen from the figure, the tunnel point cloud, especially
the contact network line point cloud, is significantly densified, which further enhances the
recognition of small targets.
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Figure 17. Images before and after tunnel point cloud thickening. (a) Point cloud data before
thickening. (b) Point cloud data after thickening.

It can be seen that the point cloud registration and densification method combining
ORB-SLAM3 and NDT technology has good effects in the application of high-speed rail tun-
nel obstacle detection and can meet the detection requirements of small-volume obstacles
in high-speed rail tunnels.

4.2.2. Obstacle Risk Detection and Location Method Experimental Verification

To verify the obstacle risk detection and location method based on the safety limit
model proposed in the previous section of the article, we first built a two-dimensional
contour model of the mechanical arm and detection equipment and divided the spatial
envelope along the predicted direction of motion. Then, by executing spatial filtering and
clustering calculations, the cumulative point cloud data in the safe area was eliminated. As
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shown in Figure 18, using the system-designed limit detection function module, the spatial
filtering algorithm was used to remove the data in the safe area, and the point cloud of
the head-end intrusion of the protruding cable frame on the tunnel wall was obtained to
reduce the generation of invalid point clouds while detecting risk obstacles, thus improving
detection efficiency.
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Finally, we applied the OBB algorithm to the point cloud of the clustered subset to
extract features, successfully obtaining the specific location and pose information of the
obstacle. Figure 19 shows the pose information of the contact network frame point cloud
after the OBB algorithm.
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Through the above experiments, we have verified the effectiveness and feasibility
of the obstacle risk detection and location method based on the safety limit model in
practical applications.
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4.2.3. Multi-Modal Data Fusion Technology Experimental Verification

As shown in Figure 20, based on the radar data frame time, the image in the image
sequence closest to it was matched to achieve time synchronization, and then through
spatial registration, the radar point cloud and image pixel points were matched one by one,
obtaining the remapping image of the tunnel contact network frame point cloud and its
camera image. Through actual measurement, the maximum error of time fusion using the
nearest time matching strategy is about 27 ms, which is far less than the interval between
radar data frames (100 ms) and will not cause error accumulation, and the maximum
matching error of the two types of data is 1.3 cm. Therefore, the results fully meet the
system requirements.
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4.2.4. System Overall Risk Warning Function Experimental Verification

The experimental procedure mainly includes the following steps: First, let the vehicle
equipped with a mechanical arm drive uniformly over the obstacle area (five times back and
forth), and record the actual warning values. Secondly, under the warning trigger condition,
send the target information of the mechanical arm posture adjustment. Then, the system
refreshes the obstacle warning information in real time during the response adjustment
and action execution of the mechanical arm, as well as after the action is completed, to
monitor the effectiveness of the obstacle avoidance action. Finally, by comparing the offline
measured values with the warning values, the accuracy and effect of the actual warning
are evaluated.

The experimental results are shown in Table 2: The table gives the system’s warning
and output values before and after the obstacle avoidance of the measured obstacle. From
this, it can be seen that the average obstacle avoidance error output by the mechanical arm
is between 1 and 2 cm, which meets the design accuracy requirements.

In conclusion, through system development and experimental verification, the obstacle
avoidance function of this system has been significantly improved compared to before. It
shows that the new generation of high-speed rail tunnel detection vehicles can fully meet
the intelligent obstacle avoidance needs during tunnel lining detection.
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Table 2. Mechanical arm obstacle avoidance test results.

Obstacle Base Value
(cm)

Distance from Obstacle to Envelope (cm)
Obstacle

Avoidance
Action

Pre-Avoidance System Alarm Value Post-Avoidance System Output Value

3-s Average 3-s Standard
Deviation

Average
Error 3-s Average 3-s Standard

Deviation
Average

Error

tunnel wall
pipeline 5.0 5.3 0.19 0.3 26.7 1.32 1.7 arm shrinks

20 cm

protruding
screw on

tunnel wall

5.0 5.1 0.10 0.1 16.0 1.10 1.0
antenna
shrinks
10 cm

0.0 −0.5 0.26 −0.5 8.4 1.28 −1.6
antenna
shrinks
10 cm

−5.0 −5.4 0.23 −0.4 3.9 1.14 −1.1
antenna
shrinks
10 cm

5. Conclusions and Outlook

To meet the intelligent obstacle avoidance needs of high-speed rail tunnel detection
vehicles during lining quality detection, this article, through software and hardware design
and development and on-site experimental verification, arrived at the following conclusions:

(1) The point cloud registration and densification method integrating ORB-SLAM3 and
NDT technology can detect small-volume obstacles with a diameter greater than
0.5 cm in high-speed rail tunnels in real time, improving the efficiency and safety of
tunnel detection.

(2) The obstacle risk detection and location method based on the safety limit model has
shown effectiveness and feasibility in on-site tests, with obstacle avoidance errors
between 1 and 2 cm, meeting design accuracy requirements. This provides higher
accuracy and robustness for obstacle identification in complex tunnel environments.

(3) The multi-modal data fusion scheme based on time synchronization and spatial
registration can visually observe obstacles, providing an effective early warning
function for the safe operation of high-speed rail.

(4) In the future, we will improve the accuracy and real-time performance of the intel-
ligent tunnel detection system, provide strong support for building more powerful
automated tunnel detection control systems, and digital twin lifecycle analysis tech-
nology for railway tunnels.
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