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Abstract: A closed-form solution for the common and differential modal currents induced on a
pair of infinitely long parallel conductors by a source, field coupled to a power line, is derived.
For lossy conductors, the current consists of a continuous spectrum of radiation modes and (for
the common mode) a modified low-loss Sommerfeld–Goubau (SG) mode and (for the differential
mode) a quasi-TEM mode. This model is used to investigate the influence of a parallel conductor
on microwave power line communication systems. When the complete current spectrum is used, it
is shown that the SG mode is not the primary reason why low-loss communication is possible on
power lines for distances on the order of 100 m. Nevertheless, and consistent with previous research,
microwave communication using power lines has advantages over free space communication, and
for typical parameters, the performance of these systems can be enhanced if the power line contains
more than one conductor.
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1. Background

The propagation of a low-loss surface wave on an open waveguide consisting of a
single lossy conductor in free space was investigated by Sommerfeld in 1899 and later,
in 1907, extended to the case of dielectric-coated conductors by Harms [1–3]. In 1950,
Goubau described the mode as a means of facilitating “wide-band long-distance commu-
nication” [4,5]. That work resulted in the identification of discrete propagation modes
for lossy conductors, dielectric-coated conductors or other conductors with appropriately
modified surfaces, as discussed by Collin [6] (pp. 718–720). Of interest, presented here is
the Sommerfeld–Goubau (SG) mode on a bare lossy conductor.

In the early 1950s, a significant amount of work was reported by Goubau et al. and
Dyott concerning the development of launchers for exciting this mode as well as investi-
gations of environmental impacts, such as rain, snow and ice and the effects of bends on
attenuation [4,5,7–9]. The launcher design work was heuristic and focused on matching
the transverse variation of the source field to that of the SG mode. Coated wires were
of special interest since the coating results in a more rapid decay of the field around the
conductor, and experimental launchers for these modes were reported. At about the same
time, Kikuchi studied the transition of quasi-TEM waves on a wire above earth to the SG
mode as the frequency increased into the microwave region [10,11]. Little additional work
on this mode was reported until 2004, when Wang and Mittleman suggested its use in the
terahertz frequency range as a lower-loss waveguide than either metallic tubes or optical
fibers. Specifically mentioned were spectroscopy, sensing and imaging applications but not
communications [12]. In 2006, Wiltse discussed the possibility of low-loss transmission and
the capability for transmitting high power in the millimeter-wave or terahertz frequency
ranges [13]. The specific idea of using the SG mode for wide-bandwidth open-waveguide
communication on power lines was introduced by Elmore in 2009 [14–16]. This was fol-
lowed in 2016 by an announcement from AT&T concerning a project to use SG-mode
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propagation on power lines for broadband communication [17]. Interest in the area of
broadband communication using this mode of propagation continues. For example, Galli,
Liu and Guanxi, reported a model for estimating channel capacity for open waveguides
constructed from lossy conductors [18].

In the past, a great deal of work has been conducted concerning the problem of
exciting currents on infinite wires with and without loss when using voltage sources [19,20].
However, voltage sources are not appropriate for communication along energized electric
power lines since a high-frequency source cannot be inserted into the line. Hence, field
coupling is the only option. While research on designing SG-mode launchers was conducted
in the 1950s, its emphasis was on dielectric-coated wires, given their more rapid transverse
decay of fields.

A complete solution for induced current consists of both SG mode current and a
current relating to the continuous spectrum of radiation modes. In 1964, a more rigorous
theory for the excitation of the SG mode using a ring source of magnetic current (identical to
a voltage source for the ring radius equal to the conductor radius) surrounding an infinite
lossy conductor was reported by Cohn and King [21]. In addition to the SG mode current,
they calculated the radiated fields using steepest descent integration (SDI). Unfortunately,
calculating these radiated fields is not equivalent to calculating the current due to the
continuous spectrum. This is because for field points near the conductor, the simple form
of SDI in [21] is not accurate since the SG pole is close to the saddle point [6]. Because this
field is needed to calculate the current via Ampere’s law, the current cannot be determined
accurately. Hence, Ref. [21] did not provide a complete expression for the induced current
(i.e., the SG mode and continuous spectrum).

In a recent publication, an investigation of propagation on an open wire as related
to microwave communication systems on power lines was reported [22]. This paper was
written in order to clarify the relationship between the discrete SG modal current and
the total current since it is the total current that is relevant to the performance of these
systems. More specifically, a closed-form solution for the current induced on an isolated
infinitely long lossy conductor by a voltage source in series with it or an electric dipole in
close proximity to it was found. This model included contributions from the continuous
spectrum of radiation modes as well as the low-loss discrete SG mode. While the relative
magnitudes of these two components were shown to be sensitive to frequency and wire
conductivity, the total current on a lossy conductor is nearly the same as that for a perfect
conductor over distances comparable to power line communication repeater spacing.
Hence, it was shown to be possible to use a simple expression for the total current from
antenna theory to evaluate the performance of these power line communication systems.
Further, for observation points not near the source, the current induced by the voltage and
dipole sources differs only by a known constant. Dipole sources were considered since
voltage sources cannot be inserted into power line conductors. Finally, the advantage of a
single-conductor communication channel over a wireless channel using high-gain antennas
was quantified.

However, it was also noted in [22] that power line conductors are not isolated, and,
given the fact that SG mode fields decay slowly in the transverse plane, the influence of
parallel conductors could be important. Some recent work has appeared on the topic of the
SG mode on a pair of wires, but it did not incorporate the full expression for current, which
would include the continuous spectrum [23]. Hence, the impact of a parallel conductor is
investigated in this paper. More specifically, a single additional conductor will be assumed
parallel to the one that is discussed in [22]. The two-conductor case is considered since
its solution can be decomposed into simple common and differential modes leading to
additional insight into the solution.

2. Problem Definition and Exact Solution

The problem is illustrated in Figure 1. Here, two infinitely long parallel lossy (conduc-
tivity σw) conductors, each of radius a and spaced a distance d apart are placed in the z
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direction. A voltage source of amplitude V volts at z = 0 and/or a y oriented elementary
electric dipole of length dl at a distance h from the origin along the y-axis are used to excite
currents on both conductors.
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The approach here is to solve for the currents excited by the voltage source and
then (later) to use the fixed relation between dipole and voltage sources derived in [22]
to calculate those caused by the dipole source. The method is identical to that for the
single-wire case except that there is an additional source of field (i.e., the second conductor).
Hence, there will be two coupled equations (one for each conductor boundary condition)
rather than a single one, as in [22].

A pair of homogeneous Fredholm integral equations of the second kind for the current
Î1(z) and Î2(z) induced on this conductor (valid for −∞ < z < ∞) can be written as

∞∫
−∞

(
g11

ez (a, z− z′) Î1(z′) + g12
ez (d− a, z− z′) Î2(z′)

)
dz′ + Êze(−d/2 + a, z)

= −V̂1δ(z) + ziw Î1(z′)
∞∫
−∞

(
g21

ez (d− a, z− z′) Î1(z′) + g22
ez (a, z− z′) Î2(z′)

)
dz′ + Êze(+d/2− a, z)

= −V̂2δ(z) + ziw Î2(z′)

(1)

gmn
ez (ρ, z− z′) is the axial electric field at (ρ, z) = (a, z) of a unit current of length dz′

at (0, z′), Êze(a, z) is the axial electric field at (y, z) = (a, z) of the vertical electric dipole,
and δ(z) is the Dirac delta function. ziw is the intrinsic impedance per unit length of the
conductor, which for conductor sizes and higher frequencies of interest used here can be
approximated as follows:

ziw
∼=
(

ωµo

2σw

)1/2 (1 + j)
2πa

, |kwa| >> 1 (2)

For (1), it has been assumed that the thin wire boundary condition Êz(a, z) = z1w Î(z)
is applied to the inside surface of each conductor radius. The time variation is exp(jωt),
and the caret notation, ˆ, indicates a phasor quantity.

A formal solution to (1) for the current can be developed given that the integral
equation is valid over the entire range of z from −∞ to ∞. The solution can be found by
taking the spatial Fourier transform of both sides of (1). This transform and its inverse (i.e.,
F̃(γ) and F̃−1(γ)) used here are defined as follows:

F̃( f (z)) = F̃(γ) =
∞∫
−∞

f (z)e+jγzdz (3)

F̃−1
(

F̃(γ)
)
= f (z) =

1
2π

∞∫
−∞

F̃(γ)e−jγzdγ (4)
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Here, the symbol ~ indicates a spatial Fourier transform with respect to the wire
direction z that is dependent on the transform variable γ.

Taking the Fourier transform of (1) using (3) and the convolution identity

F̃

 ∞∫
−∞

f
(
z′
)
h
(
z− z′

)
dz′

 = F̃( f (z))H̃(h(z)) (5)

Results in the algebraic equations (Note: the physical dimensions of all terms are
“volts” in the Fourier transform domain.)

G̃11
ez

ˆ̃I1(γ) + G̃12
ez Ĩ2(γ) +

ˆ̃Eez(−d/2 + a, γ) = −V̂1 + ziw
ˆ̃I1(γ) (6)

G̃21
ez

ˆ̃I1(γ) + G̃22
ez

ˆ̃I2(γ) +
ˆ̃Eez(d/2− a, γ) = −V̂2 + ziw

ˆ̃I2(γ) (7)

where G̃11
ez = G̃22

ez = G̃ez(−d/2 + a, γ) and G̃12
ez = G̃21

ez = G̃ez(d/2− a, γ), while ˆ̃Eez(−d/2
+a, h, γ) and ˆ̃Eez(d/2− a, h, γ) represent the axial electric field of the external source at
each conductor, where h is the distance of the external source above the conductors. V̂1 and
V̂2 represent the voltage at z = 0 of the source in series with each conductor.

The solution to these equations is formally valid at any frequency for which the conductor
radius a is small compared to the other dimensions and the wavelength at the frequency of
interest for which the conductor is appropriately modeled by its conductance σw.

Here, (The subscript notation 1/2 means 1 or 2. It should not be confused with the
superscript 1

2 which means square root)

G̃ez(x− x1/2, γ) =
1

4ωε0

(
γ2 − k2

0

)
H(2)

0

((
k2

0 − γ2
)1/2

ρ1/2

)
(8)

where ρ1/2 = |x− x1/2| and Im
(
k2

0 − γ2)1/2 ≤ 0
Equations (6) and (7) can be written more compactly in matrix form as follows:[

G̃11
ez − ziw G̃12

ez
G̃21

ez G̃22
ez − ziw

][ ˆ̃I1
ˆ̃I2

]
=

[
−V̂1 − E1

ez
−V̂2 − E2

ez

]
(9)

where (given symmetry and reciprocity) G̃11
ez − ziw = G̃22

ez − ziw and G̃12
ez = G̃21

ez . ˆ̃E
1
ez and

ˆ̃E
2
ez are, respectively, the axial electric fields of the external source evaluated at the bottom

surfaces of conductors 1 and 2.
The square matrix in (9) is 2 × 2. It is known that if it has 2 distinct eigenvalues, then

it has two distinct eigenvectors that are orthogonal with respect to it. It is also known that
any two-element vector (e.g., [ ˆ̃I]) can be expanded in this set of eigenvectors so that[

ˆ̃I
]
= [η]

[
ˆ̃Igm

]
(10)

where [ˆ̃Igm] is the matrix of the “geometric component” amplitudes (often referred to in the
power engineering literature simply as “mode” amplitudes), and |η| is the square matrix
(by columns) of normalized eigenvectors of the square matrix in (9). Since the matrix in (9)
is symmetric, it can be written as follows:[

A B
B A

]
(11)
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The eigenvalues of this matrix (λ) (not to be confused with λ, which is used elsewhere
to designate “wavelength”) are defined by[

A B
B A

][
qa
qb

]
= λ

[
qa
qb

]
(12)

where the vectors q = [qa, qb]
T are its eigenvectors. (not to be confused with q, which is

used elsewhere to represent charge). Since (12) represents a homogeneous set of equations,
it only has a solution if ∣∣∣∣ A− λ B

B A− λ

∣∣∣∣ = 0 (13)

This occurs when the quadratic

λ2 − 2Aλ +
(

A2 − B2
)
= 0 (14)

Hence, the eigenvalues are

λ1/2 = A± B = G̃11
ez − ziw ± G̃12

ez (15)

The eigenvectors can be found by inserting the eigenvalues into (12) as[
∓B B
B ∓B

][
qa
qb

]
= 0 (16)

Given that the matrix in (16) is symmetric, its eigenvectors are simply

q1 = a1

[
1
1

]
and q2 = a2

[
1
−1

]
(17)

where a1 and a2 are arbitrary constants. q1 represents the common component (again often
called the “common mode”), which has equal currents on each conductor, and q2 represents
the differential component (again often called the “differential mode”).

These eigenvectors can be written as a matrix of eigenvectors (by columns) that are
normalized to a magnitude of 1, as follows:

|η| = 1√
2

[
1 1
1 −1

]
(18)

If the column matrix of conductor currents ˆ̃I1 and ˆ̃I2 is expanded in the eigenvectors
of the symmetric matrix, then [ ˆ̃I1

ˆ̃I2

]
= [η]

[ ˆ̃Igm1
ˆ̃Igm2

]
(19)

where ˆ̃Igm1 and ˆ̃Igm2 are the “geometric mode” amplitudes.
If (19) is substituted into (9), the entire equation is pre-multiplied by the inverse matrix

[η]−1, which (in this case) is equal to [η].

1
2

[
1 1
1 −1

][
G̃11

ez − ziw G̃12
ez

G̃21
ez G̃22

ez − ziw

][
1 1
1 −1

][ ˆ̃Igm1
ˆ̃Igm2

]
=

1√
2

[
1 1
1 −1

]−V̂1 − ˆ̃E
1
ze

−V̂2 − ˆ̃E
2
ze

 (20)
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However, pre-multiplying and post-multiplying a matrix by a matrix of its eigenvec-
tors results in a diagonalized matrix of eigenvalues, as follows:

[η]−1

[
G̃11

ez − ziw G̃12
ez

G̃21
ez G̃22

ez − ziw

]
[η] =

[
G̃11

ez − ziw + G̃12
ez 0

0 G̃22
ez − ziw − G̃12

ez

]
(21)

In addition, the right-hand side of (20) becomes

1√
2

[
1 1
1 −1

][
−V̂1 − ˆ̃Eez

−V̂2 − ˆ̃Eez

]
= − 1√

2

V̂1 + V̂2 +
ˆ̃E

1
ez +

ˆ̃E
2
ez

V̂1 − V̂2 +
ˆ̃E

1
ez −

ˆ̃E
2
ez

 (22)

So that

1
2

[
G̃11

ez − ziw + G̃12
ez 0

0 G̃22
ez − ziw − G̃12

ez

][ ˆ̃Igm1
ˆ̃Igm2

]
=
−1√

2

V̂1 + V̂2 +
ˆ̃E

1
ez +

ˆ̃E
2
ez

V̂1 − V̂2 +
ˆ̃E

1
ez −

ˆ̃E
2
ez

 (23)

Differential and Common Modes

Since the matrix is diagonalized, the solutions to this equation for the component
amplitudes can be obtained via a simple inspection, as follows:

ˆ̃Igm1 = −
√

2
V̂1 + V̂2 +

ˆ̃E
1
ez +

ˆ̃E
2
ez

G̃11
ez − ziw + G̃12

ez
(24)

and

ˆ̃Igm2 = −
√

2
V̂1 − V̂2 +

ˆ̃E
1
ez −

ˆ̃E
2
ez

G̃11
ez − ziw − G̃12

ez
(25)

From these results, it is trivial to find formal solutions for the actual conductor currents,

if, for example, the external electric fields ˆ̃E
1
ez and ˆ̃E

2
ez are assumed to be zero, and V̂1 =

V̂, V̂2 = 0, wherein both the common and differential mode are excited. Given this,

ˆ̃I1 = ˆ̃I2 = − V̂
G̃11

ez − ziw + G̃12
ez

(26)

for the common mode and

ˆ̃I1 = − ˆ̃I2 = − V̂
G̃11

ez − ziw − G̃12
ez

(27)

for the differential mode.
As above, with excitation on only one conductor, both geometric modes will be excited,

and each has one or more distinct propagation modes, and the rate at which each mode is
attenuated as it propagates along the wires will be different.

Now using (8), the denominators of (26) and (27) can be written, respectively, as

G̃11
ez − ziw ± G̃12

ez = 1
4ωε0

{(
γ2 − k2

0
)[

H(2)
0

((
k2

0 − γ2)1/2a
)
± H(2)

0

((
k2

0 − γ2)1/2d
)]
− δiw

}
= −1

4ωε0

{(
k2

0 − γ2)[H(2)
0

((
k2

0 − γ2)1/2a
)
± H(2)

0

((
k2

0 − γ2)1/2d
)]

+ δiw

}
= −1

4ωε0

{
ζ2
[

H(2)
0 (ζa)± H(2)

0 (ζd)
]
+ δiw

} (28)

where the + sign is for the common mode and the − sign is for the differential mode and

ζ =
(

k2
0 − γ2

)1/2
, Im(ζ) ≤ 0 δiw = 4ωε0ziw (29)
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Finally, the formal solution to the integral equations for common mode can be written
using the inverse Fourier transform as

Îc/d
1 (z) = ± Îc/d

2 (z) =
1

2π

∞∫
−∞

(
4ωε0V̂e−jγz

D̃±(γ)

)
dγ (30)

where
D̃±(γ) = ζ2

[
H(2)

0 (ζa)± H(2)
0 (ζd)

]
+ δiw (31)

and the individual currents in each wire can be written as

Î1(z) = Îc
1(z) + Îd

1 (z) (32)

and
Î2(z) = Îc

2(z) + Îd
2 (z) = Îc

1(z)− Îd
1 (z) (33)

3. The Spectral Solution

Solving (30) involves deforming the integration along the real γ axis into the complex
γ plane, as shown in Figures 2 and 3. To accomplish this, it is first necessary to discuss
the singularities of the integrand of (30) in this plane. Given the multivalued square root
function, branch point pairs can be identified at γb = ±k0,∓j∞ with branch cuts connecting
them, defined as shown in Figure 2. As a further comment, the “proper” Riemann sheet is
defined as Im(ζ) ≤ 0. Since the branch cuts in Figures 2 and 3 are defined so that Im(ζ) = 0,
the visible (i.e., top) portion of the complex plane is the proper sheet where Im(ζ) ≤ 0. In
addition to the branch points and cuts, there is a pole γp, which occurs on the proper sheet
at D̃±(γp) = 0, which is different for the common and differential modes.
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Figure 2. Contour deformation for evaluating (4) for the common mode along with a definition of
the relevant branch cut integration and the generalized mSG pole.

First, (30) for the common mode will be evaluated. In this case, (i.e., Figure 2),
the solution will be the branch cut integration plus the residue of a pole γmSG, which
corresponds to the SG pole described in [22] modified by the presence of the second wire.

The result is quite similar to the case discussed in [22], except that the details of the
branch cut integration and the mSG mode are different. Also note that if the conductivity
becomes infinite, the mSG pole will disappear into the branch cut at k0. One consequence
is the more complicated branch cut integration due to the additional term containing the
distance d.



Appl. Sci. 2023, 13, 7846 8 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 
Figure 2. Contour deformation for evaluating (4) for the common mode along with a definition of 
the relevant branch cut integration and the generalized mSG pole. 

 
Figure 3. Contour deformation for evaluating (4) for the differential mode along with a definition of 
the relevant branch cut integration and the quasi-TEM pole. 

The case for the differential mode is somewhat different, as illustrated in Figure 3. 
Here, there is no pole that corresponds to the SG pole in the case of a single wire. This can 
be illustrated through an examination of the denominator of (30). In the single-wire case, 
there is only a single Hankel function, and the SG pole occurs because this function has a 
logarithmic singularity near 0k . In the case of the two-wire differential mode, the second 
Hankel function cancels this singularity, and there is no mSG pole. However, there is an-
other pole that corresponds to the well-known quasi-TEM mode for a pair of parallel 
wires. 

3.1. Calculation of Pole Locations 
The zero of (31) (i.e., either the mSG or quasi-TEM pole of the integrand of (30) here 

given as γp and known to be near k0) can be found using Newton�s iterative method. In 
this case, an initial guess for the zero is selected as γp(0) and successive approximations are 
found as 0028 

( 1)
( ) ( 1)

( 1)

( )
'( )

p n
p n p n

p n

D
D

γ
γ γ

γ
± −

−
± −

= −

  (34)

where ( )D γ±
  is given as (31), and its derivative with respect to γ, ( )'D γ±

  can be shown 
to be [24] 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0 0

2 2
1 1

' 2 2D H a H d

aH a dH d

γ γ ζ ζ

ζ ζ ζ ζ

±
= − −

+ ± 

 
 (35)

Figure 3. Contour deformation for evaluating (4) for the differential mode along with a definition of
the relevant branch cut integration and the quasi-TEM pole.

The case for the differential mode is somewhat different, as illustrated in Figure 3.
Here, there is no pole that corresponds to the SG pole in the case of a single wire. This can
be illustrated through an examination of the denominator of (30). In the single-wire case,
there is only a single Hankel function, and the SG pole occurs because this function has a
logarithmic singularity near k0. In the case of the two-wire differential mode, the second
Hankel function cancels this singularity, and there is no mSG pole. However, there is another
pole that corresponds to the well-known quasi-TEM mode for a pair of parallel wires.

3.1. Calculation of Pole Locations

The zero of (31) (i.e., either the mSG or quasi-TEM pole of the integrand of (30) here
given as γp and known to be near k0) can be found using Newton’s iterative method. In
this case, an initial guess for the zero is selected as γp(0) and successive approximations are
found as 0028

γp(n) = γp(n−1) −
D̃±(γp(n−1))

D̃′±(γp(n−1))
(34)

where D̃±(γ) is given as (31), and its derivative with respect to γ, D̃′±(γ) can be shown to
be [24]

D̃′±(γ) = −γ
[
−2H(2)

0 (ζa)∓ 2H(2)
0 (ζd)

+ζaH(2)
1 (ζa)± ζdH(2)

1 (ζd)
] (35)

It has been found that the sequence (34) converges quickly if the initial value γp(0) is
selected to be near k0.

A good approximation for the quasi-TEM mode propagation constant (using small
argument expansions for the Hankel function in (31) with the minus sign) is

γQTEM ∼= k0 −
jπδiw

4k0 ln(d/a)
(36)

3.2. Evaluation of the Current

Given the singularities of D̃±(γ), (30) can now be evaluated by deforming the original
contour around the lower branch cut entirely on the proper Riemann sheet, as illustrated in
Figures 2 and 3. Given factor e−jγz in the integrand of (30), the integrations along the lower
infinite semicircle are zero. Hence, the original integrations reduce to integrations along
both sides of the branch cut, as shown. However, because the pole at γp is enclosed by the
original and new contours, its residue must be added to each integration.

Equation (30) is integrated around the branch cut using the identities [24]

H(2)
0 (−z) = −H(1)

0 (z) (37)
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H(1)
0 (ζa) = J0(ζa) + jY0(ζa) (38)

H(2)
0 (ζa) = J0(ζa)− jY0(ζa) (39)

where H(1)
0 (q), J0(q)and Y0(q) are, respectively, the Hankel function of the first kind and

Bessel functions of the first and second kind or order zero and argument q. After multiplying
the numerator and denominator by ζ2 to avoid infinity in the denominator at γ = k0, the
horizontal portion of the branch cut integral between 0 and k0 is (Note that the integrations
on the two sides of the branch cut do not cancel because the argument of ζ is different
on the each side due to the fact that it is defined as a square root. More specifically, the
different arguments of ζ are indicated in Figures 2 and 3).

Îc/d
h (z) =

−4ωε0V̂
π

k0∫
0

(
ζ2(J0(ζa)± J0(ζd))e−jγzdγ

Mh
±(γ)

)
(40)

where
Mh
±(γ) = ζ4

(
(J0(ζa)± J0(ζd))2 + (Y0(ζa)±Y0(ζd))2

)
+j(2δiwζ2)(Y0(ζa)±Y0(ζd))− δ2

iw.
(41)

The vertical portion of the branch cut integral from γ = −j∞ to γ = 0 can be written
(after using the substitutions γ = −ju, dγ = −jdu) and defining ζi =

(
k2

0 + u2)1/2 as

Îc/d
v (z)

−j4ωε0V̂
π

∞∫
0

(
ζ2

i (J0(ζia)± J0(ζid))e−uzdu
Mv
±(γ)

)
(42)

where
Mv
±(γ) = ζ4

i

(
(J0(ζia)± J0(ζid))

2 + (Y0(ζia)±Y0(ζid))
2
)

+j(2δiwζ2
i )(Y0(ζia)±Y0(ζid))− δ2

iw

(43)

The subscripts “h” and “v” in (40) and (42) indicate the contribution from the horizontal
and vertical portions of the branch cut integration, respectively. If δiw is finite, (40) and (42)
are relatively straightforward to integrate numerically.

As noted earlier in Figures 2 and 3, there is a pole on the proper Riemann sheet in
the common mode case (i.e., the mSG pole) and in the differential mode case (i.e., the
Quasi-TEM pole) located between the original contour and integration contour used in this
work. Hence, the appropriate residue must be added to the branch cut integral in each case.
This residue can be found directly from (31) by expanding D̃±(γ) as a Taylor series around
γp. The result is

Îres(z) =
−2π j NV

D̃′±
(
γp
) e−jγpz (44)

where D′±
(
γp
)

can be found in (35).
The total induced modal currents then are

Îc(z) = Îc
h(z) + Îc

v(z) + ÎmSG
res (z) (45)

for the common mode and

Îd(z) = Îd
h (z) + Îd

v (z) + ÎQTEM
res (z) (46)

for the differential mode.
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3.3. The Special Case for Perfectly Conducting Conductors

In the case of δiw = 0, the term 1/ζ2 in the denominator of (40) and (42) grows without
bound near k0 (due to the fact that the pole has been absorbed into k0). However, in the com-
mon mode case, (39) is still integrable since the sum of Neumann functions in the denominator
limits this growth. However, more care must be used to evaluate the integral. Note that this
does not happen in the differential mode case because the difference in Neumann functions
does not grow near k0. Given this difficulty, (40) is separated into two parts.

Îc
h(z) = Îc

ha(z) + Îc
hb(z) (47)

where the first is
Îc
ha(z) =

−4ωε0V̂
π ·

k0(1−∆)∫
0

(
(J0(ζa)+J0(ζd))e−jγzdγ

ζ2
(
(J0(ζa)+J0(ζd))2+(Y0(ζa)+Y0(ζd))2

)
) (48)

and the second (following the method of [22]) is

ÎV
hb(z) ∼=

−V̂
η0

e−jk0z

{
tan−1

[
ln(e2γe k2

0ad∆/2)
π

]
+ π/2

}
(49)

η0 =
√

µ0/ε0 is the impedance of free space, γe is the Euler constant, ∆ is small enough
that ζ2 =

(
k2

0 − γ2) ∼= 2k0(k0 − γ) and small argument approximations can be used for the
Bessel functions [24]. In this solution, the substitutions u = (k0 − γ) and v = ln

(
e2γe k0a2u

)
have been used. Note that (49) accounts for the mSG pole residue, which (for δiw = 0) has
been absorbed into k0. Finally, (42) along the vertical portion of the branch cut (but with
δiw = 0) can be evaluated numerically as earlier.

Since the pole at γp is absorbed into k0, there is no separate residue term. Given these
results, the current induced on a perfect conductor by the voltage source is

Îc
h(z) = Îc

ha(z) + Îc
hb(z) + Îc

v(z) (50)

3.4. Relationship to Dipole Excitation

It was shown in [22] that there is a simple relationship between the current excited
by a voltage source and that by a dipole in the immediate proximity of the conductor. To
convert from the voltage source solution to that for a dipole with current Îd(ω) and length
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where the plus (minus) sign is for the current on wire one (two). 
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/2 from the outer surface of the conductor, one must
multiply the voltage solution by the factor

− Îd(ω)η0/(Vπ) (51)

Since the dipole is assumed to be very close to the conductor, its influence is limited
to that of that conductor in its proximity. Hence, this factor can also be used to convert
the two-wire case for a voltage source on one conductor only to the dipole solution for the
two-wire case.

3.5. A Simple Solution

Shen, Wu and King [25] have developed a simplified solution for the total current in
the single conductor perfectly conducting the case that is valid for z/(k0a2) >> 1. It is

ÎcA(z) ∼=
−jV
η0

ln
[

1 +
2π j

(ln(2z/(k0a2)− γe − j3π/2)

]
e−jk0z (52)

It was shown in [22] that (52) is a very good approximation of the total current (i.e.,
continuous spectrum plus the SG mode) induced on a conductor with typical conductivity.
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Hence, it was used as a simple approximation for the total current on a lossy wire. It will
be shown in the next section that it is reasonable to use (52) for the common mode current
in the two-wire case if the wire radius “a” is replaced by the geometric mean radius of the
two wires,

√
ad. The notion that this is reasonable can be shown by examining (49) and

noting that a major contribution to the common mode current is the same as that for the
single wire case in [22} but with “a” replaced by

√
ad.

It will also be demonstrated shortly that the quasi-TEM mode contribution to the
differential mode is the dominant contribution away from the immediate vicinity of the
source. Its residue (using small argument expansions for the Hankel functions in (35) is

ÎdA(z) =
2πV

η0 ln(d/a)
e−jγQTEMz (53)

Hence, a reasonable approximation for the total current on the two wires is as follows

Î1/2(z) = ÎcA(z)± ÎdA(z) (54)

where the plus (minus) sign is for the current on wire one (two).

4. Results
4.1. Pole Locations

The first result (shown in Table 1) is a set of propagation constants for the SG (single
wire) mode discussed in [22] and the mSG (two-wire common) and quasi-TEM (differential)
modes for 1 and 10 GHz. The SG and mSG modes were found using a numerical solution
of (31) set to zero without (for the SG mode) and with (for the mSG mode assuming the +
sign) the second Hankel function. The quasi-TEM pole location has been determined using
(31) set to zero with a minus sign or (36).

Table 1. Modal propagation constants for a = 1 cm,σw = 3.5× 107 S/m, d (for mSG and Quasi-TEM) = 0.5 m.

Frequency (GHz) Type of Pole (γp−k0)/k0 × 10−6

1 SG 9.1 − j10.3

1 mSG 5.9 − j7.0

1 Quasi-TEM 17.2 − j17.2

10 SG 3.8 − j4.5

10 mSG 2.8 − j3.7

10 Quasi-TEM 5.5 − j5.6

It is clear that the mSG mode has slightly less loss than the SG mode. This is due
to the fact that the current is spread out over a larger area of wire surface. However, the
Quasi-TEM mode has a significantly larger loss factor. Hence, for communication systems,
it is important to examine the excitation of each mode in the single- and two-wire cases.

4.2. Common vs. Differential Mode Solutions

In Figure 4, results are shown for the magnitude of the current distributions at 1 GHz
for the common and differential modes. Two methods are used for calculating the common
mode current: the perfect conducting method of (47) and the lossy conductor case in
(45). There is little difference between these two methods over typical communication
ranges, as was the case in [22]. Hence, perfect conductor theory can be used. Second, in
the lossy conductor case, both the continuous spectrum and the mSG modal component
are important for typical communication distances. There is no important condition (for
communications) for which the mSG mode dominates the continuous spectrum (at least
for the source studied here). Note, however, that for the differential mode, the quasi-TEM
mode dominates even at very short distances away from the source.
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Figure 5 illustrates that (52) is a reasonable approximation for the total common
mode current, (44), with a→

√
ad , especially at lower microwave frequencies. When this

substitution is made, the branch cut integration of (40)–(43) can be avoided.
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Figures 6 and 7 are plots of the individual wire currents excited by a voltage generator
at z = 0 on wires 1 and 2, as well as the single wire current from [22] for frequencies of
1 and 10 GHz, respectively. As expected, the current on wire 1 exceeds that on wire 2 in
the two-wire case. In addition, of interest is the fact that the current on wire 1 at 100 m
for the two-wire case is significantly higher than that on the single wire. This indicates
that the performance of a microwave power line communication system can be enhanced
by the existence of parallel wires. This conclusion is consistent with that reported in [7].
Additionally, when approximations of (52)–(54) can be used, very simple expressions for
the current result. This is more commonly true for Î1(z), which has smaller errors and is
also more important for evaluating communication systems.
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4.3. Communication System Performance 
It was shown in [22] that there are significant advantages to using a power line con-

ductor as an open waveguide compared to free space communication systems for micro-
wave communications links between two power line poles on the order of 100 m apart. 
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5. Conclusions 
• Closed-form solutions for the common and differential mode currents excited on a 

pair of parallel wires by a voltage source on one wire have been derived. Spectral 
solutions using a continuous spectrum of currents and the modified Sommerfeld–
Goubau (mSG) and quasi-TEM modes in the common and differential mode cases, 
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• It is shown that the mSG mode is not the primary reason why microwave communi-
cation using power line conductors for distances on the order of 100 m has relatively 
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• A simple formula for the total current on the driven wire may often be used to ap-
proximate the total induced current in the two-wire case. 

• For distances comparable to microwave power line communication system repeater 
spacing, using power line conductors as a waveguide has significant advantages over 
free space communications. Further, a second conductor can enhance system perfor-
mance. 
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Figure 7. Comparison of the individual wire currents in the two-wire case and the single-wire case.
f = 10 GHz. All other parameters are given in Table 1.

4.3. Communication System Performance

It was shown in [22] that there are significant advantages to using a power line
conductor as an open waveguide compared to free space communication systems for
microwave communications links between two power line poles on the order of 100 m
apart. Because the total attenuation of a system containing two conductors is smaller than
that for a single conductor, this conclusion is even stronger than the two-wire case.

5. Conclusions

• Closed-form solutions for the common and differential mode currents excited on a pair
of parallel wires by a voltage source on one wire have been derived. Spectral solutions
using a continuous spectrum of currents and the modified Sommerfeld–Goubau (mSG)
and quasi-TEM modes in the common and differential mode cases, respectively, are given.

• It is shown that the mSG mode is not the primary reason why microwave communi-
cation using power line conductors for distances on the order of 100 m has relatively
small losses.

• A simple formula for the total current on the driven wire may often be used to
approximate the total induced current in the two-wire case.

• For distances comparable to microwave power line communication system repeater
spacing, using power line conductors as a waveguide has significant advantages
over free space communications. Further, a second conductor can enhance system
performance.
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