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Abstract: Within the competitive global market and fast-advancing technology environment, in
order to survive and to succeed, firms need to spontaneously respond to market changes and the
uncertainty of customer needs. Therefore, New Product Development (NPD) is extremely important
for the success of firms. Artificial Intelligence (AI) has gradually entered people’s lives, and consumer
demand for AI products is increasing. Firms need to understand the AI development trend and
consider the preferences of consumers for AI-related products under social changes so that suitable
consumer AI products can be properly developed. In this study, the evaluation and selection of
operation systems for a commercially available AI product (smart TV) is studied, and a Multi-Criteria
Decision-Making (MCDM) model for facilitating the selection of the most suitable operation system
for product development is constructed. The proposed model consists of three phases: Interpretative
Structural Modelling (ISM) to construct a decision-making network, Fuzzy Analytic Network Process
(FANP) to obtain the weights of factors, and Fuzzy Technique for Order of Preference by Similarity
to Ideal Solution (fuzzy TOPSIS) to rank the operation systems. The proposed model is applied to
select an operation system that companies can use to develop a smart TV. The results show that the
proposed model can provide a systematic method that helps companies make appropriate operation
system selection decisions.

Keywords: smart TV; operation system; artificial intelligence (AI); new product development (NPD);
fuzzy TOPSIS

1. Introduction

In recent years, Artificial Intelligence (AI) has received attention from policymakers,
researchers, businesses, the media, and the public as it is seen as critical to national competi-
tiveness, security, and economic strength. With the advancement of big data and computing
power, there have been great breakthroughs in both AI research and technology, and the
application of AI in various fields, such as manufacturing, the service industry, healthcare,
and agriculture, is booming [1]. The Internet of Things (IoT), robotics, cyber-physical
systems, financial technology (fintech), and cybersecurity are just some examples. Recently,
AI has emerged as an important player in business competitiveness.

AI can be used in consumer products or services, such as driving and cleaning. Chat-
GPT, Google Translate, and Apple’s Siri are also examples of AI applications that are
familiar to most people. Toys for children, for example, Hello Barbie and the Star Wars BB-8
droid, can make use of AI technologies, such as speech recognition and machine vision.
AI toys can be standard toys with machine learning software or they can be block-based
coding toys [2]. Domestic service robots can perform care, monitoring, and communication
tasks, and they will become very important in the future since most populations in devel-
oped countries are aging dramatically. Some other examples of consumer AI products are
AI-enabled smartphones, chatbots, self-driving cars, digital assistants and conversational
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interfaces, household electronics with AI features, small household devices, etc. With an in-
creasing interest in the use of smart products among consumers and changes in society, the
demand for consumer AI products and services will escalate in the near future. Therefore,
firms may need to consider incorporating AI technology into their consumer products to
be sustainable in today’s cutthroat business environment.

New Product Development (NPD) is critical in maintaining a firm’s competitive edge.
Because product technology advancement is often required, NPD is a rather risky activity.
The failure rate of NPD is extremely high, especially in high-tech industries. For firms
that want to pursue the development of AI-related products, the risk can be even higher.
Therefore, a firm needs to implement appropriate NPD project management in order to
have a higher success rate of NPD in AI-related products. In addition, a good evaluation
model is necessary to assess the performance of NPD projects so that some guidance and
recommendations on what factors should be adjusted and improved and what kind of AI
technologies should be incorporated into the products can be provided to managers. As a
result of a good evaluation model, a successful NPD process and successful outcomes can
be achieved.

In order to be competitive in an increasingly competitive global market with short
product life cycles and to provide products and services that can attract new customers
and retain existing customers, more and more firms are considering introducing AI-related
products and services. Therefore, evaluating and selecting the most appropriate operation
systems for developing AI-related products is an important task. In multiple-criteria
decision-making, we often assume that the criteria are independent; however, many of the
criteria are indeed interrelated. Some methods are developed to tackle the interrelationships,
including Interpretative Structural Modelling (ISM), Decision Making Trial and Evaluation
Laboratory (DEMATEL), and Analytic Network Process (ANP). In this research, the ISM
and ANP are integrated to facilitate decision making. Therefore, this study proposes
a three-phase Multi-Criteria Decision-Making (MCDM) model for evaluating operation
systems for developing smart TVs. First, a preliminary network that contains a criteria
and sub-criteria is constructed. In phase 1, the Interpretative Structural Modelling (ISM)
is adopted to understand the interrelationships among the criteria and sub-criteria, and
a revised network is constructed for further evaluation. In phase 2, the fuzzy Analytic
Network Process (FANP) is applied to solve the network and obtain the importance weights
of the sub-criteria. In phase 3, the Fuzzy Technique for Order of Preference by Similarity
to Ideal Solution (fuzzy TOPSIS) is used to evaluate the expected performances of the
operation systems and generate the ranking of these systems. Later in this paper, a case
study regarding a manufacturer in Taiwan is carried out to examine the implementation
of the proposed model for developing smart TVs. The proposed model can help the firm
evaluate the operation system alternatives, and the alternative with the highest ranking
can be selected for NPD.

The rest of this paper is organized as follows: In Section 2, we present a review of the
literature on the AI industry, NPD, technology selection, and supplier selection. In Section 3,
the three-phased MCDM model for evaluating operation systems for developing smart
TVs is constructed. In Section 4, a case study is carried out to examine the practicality of the
proposed model. In Section 5, the final section, closing remarks are made and conclusions
are drawn.

2. Literature Review
2.1. Artificial Intelligence (AI) Industry

Artificial Intelligence (AI) is the science behind creating intelligent machinery capable
of performing tasks that were previously only performed by humans [3]. AI has been
discussed in the literature for more than half a century and does not have a universally
agreed definition. Agwu et al. [4] listed varied definitions of AI from scholars in the past.

AI is sometimes used to refer to the ability of a system to correctly interpret external
data, learn from these data, and use these learnings to achieve specific goals and tasks
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through flexible adaptation [5]. Basically, AI processes computer programs with their own
decision-making capabilities to solve problems of interest, and it is concerned with creating
computing systems that mimic the intelligent behavior of expert knowledge [6]. Since John
McCarthy invented AI in 1956, AI has experienced more than sixty years of continuous
development; though there have been three major setbacks to AI development, recent
advancements have been made [7]. Fox [3] divided AI research into two basic categories:
knowledge representation and research. Knowledge representation deals with how to
represent knowledge in a computer understandable form so that systems can behave in an
intelligent manner. Research is carried out to solve problems. Howe [8] broke AI down
into several sub-fields, each dealing with a particular kind of processing activity, and the
distinct fields are natural language processing, expert systems, and computer vision. AI
systems can perform tasks with human-like perception, interpretation, reasoning, learning,
communication, and decision making to construct a solution to a given problem [6]. AI em-
ploys fundamental techniques from various fields, such as logic, probability and statistics,
optimization, photogrammetry, neuroscience, and game theory [1]. AI can be deployed in
search and optimization parameters, machine learning and probabilistic reasoning, neu-
ral networks, natural language processing and knowledge representation, fuzzy systems,
computer vision, and planning and decision making processes [1]. The applications of
AI include speech recognition, pattern recognition, automation, computer vision, virtual
reality, diagnosis, image processing, nonlinear control, robotics, cybersecurity, automated
reasoning, bioinformatics, data mining, process planning, intelligent agent and control,
manufacturing, healthcare, etc. [1,6]. With the current popularity of the Internet, the ubiq-
uity of sensors, the emergence of big data, the development of e-commerce, the rise of
information communities, and the interconnection and fusion of data and knowledge in
society, physical space, and cyberspace, the advancement of AI has entered a new era [7].

Some recent works have discussed the history and advancement of AI. Pan [7] re-
viewed the history behind AI development, analyzed the external environment promoting
the formation of AI 2.0, and presented suggestions for attaining AI 2.0. Li et al. [9] discussed
the applications of AI technology in manufacturing processes, and analyzed the rapid de-
velopment of core technologies in the new era of “Internet plus AI”. The authors also
proposed how to combine AI technology with information communication, manufacturing
processes, and related product technologies to develop new models, means, and forms of
smart manufacturing, smart manufacturing system architecture, and smart manufacturing
technology systems. Kumar [6] reviewed the applications of AI in Computer Aided Process
Planning (CAPP) and manufacturing from 1981 to 2016. Three main areas were reviewed:
feature-based design (a primary input for a CAPP system); Expert System (ES) usefulness
in Process Planning (PP) and manufacturing; and evolutionary-approach applications.
Makridakis [10] discussed the impact of the AI revolutions on the society, life, firms, and
employment; stated how the AI revolution would substitute, supplement, and amplify
many tasks currently performed by humans; and suggested how society and firms could
face challenges. Lee et al. [11] reviewed the current state of AI technology and the ecosys-
tem needed to harness the power of AI in industrial applications, providing guidelines for
developing strategies regarding the implementation of industrial AI systems. Kaplan and
Haenlein [5] define the concept of AI and analyze how AI can be differentiated from other
related concepts, such as the IoT and big data. In their study, the evolutionary stages of AI
and different types of AI systems are introduced, and the potential of AI and its associated
implications for universities, corporations, and governments are discussed.

Industries currently applying AI include (but are not limited to) consumer goods,
entertainment, media, finance, healthcare, transportation, heavy industry, natural resources,
professional services, and government [12]. The four major areas of AI are: Internet AI
(recommender systems), business AI (fraud detection, financial forecasting), perception
AI (smart devices), and autonomous AI (new hardware applications, e.g., self-driving
cars) [1]. AI can be deployed in many different fields, including business intelligence and
analytics, e-commerce, customer service, data management, enterprise resource planning,
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research and development, automation and robotics, process automation, marketing and
advertising, sales, logistics, security, etc. [12].

In the future, consumer AI could transform many things that we do every day. Routine
tasks such as driving, cleaning, food production, food preparation, gardening, and paying
bills will be augmented or replaced by AI [13]. A study of AI consumer tech trends was
performed by asking 35 AI startup founders directly about the future of AI and machine
learning in consumer technology [13]. Some of these trends are discussed below [13]:

1. Virtual agents/chatbots: These virtual intelligent personal assistants could become
familiar with the person (user), their preferences, and learn from their activity. They
have the ability to sense the world around them, predict consumer behavior, and
make informed recommendations accordingly. Some existing examples are ChatGPT
(OpenAI), Siri (Apple), Cortana (Windows), and Echo and Alexa (Amazon). In the near
future, the use of virtual agents and chatbots in online search engines, e-commerce,
and online shopping will become more and more popular.

2. Smart objects/environments: Smart means that AI can be applied to generate usable
data from noisy and partial data. Smart appliances and devices will transform homes,
transportation, and delivery, and some examples include smart cars, smart homes,
and smart cities. For example, a smart car could have self-driving/parking technology
and access real-time road and parking information.

3. Physical embodiment: The use of autonomous robots will be very popular in the
future. Robotic applications can allow safe and reliable interactions with humans,
and some examples include dermatology, radiology, person/object recognition, and
surveillance tracking. Domestic service robots can perform care and communication
tasks, and with the growth of elderly populations in most developed countries, the
demand for service robots is will likely rise.

4. Natural language processing: Advancements in machine language comprehension
will fundamentally change how we interact with products and services. In addition,
AI will help extract business intelligence while utilizing different types of data through
speech, image, and text recognition.

5. Personalization of User Experience (UX): More and more software will become adap-
tive and have the ability to learn. Systems that perform and involve web searches,
image recognition, and robotics will become adaptive or learn new information based
on user experience.

6. Process automation: AI technologies will be embedded or integrated to automate or
improve existing processes and applications.

2.2. New Product Development (NPD), Technology Selection and Supplier Selection

Successfully introducing and accelerating New Product Development (NPD) is an
important source of competitive advantages, survival, and renewal for many organiza-
tions [14]. Due to ever-changing technology, shorter product lifecycles, and increasing
global competition, companies must continually develop new and successful products. The
advantages of NPD include speed and economy [15], increased product reliability [16], in-
creased diversity, simplified management complexity, and increased flexibility for strategic
goals [17].

Product conceptualization is the first step in NPD, and it is crucial to the ultimate suc-
cess of the product. Quality Function Deployment (QFD) is a well-known comprehensive
quality management system that carefully considers customer needs from the beginning
of product conceptualization. Failure Mode and Effect Analysis (FMEA) is a proven risk
management technique that improves the reliability and safety of products, processes,
structures, systems, and services across a wide range of industries [18].

ISO 9001 provides a standard for the project management of implementing the design
process, which includes seven parts: Design and Development (D&D) planning, design
inputs, design and development outputs, design and development review, design and
development verification, design and development validation, and control of design and
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development changes [19]. Hamzeh and Xu [20] performed a comprehensive review of the
Multiple Attribute Decision Making (MADM) methods used for technology selection in the
manufacturing field from 1990 to 2017. The study provided a taxonomy of past research
works and identified trends in the development and application of these methods. The
common uses of MADM techniques included Analytic Hierarchy Process (AHP), Data
Envelopment Analysis (DEA), fuzzy logic, financial analysis, Mathematical Programming
(MP), and hybrid methods. The authors also categorized the applications of technology
selection in manufacturing into four major groups: product design and production process,
Advanced Manufacturing Technologies (AMT), supply chain and inventory management,
and robot selection. Fuzzy logic has been adopted in many related works, and a review of
the types of fuzzy sets was conducted by Bustince et al. [21]. Some recent works regarding
technology selection are reviewed here. Maretto et al. [22] proposed a methodological
framework for selecting optimal digital technology and also the most suitable group of
similar and interconnected technologies in the industrial sector. Key performance indicators
were a part of the criteria, and fuzzy logic and AHP were applied to rank the technologies
and the groups of technologies. Cabrera et al. [23] studied the technology selection problem
of sensors with IoT features for an Industry 4.0-oriented condition-based monitoring
system. Multiple criteria for evaluating technology providers were listed under four
dimensions: technical features, purchase features, product requirements, and operating
costs. Lizarralde et al. [24] studied the selection of technology at research and development
(R&D) centers focusing on three areas: technological characteristics, characteristics of the
R&D center, and characteristics of the potential industrial customers. An MCDM-based
evaluation model called the Integrated Value Model for Sustainability Assessment (MIVES)
was applied for evaluating new technology in a R&D center. Chakrabortty et al. [25]
constructed a decision-making framework for chatbot evaluation in the telecommunication
industry. Using the data of single-valued neutrosophic sets, the most suitable chatbot
was selected by an integrated strategy based on the weights of the criteria generated
from the AHP and the ranking of alternatives by the Combined Compromise Solution
(CoCoSo). Yang et al. [26] studied the adoption of Information and Digital Technologies
(IDTs) for sustainable smart manufacturing systems for Industry 4.0 in Small, Medium,
and Micro Enterprises (SMMEs). A decision-making framework, which integrated q-ROF-
MEREC-RS and q-ROF-DNMA, was developed to analyze, rank, and evaluate the criteria
for adopting IDTs. Garg et al. [27] studied the selection of appropriate industrial robots for
the automotive industry. An integrated fuzzy MCDM model based on Bonferroni functions
was proposed by applying the fuzzy SWARA’B and fuzzy CoCoSo’B techniques. The
model could help select the most appropriate industrial robotics by considering various
criteria and several alternatives. Bhatia and Diaz-Elsayed [28] developed a framework
for identifying the best smart manufacturing technology based on selected criteria while
ranking the criteria in order of importance for Small- and Medium-sized Enterprises (SMEs).
The framework was constructed by incorporating fuzzy set theory and fuzzy TOPSIS. To
summarize, the problem of choosing a technology for an industrial environment and using
a MCDM to solve the problem has been extensively studied. However, in AI and R&D
scenarios, references in the literature are still limited.

Technology can be developed in house or obtained from other entities. For the latter,
the technology selection problem is highly related to supplier selection. Supplier selection
is an important business decision that has large implications on whether a business can gain
a competitive advantage with suitable suppliers/partners and provide products/services
more effectively and efficiently [29]. When the selection process is performed correctly,
a higher-quality, longer-lasting buyer–supplier relationship can be achieved. The litera-
ture on supplier selection has two directions: one is mainly qualitative and focuses on
methodological aspects, and the other introduces mathematical or quantitative decision-
making methods [30]. MP models can be divided into linear programming, mixed integer
programming, goal programming, and MCDM. Since the supplier selection problem is
multi-criteria in nature, various multi-criteria decision-making methods have been pro-
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posed [28]. Furthermore, fuzzy set theory is often used to account for imprecision and
uncertainty in the supplier selection process. Chang [31] performed a Cause–Effect Grey
Relational Analysis (CEGRA) for evaluating intelligent system suppliers to further improve
a firm’s operational efficiency. The criteria for evaluating the systems were identified using
a method involving focus group discussions. The causal association assessment model and
TOPSIS model were applied to evaluate collaborative technology software products and
suppliers. Lopes and Rodriguez-Lopez [32] applied the Preference Ranking Organization
Method for Enrichment of Evaluations- Geometrical Analysis for Interactive Assistance
(PROMETHEE-GAIA) method, which allowed decision makers to simultaneously set pref-
erences considering all the relevant criteria, to classify and select suppliers for an agrifood
company. Alavi et al. [33] constructed a dynamic decision support system for sustainable
supplier selection in a circular supply chain. The system allowed decision makers to cus-
tomize their economic, social, and circular criteria; applied a fuzzy best–worst method
to weigh the criteria; and used a fuzzy inference system to calculate the final scores of
suppliers. Chang et al. [34] developed a hybrid decision-making model for sustainable
supplier evaluation. The Indifference Threshold-based Attribute Ratio Analysis (ITARA)
technique was improved to calculate the weights of the criteria, and the Preference Rank-
ing Organization Method for Enrichment Evaluation based on Aspiration Level concept
(PROMETHEE-AL) was applied to determine the performance ranking of the suppliers.
Kaya and Aycin [35] considered the key criteria of Industry 4.0 technologies and con-
structed a framework to select the right supplier for the Industry 4.0 era. An interval type 2
fuzzy AHP was used to calculate the supplier evaluation criteria, and then the Complex
Proportional Assessment method with Gray interval numbers (COPRAS-G) method was
applied to rank the suppliers. Liou et al. [36] constructed a model that integrated MCDM
and data mining techniques for evaluating green suppliers. The Support Vector Machine
(SVM) was applied to extract the core criteria from a firm’s historical supplier performance
data, then the Fuzzy Best Worst Method (FBWM) was used to calculate the weights of the
criteria, and the fuzzy TOPSIS was finally adopted to select the most suitable green sup-
pliers. Pitchaiah et al. [37] reviewed past works regarding the evaluation and selection of
suppliers for materials using MADM. Some commonly used methodologies include DEA,
AHP, Simple Multi-Attribute Rating Technique (SMART). Mathematical programming such
as linear programming, integer linear programming, integer non-linear programming, goal
programming, multi-objective programming, and SMART are often adopted. Some prelim-
inary AI methods, including Genetic Algorithms (GAs), Neural Networks (NNs), Rough
Set Theory (RST), Particle Swarm Optimization (PSO), Grey System Theory (GST), and Ant
Colony Algorithms (ACAs), have been applied. Demiralay and Paksoy [38] developed a
strategy for a smart and sustainable supplier selection process. The importance weights of
smart and sustainable criteria were determined by different MCDM methods, including
AHP, best worst method, and TOPSIS in triangular and Pythagorean fuzzy environments,
and supplier rankings were calculated and compared. Solely considering environmental
criteria, Ecer [39] proposed a green supplier selection model based on the AHP under the
interval type-2 fuzzy environment model. The interval type-2 fuzzy sets were found to
handle uncertainty well because their membership functions were also fuzzy numbers.
Menon and Ravi [40] considered ethics as a dimension of sustainability in purchasing activ-
ity and supplier selection and proposed an AHP–TOPSIS approach to tackle uncertainty
and both quantitative and qualitative data. The AHP was applied to find the importance
weights of the criteria and sub-criteria, and the TOPSIS was used to determine the ranking
of the suppliers. Chai et al. [41] proposed a fuzzy MCDM approach for selecting the most
sustainable supplier. The sustainable supplier selection was decomposed hierarchically
into dimensions and criteria, and the criteria weights and the alternative performance
with respect to each criterion were evaluated by using linguistic terms and were further
transformed into triangular interval-valued fuzzy sets. To consider the decision makers’
risk preferences, cumulative prospect theory was applied to rank the suppliers.
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Identifying suitable materials is an important issue in the conception and improvement
of new products. Material selection is regarded as an important MCDM problem because
multiple criteria need to be considered from different dimensions [42]. A poor choice of
materials can negatively impact a company’s success. Dursun and Arslan [42] proposed a
fuzzy multi-criteria group decision-making approach for material selection. QFD was used
to incorporate customer requirements in the evaluation process, and 2-tuple fuzzy linguistic
representation and linguistic hierarchies were used to unify the data provided by experts.
The most suitable alternative could be selected using the fuzzy complex proportional
assessment method. Liu et al. [43] studied the design partner selection in green product
collaboration design, and a two-stage MADM framework was proposed. In stage one, the
evaluation indices were determined by using a Fuzzy Decision-Making Trial and Evaluation
Laboratory (fuzzy DEMATEL) approach. In stage two, the dynamic information generated
in different stages of product design was obtained by using a dynamic evaluation method
based on the fuzzy theory, the importance weights of the indices were generated by the
fuzzy Karnik–Mendel Algorithm (KMA), and the ranking of the design partner alternatives
was calculated by using the Fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje
(in Serbian) (Fuzzy VIKOR). Tian et al. [44] constructed a framework for assessing product
design alternatives by integrating AHP, Gray Correlation (GC), and TOPSIS. The weights
of criteria were obtained by the AHP, and the alternatives were evaluated by using an
integrated approach involving TOPSIS and GC. Liu et al. [45] proposed a hybrid MADM
model for evaluating smart home product improvement. The Dominance-based Rough
Set Approach (DRSA) was first applied to determine core factors, and the DEMATEL
technique was subsequently adopted to understand the interrelationships among core
factors. A DEMATEL-based Analytic Network Process (DANP) was then used to calculate
the influential weights of the factors, and fuzzy integration was applied to generate a final
ranking of the smart home alternatives.

The evaluation of a business process information system, such as Enterprise Resource
Planning (ERP), not only involves the information system itself but also requires one to
consider the cooperation of the system provider. Kang et al. [46] proposed a hybrid multi-
criteria decision-making model for evaluating business process information systems. The
DEMATEL was first adopted to determine the interrelationships among the criteria to
shorten the length of the FANP questionnaire. The FANP was subsequently applied to
obtain the priorities of sub-criteria. Finally, fuzzy TOPSIS was used to generate a final
ranking of the business process information systems. Lee et al. [47] constructed an ERP
system evaluation framework by integrating DEMATEL, ANP, VIKOR, and fuzzy set
theory. The framework could be adopted to facilitate the selection of the most appropriate
ERP system. Deb et al. [48] proposed a decision-making model with intuitionistic fuzzy
information for selecting ERP systems. An optimization model based on cross entropy
was adopted to calculate criteria weights, and an integrated Intuitionistic Fuzzy Improved
Measurement Alternatives and Ranking based on the Compromise Solution (IF-IMARCOS)
approach was developed to aggregate the criteria values.

A comparison of some selected research works in terms of dependency structuring,
evaluation of weights, ranking of options, new product development, technology selection,
and fuzzy logic is shown in Table 1, in which a checked mark indicates that the issue is
covered in the work.
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Table 1. Fuzzy numbers for relative importance.

Dependency
Structuring

Evaluation of
Weights

Ranking of
Options

New Product
Development

Technology
Selection

Fuzzy
Logic

Howell et al. [14]
√ √

Sanderson [16]
√

Lo and Liou [18]
√ √ √

Hamzeh and Xu [20]
√ √ √ √ √

Maretto et al. [22]
√ √ √ √

Cabrera et al. [23]
√ √ √

Lizarralde et al. [24]
√ √ √

Chakrabortty et al. [25]
√ √ √

Yang et al. [26]
√ √ √

Garg et al. [27]
√ √ √

Bhatia and Diaz-Elsayed [28]
√ √ √ √

Liu et al. [43]
√ √ √

Tian et al. [44]
√ √ √ √

Liu et al. [45]
√ √ √ √ √

Kang et al. [46]
√ √ √ √ √

Lee et al. [47]
√ √ √ √ √

Deb et al. [48]
√ √ √ √ √

This paper
√ √ √ √ √ √

3. Proposed Model

A three-phased MCDM model that incorporates the ISM, FANP, and fuzzy TOPSIS is
constructed here to select the most suitable operating system for smart TVs. A flowchart
of the model is shown in Figure 1. In phase 1, the ISM is applied to understand the
interrelationships among the criteria and sub-criteria and to build a network. In phase 2,
the FANP is used to compute the importance weights of the sub-criteria in the network. In
phase 3, based on the weights of the sub-criteria obtained from the FANP, fuzzy TOPSIS is
applied to rank the overall performances of the smart TV operation systems.

The procedures involved in the model are as follows:

Step 1. Define the smart TV operating system selection problem. Conduct a comprehen-
sive review of the literature and consult experts in the field on the issue.

Step 2. Construct a preliminary network structure for the problem. After conducting
a review of the literature and interviews with experts, a network of criteria
and sub-criteria is developed. Figure 2 depicts an example network, where the
interrelationships among the criteria and sub-criteria will be examined in phase 1.

3.1. Phase 1: ISM

Step 3. Determine the interrelationships among the criteria and sub-criteria by adopting
the ISM. First, an ISM questionnaire is prepared. Based on the preliminary
network, the questionnaire asks about the interrelationships among the criteria
and sub-criteria. For instance, the relationship between criterion 1 and criterion 2
can be from C1 to C2, from C2 to C1, in both directions between C1 and C2, or C1
and C2 can be unrelated.

Step 4. Build an adjacency matrix for each expert and an integrated adjacency matrix for
the criteria (sub-criteria).
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Step 4.1. Construct an adjacency matrix for the criteria and for the sub-criteria
from each expert. For instance, the adjacency matrix for the criteria from
expert k can be expressed as follows:

Ak
C =

C1
C2
...

CN

C1 C2 · · · CN
0 xk

12 · · · xk
1N

xk
21 0 · · · xk

2N
...

... 0
...

xk
N1 xk

N2 · · · 0

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (1)

where xk
ij denotes the relation between criteria Ci and Cj assessed by

expert k, and xk
ij = 1 if Cj is reachable from Ci; otherwise, xk

ij = 0.

Step 4.2. Develop an integrated adjacency matrix for the criteria and for the sub-
criteria. For instance, the adjacency matrix for the criteria is formed by
integrating the adjacency matrices for the criteria from all experts via
the arithmetic mean method. Let xij be 1 if the calculated value for xij
is greater than or equal to 0.5; otherwise, let xij be 0. The integrated
adjacency matrix for the criteria can be expressed as follows:

AC =

C1
C2
...

CN

C1 C2 · · · CN
0 x12 · · · x1N

x21 0 · · · x2N
...

... 0
...

xN1 xN2 · · · 0

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (2)

where xij denotes the relation between criteria Ci and Cj, and xij = 1 if Cj
is reachable from Ci; otherwise, xij = 0.

Step 5. Calculate the initial and the final reachability matrices for the criteria (sub-criteria).

Step 5.1. Form the initial reachability matrix for the criteria and for the sub-criteria.
The initial reachability matrix is calculated by summing up the integrated
adjacency matrix and the unit matrix. For instance, the initial reachability
matrix for the criteria is as follows:

RC = AC + I (3)

Step 5.2. Obtain the final reachability matrix. A convergence is satisfied by the
Boolean multiplication and addition. The final reachability matrix shows
the transitivity of the contextual relation among the criteria and among
the sub-criteria. For instance, the final reachability matrix for the criteria
is as follows:

R∗C = Rr
C = Rr+1

C , r > 1 (4)

R∗C =

C1
C2
...

CN

C1 C2 · · · CN
x∗11 x∗12 · · · x∗1N
x∗21 x∗22 · · · x∗2N

...
... x∗ij

...
x∗N1 x∗N2 · · · x∗NN

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (5)

where x∗ij denotes the impact of criterion Ci to criterion Cj.

Step 6. Develop a network structure under the FANP. A completed network structure is
built based on the final reachability matrix for the criteria and for the sub-criteria.
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Figure 1. Flowchart of the model.

Figure 2. A network structure.
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3.2. Phase 2: Fuzzy ANP

Step 7. Using the network constructed in Figure 2, design a FANP questionnaire. The
FANP questionnaire asks about the importance of the criteria, the importance
of the sub-criteria, the interrelationships among the criteria, and the interrela-
tionships among the sub-criteria. Experts are asked to complete the pairwise
comparison questionnaire using linguistic variables in Table 2 [28].

Table 2. Fuzzy numbers for relative importance.

Fuzzy Number Linguistic Variable Triangular Fuzzy Number

1̃ Equally important (1, 1, 1)
3̃ Moderately important (1, 3, 5)
5̃ Important (3, 5, 7)
7̃ Very important (5, 7, 9)
9̃ Extremely important (9, 9, 9)

Step 8. Prepare the defuzzified aggregated pairwise comparison matrices.

Step 8.1. Develop fuzzy pairwise comparison matrices for each expert. In ac-
cordance with Table 2, the questionnaire results of each expert should
be converted into triangular fuzzy numbers. For instance, the fuzzy
pairwise comparison matrix of criteria for expert k is as follows:

W̃
k
C =

C1
C2
...

CN

C1 C2 · · · CN
1 ãk

12 · · · ãk
1N

ãk
21 1 · · · ãk

2N
...

... ãk
ij

...
ãk

N1 ãk
N2 · · · 1

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (6)

where ãk
ij is the pairwise comparison value between criterion i and j

determined by expert k.
Step 8.2. Prepare fuzzy aggregated pairwise comparison matrices. Expert opin-

ions are synthesized using the geometric mean method. For K experts,
the geometric mean of the pairwise comparison values between criteria i
and j is as follows:

f̃ij = (ã1
ij ⊗ · · · ⊗ ãK

ij )
1/K

= (lij, mij, uij), i = 1, 2, . . . , N; j = 1, 2, . . . , N (7)

The fuzzy aggregated pairwise comparison matrix for the criteria is as follows:

W̃C =

C1
C2
...

CN

C1 C2 · · · CN
1 f̃12 · · · f̃1N

f̃21 1 · · · f̃2N
...

... f̃ij
...

f̃N1 f̃N2 · · · 1

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (8)

Step 8.3. Compute the defuzzified aggregated pairwise comparison matrices. Transform
the fuzzy aggregated pairwise comparison matrices into defuzzified aggregated
pairwise comparison matrices using the center of gravity method.

fij =
lij + mij + uij

3
, i = 1, 2, . . . , N; j = 1, 2, . . . , N (9)
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WC =

C1
C2
...

CN

C1 C2 · · · CN
1 f12 · · · f1N

1/ f12 1 · · · f2N
...

... fij
...

1/ f1N 1/ f2N · · · 1

, i = 1, 2, . . . , N; j = 1, 2, . . . , N (10)

Step 8.4. Obtain the importance vector of the criteria, importance vector of the sub-criteria,
interdependence among the criteria, and interdependence among the sub-criteria.
For instance, the importance vector for the defuzzified aggregated pairwise
comparison for the criteria is as follows [49,50]:

WC ×wC = λmax ×wC (11)

where WC is the defuzzified aggregated comparison matrix for the criteria, wC
is the eigenvector, and λmax is the largest eigenvalue of WC.

Step 9. Check the consistency of each defuzzified aggregated pairwise comparison matrix.
The Consistency Index (CI) and Consistency Ratio (CR) for the defuzzified aggre-
gated comparison matrix for the criteria are calculated using the following [49,50]:

CIC =
λmax − N

N − 1
(12)

CRC =
CIC

RI
(13)

where RI is a Random Index [49,50]. If the consistency ratio is greater than 0.1,
there is an inconsistency and experts will need to revise part of the questionnaire.
In such cases, the calculations will need to be carried out again.

Step 10. Calculate the weights of the sub-criteria, sj

Step 10.1. Develop an unweighted supermatrix. An unweighted supermatrix
is formed using the importance vector of the criteria, the importance
vectors of the sub-criteria, the interdependence among criteria, and the
interdependence among sub-criteria, as depicted in Figure 3.

Step 10.2. Develop a weighted supermatrix. Convert the unweighted supermatrix
to a weighted supermatrix to guarantee column stochastic [49–51].

Step 10.3. Obtain the limit supermatrix and compute the importance of the sub-
criteria. The weighted supermatrix can converge into a stable super-
matrix by taking powers, and the result is called the limit supermatrix.
The final priorities (importance) of the sub-criteria, sj, are listed in the
sub-criteria-to-goal column of the limit supermatrix.

Figure 3. Unweighted supermatrix.

3.3. Phase 3: Fuzzy TOPSIS

Step 11. Prepare a smart TV operation system evaluation questionnaire. Form a question-
naire asking about the expected performance of each smart TV operation system
relative to each sub-criterion [52]. The seven linguistic levels of performance are
shown in Table 3 [53].
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Table 3. Membership function of fuzzy numbers for operation system evaluation.

Linguistic Variables Positive Triangular Fuzzy Numbers

Very Weak (VW) (0, 0, 0.2)
Weak (W) (0.05, 0.2, 0.35)

Medium Weak (MW) (0.2, 0.35, 0.5)
Fair (F) (0.35, 0.5, 0.65)

Medium Good (MG) (0.5, 0.65, 0.8)
Good (G) (0.7, 0.8, 0.9)

Very Good (VG) (0.8, 1, 1)

Step 12. Construct a fuzzy decision matrix. Using the questionnaires collected from the
experts, a fuzzy decision matrix for the group can be formed via the arithmetic
mean method by using Equation (14) [54–56]:

P̃
′
=



x̃′11 x̃′12 · · · x̃′1j · · · x̃′1n
...

. . .
...

x̃′τ1
. . . x̃′τ j x̃′τn

...
. . .

...

x̃′p1 · · · . . . · · · x̃′pn


(14)

where P̃
′

is a fuzzy decision matrix, and x̃′τ j = (lτ j, mτ j, uτ j) is the synthesized
performance of system τ with respect to sub-criterion j.

Step 13. Normalize the fuzzy decision matrix.

P̃ =



x̃11 x̃12 · · · x̃1j · · · x̃1n
...

. . .
...

x̃τ1
. . . x̃τ j x̃τn

...
. . .

...

x̃p1 · · · . . . · · · x̃pn


(15)

where x̃τ j = (
lτ j

u+
j

,
mτ j

u+
j

,
uτ j

u+
j
) and u+

j = maxτuτ j.

Step 14. Obtain the weighted normalized fuzzy decision matrix.

P̃× sj =



x̃11 x̃12 · · · x̃1j · · · x̃1n
...

. . .
...

x̃τ1
. . . x̃τ j x̃τn

...
. . .

...

x̃p1 · · · . . . · · · x̃pn


×



s1
...
sj
...

sn



=



ṽ11 ṽ12 · · · ṽ1j · · · ṽ1n
...

. . .
...

ṽτ1
. . . ṽτ j ṽτn

...
. . .

...

ṽp1 · · · . . . · · · ṽpn



(16)

where sj is calculated from Step 10.
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Step 15. Compute the Fuzzy Positive-Ideal Solution (FPIS) and the Fuzzy Negative-Ideal
Solution (FNIS) [53–55].

F∗ =
{

ṽ∗1 , ṽ∗2 . . . , ṽ∗j , . . . , ṽ∗n
}
=
{(

maxτ ṽτ j|τ = 1, . . . , p
)
, j = 1, . . . , n

}
(17)

F− =
{

ṽ−1 , ṽ−2 . . . , ṽ−j , . . . , ṽ−n
}
=
{(

minτ ṽτ j|τ = 1, . . . , p
)
, j = 1, . . . , n

}
(18)

where F∗ is the FPIS for sub-criterion j, and F− is the FNIS for sub-criterion j.
Step 16. Compute the distance of each smart TV operation system from FPIS and

FNIS [54–56].

d∗τ =
n

∑
j=1

d
(

ṽτ j, ṽ∗j
)

, τ = 1, 2, . . . , p (19)

d−τ =
n

∑
j=1

d
(

ṽτ j, ṽ−j
)

, τ = 1, 2, . . . , p (20)

where d
(

ṽτ j, ṽj

)
=
√

1
3 [(vτ jl − vjl)

2 + (vτ jm − vjm)
2 + (vτ ju − vju)

2], d∗τ is the dis-

tance of operation system τ from FPIS, and d−τ is the distance of operation system
τ from FNIS.

Step 17. Compute the Closeness Coefficients (CC) and rank the order of operation systems.
The CC is calculated using Equation (21):

CCτ =
d−τ

d∗τ + d−τ
(21)

where CCτ is the closeness coefficient of smart TV operation system τ. The
operation system with the highest CC is the best alternative.

4. Case Study

The proposed operation system evaluation framework is applied to a case study to
examine its practicality. To maintain anonymity, the four operation systems evaluated are
named A1, A2, A3, and A4, and the information is shown in Table 4.

Table 4. Information of the four operation systems.

Operation System A1 A2 A3 A4

Platform Linux Linux Android Android
Number of apps Hundreds Near a thousand Several thousands Several thousands
Screen mirroring Yes Yes Yes Yes

Mobile application support Yes Yes Yes Yes
Web browser Yes Yes Yes Yes
Voice search Yes Yes Yes Yes

Smart TV interface Easy to use Easy to use Layout more crowded Easy to use
System efficiency Excellent Excellent Good Good

Boot Speed Fast Fast Normal Normal
Content sharing Miracast Miracast Chromecast Miracast

Google Home integration Yes Yes Yes No
Setup Good OK OK Good

Ease of use Good Good Good Good
Universal search Bad OK Good OK
System upgrade Yes Yes Yes Yes

4.1. Construct a Preliminary Network for the Smart TV Operation System Selection Problem

After a comprehensive review of the literature and interviews with experts, a prelimi-
nary network structure is developed, as shown in Figure 4. In a smart TV operating system,
the AI-related consumer technology applied includes virtual agents, natural language
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processing, and Personalization of User Experience (UX), as discussed in Section 2.1. To
achieve the goal of selecting the most suitable smart TV operation system, four criterion
are taken into consideration and form the criteria: system on chip (C1), operation system
requirement (C2), reputation (C3), and costs (C4). Under system on chip (C1), there are five
sub-criterion that form the sub-criteria: processing power (SC1), graphic performance (SC2),
memory storage (SC3), connectivity (SC4), and power consumption (SC5). Under operation
system requirement (C2), there are six sub-criteria: user interface (SC6), compatibility (SC7),
voice assistant (SC8), update and support (SC9), APP (SC10), and cyber security (SC11).
Under reputation (C3), there are three sub-criteria: brand preference (SC12), market share
(SC13), and company sustainability (SC14). Under costs (C4), there are two sub-criteria:
maintenance cost (SC15) and upgrade costs (SC16). Four operation systems are being eval-
uated: operation system 1, operation system 2, operation system 3, and operation system 4.
Five experts were invited to fill out the questionnaires, including three system engineers
and two academics. There were three sets of questionnaires: the ISM questionnaire, the
FANP questionnaire, and the fuzzy TOPSIS questionnaire.

Figure 4. Network for selecting a smart TV operation system.

4.2. Determine the Interrelationships among the Criteria and among the Sub-Criteria

In the first phase, the ISM is adopted to understand the interrelationships among the
criteria and among the sub-criteria. Responses from the five experts to the ISM question-
naire were collected, and an adjacency matrix for the criteria and an adjacency matrix for
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the sub-criteria were compiled based on each expert’s opinion. For instance, the adjacency
matrix for the criteria from expert 1 is as follows:

A1
C =

C1
C2
C3
C4

C1 C2 C3 C4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


The adjacency matrix for the sub-criteria under criterion 1 from expert 1 is as follows:

A1
C1/SC =

SC1
SC2
SC3
SC4
SC5

SC1 SC2 SC3 SC4 SC5
0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0


Compute the integrated adjacency matrix for the criteria and an integrated adjacency

matrix for the sub-criteria. The arithmetic mean method is applied to combine the experts’
opinions, and the threshold is set to 0.5. That is, if the integrated value is greater than or
equal to 0.5, the value is set to 1; otherwise, it is set to 0. The results are as follows:

AC =
C1
C2
C3
C4

C1 C2 C3 C4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



AC1/SC =

SC1
SC2
SC3
SC4
SC5

SC1 SC2 SC3 SC4 SC5
0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0


The initial reachability matrix and the final reachability matrix for the criteria are

calculated based on the integrated adjacency matrix for the criteria. They are as follows:

RC = AC + I

=
C1
C2
C3
C4

C1 C2 C3 C4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

+
C1
C2
C3
C4

C1 C2 C3 C4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=
C1
C2
C3
C4

C1 C2 C3 C4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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R∗C = R1
C = R2

C =
C1
C2
C3
C4

C1 C2 C3 C4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


The initial reachability matrix and the final reachability matrix for the sub-criteria are

calculated based on the integrated adjacency matrix for the sub-criteria. The calculations of
the matrices for the sub-criteria under criterion 1 are as follows:

RC1/SC = AC1/SC + I

=

SC1
SC2
SC3
SC4
SC5

SC1 SC2 SC3 SC4 SC5
0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

+

SC1
SC2
SC3
SC4
SC5

SC1 SC2 SC3 SC4 SC5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



=

SC1
SC2
SC3
SC4
SC5

SC1 SC2 SC3 SC4 SC5
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 1


According to the final reachability matrix for the criteria and the final reachability

matrix for the sub-criteria, determine the interrelationship among the criteria and among
the sub-criteria, as depicted in Figures 5 and 6. The result of the ISM shows that every
criterion can be reached by other criteria. This means that all the criteria are interrelated in
this case study. However, not all the sub-criteria are interrelated.

Figure 5. Interrelationships among the criteria.

Figure 6. Interrelationships among the sub-criteria under system on chip (C1).

4.3. Calculate the Importance Weights of the Sub-Criteria

In phase 2, the importance weights of the sub-criteria are calculated by applying the
FANP. In accordance with Figures 4–6, a FANP questionnaire was prepared and distributed
to five experts. Based on the questionnaire feedback, fuzzy pairwise comparison matrices
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for each expert are formed. For instance, the fuzzy pairwise comparison matrix of criteria
for expert 1 is as follows:

W̃C1 =
C1
C2
C3
C4

C1 C2 C3 C4
(1, 1, 1) (0 .2, 0 .33, 1) (1, 3, 5) (1, 3, 5)
(1, 3, 5) (1, 1, 1) (1, 3, 5) (3, 5, 7)

(0 .2, 0 .33, 1) (0 .2, 0 .33, 1) (1, 1, 1) (3, 5, 7)
(0 .2, 0 .33, 1) (0 .14, 0.2, 0 .33) (0 .14, 0.2, 0 .33) (1, 1, 1)


Fuzzy aggregated pairwise comparison matrices are prepared by integrating the

experts’ opinions using the geometric mean approach. The fuzzy aggregated pairwise
comparison matrix for the criteria is as follows:

W̃C =
C1
C2
C3
C4

C1 C2 C3 C4
(1, 1, 1) (0 .38, 0.64, 1 .38) (1 .25, 3.32, 5 .35) (1 .93, 4.08, 6 .12)

(0 .72, 1.55, 2 .63) (1, 1, 1) (0 .72, 1.93, 3 .62) (3 .32, 5.35, 7 .36)
(0 .19, 0.30, 0 .80) (0 .28, 0.52, 1 .38) (1, 1, 1) (1 .93, 4.08, 6 .12)
(0 .16, 0.25, 0 .52) (0 .14, 0.19, 0 .30) (0 .16, 0.25, 0 .52) (1, 1, 1)


Next, the center of gravity method is used to calculate the defuzzified aggregated pair-

wise comparison matrices, and then the importance vectors of the criteria, the importance
vectors of the sub-criteria, the interdependence among criteria, and the interdependence
among sub-criteria are calculated. Then, compute the defuzzified aggregated pairwise
comparison matrix and the importance vector of the criteria, and run a consistency test:

WC =
C1
C2
C3
C4

C1 C2 C3 C4
1 0.80 3.31 4.04

1.25 1 2.09 5.34
0.30 0.48 1 4.04
0.25 0.19 0.25 1


wC = [0.373 0.381 0.179 0.066]T

CIC =
λmax − N

N − 1
=

4.133− 4
4− 1

= 0.044

CRC =
CIC

RI
=

0.044
0.9

= 0.049

Since CRC is less than 0.1, the comparison matrix is deemed to have passed the
consistency test. After calculating the importance vector of the criteria, the importance
vectors of the sub-criteria, the interdependence among the criteria, and the interdependence
among the sub-criteria, an unweighted supermatrix is formed, as shown in Table 5. The
weighted supermatrix and limit supermatrix are also obtained, as shown in Tables 6 and 7,
respectively. The importance weights of the sub-criteria can be found in the sub-criteria-to-
goal column of the limit supermatrix in Table 7 and in Table 8. They are as follows:

sj = [0.131 0.128 0.077 0.057 0 0.075 0.056 0.101 0 0.06 0.059 0.063 0.087 0.038 0.030 0.038]T

In this case study, the experts stressed that the most important criterion in the criteria
is the operation system requirement (C2) criterion, with an importance weight of 0.381, fol-
lowed by the system on chip (C1) criterion, with an importance weight of 0.373. Regarding
the sub-criteria, processing power (SC1) is the most important criterion, with an importance
weight of 0.131, followed by graphic performance (SC2), with an importance weight of
0.128. The third and fourth most important sub-criteria are, respectively, voice assistant
(SC8), with an importance weight of 0.101, and market share (SC13), with an importance
weight of 0.087.
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Table 5. Unweighted supermatrix.

Goal C1 C2 C3 C4 SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 SC12 SC13 SC14 SC15 SC16

Goal 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 0.37264 0.53346 0.2648 0.46611 0.35046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0.38137 0.13018 0.56495 0.24905 0.38086 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C3 0.17965 0.27779 0.1186 0.16419 0.18059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0.06635 0.05857 0.05166 0.12065 0.08809 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SC1 0 0.54209 0 0 0 0.36909 0.27952 0.32999 0.3832 0.25532 0 0 0 0 0 0 0 0 0 0 0
SC2 0 0.22176 0 0 0 0.28182 0.36362 0.32999 0.34161 0.2785 0 0 0 0 0 0 0 0 0 0 0
SC3 0 0.10787 0 0 0 0.21144 0.18595 0.19962 0.16827 0.16422 0 0 0 0 0 0 0 0 0 0 0
SC4 0 0.05566 0 0 0 0.13766 0.17091 0.1404 0.10692 0.19332 0 0 0 0 0 0 0 0 0 0 0
SC5 0 0.07262 0 0 0 0 0 0 0 0.10865 0 0 0 0 0 0 0 0 0 0 0
SC6 0 0 0.17178 0 0 0 0 0 0 0 0.19839 0.16947 0.26632 0.2133 0.21749 0.17099 0 0 0 0 0
SC7 0 0 0.12762 0 0 0 0 0 0 0 0.14484 0.16945 0.18622 0.24386 0.15876 0.12529 0 0 0 0 0
SC8 0 0 0.46079 0 0 0 0 0 0 0 0.38096 0.23283 0.21506 0.19456 0.28608 0.34394 0 0 0 0 0
SC9 0 0 0.09013 0 0 0 0 0 0 0 0 0 0 0.10051 0 0 0 0 0 0 0

SC10 0 0 0.08509 0 0 0 0 0 0 0 0.13791 0.25035 0.1662 0.12388 0.15131 0.16895 0 0 0 0 0
SC11 0 0 0.06458 0 0 0 0 0 0 0 0.13791 0.1779 0.1662 0.12388 0.18637 0.19083 0 0 0 0 0
SC12 0 0 0 0.34074 0 0 0 0 0 0 0 0 0 0 0 0 0.31378 0.2898 0.47292 0 0
SC13 0 0 0 0.55224 0 0 0 0 0 0 0 0 0 0 0 0 0.48617 0.49009 0.36989 0 0
SC14 0 0 0 0.10702 0 0 0 0 0 0 0 0 0 0 0 0 0.20006 0.22011 0.15719 0 0
SC15 0 0 0 0 0.86991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61977 0.30864
SC16 0 0 0 0 0.13009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38023 0.69136
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Table 6. Weighted supermatrix.

Goal C1 C2 C3 C4 SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 SC12 SC13 SC14 SC15 SC16

Goal 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 0.18632 0.26673 0.1324 0.23305 0.17523 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0.19068 0.06509 0.28247 0.12453 0.19043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C3 0.08982 0.13889 0.0593 0.0821 0.0903 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0.03317 0.02929 0.02583 0.06033 0.04404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SC1 0 0.27105 0 0 0 0.36909 0.27952 0.32999 0.3832 0.25532 0 0 0 0 0 0 0 0 0 0 0
SC2 0 0.11088 0 0 0 0.28182 0.36362 0.32999 0.34161 0.2785 0 0 0 0 0 0 0 0 0 0 0
SC3 0 0.05393 0 0 0 0.21144 0.18595 0.19962 0.16827 0.16422 0 0 0 0 0 0 0 0 0 0 0
SC4 0 0.02783 0 0 0 0.13766 0.17091 0.1404 0.10692 0.19332 0 0 0 0 0 0 0 0 0 0 0
SC5 0 0.03631 0 0 0 0 0 0 0 0.10865 0 0 0 0 0 0 0 0 0 0 0
SC6 0 0 0.08589 0 0 0 0 0 0 0 0.19839 0.16947 0.26632 0.2133 0.21749 0.17099 0 0 0 0 0
SC7 0 0 0.06381 0 0 0 0 0 0 0 0.14484 0.16945 0.18622 0.24386 0.15876 0.12529 0 0 0 0 0
SC8 0 0 0.2304 0 0 0 0 0 0 0 0.38096 0.23283 0.21506 0.19456 0.28608 0.34394 0 0 0 0 0
SC9 0 0 0.04507 0 0 0 0 0 0 0 0 0 0 0.10051 0 0 0 0 0 0 0

SC10 0 0 0.04255 0 0 0 0 0 0 0 0.13791 0.25035 0.1662 0.12388 0.15131 0.16895 0 0 0 0 0
SC11 0 0 0.03229 0 0 0 0 0 0 0 0.13791 0.1779 0.1662 0.12388 0.18637 0.19083 0 0 0 0 0
SC12 0 0 0 0.17037 0 0 0 0 0 0 0 0 0 0 0 0 0.31378 0.2898 0.47292 0 0
SC13 0 0 0 0.27612 0 0 0 0 0 0 0 0 0 0 0 0 0.48617 0.49009 0.36989 0 0
SC14 0 0 0 0.05351 0 0 0 0 0 0 0 0 0 0 0 0 0.20006 0.22011 0.15719 0 0
SC15 0 0 0 0 0.43495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61977 0.30864
SC16 0 0 0 0 0.06505 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38023 0.69136
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Table 7. Limit supermatrix.

Goal C1 C2 C3 C4 SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10 SC11 SC12 SC13 SC14 SC15 SC16

Goal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SC1 0.13146 0.24951 0.05452 0.07493 0.06367 0.33427 0.33427 0.33427 0.33427 0.33427 0 0 0 0 0 0 0 0 0 0 0
SC2 0.12842 0.24375 0.05327 0.0732 0.0622 0.32655 0.32655 0.32655 0.32655 0.32655 0 0 0 0 0 0 0 0 0 0 0
SC3 0.07652 0.14523 0.03174 0.04362 0.03706 0.19457 0.19457 0.19457 0.19457 0.19457 0 0 0 0 0 0 0 0 0 0 0
SC4 0.05687 0.10794 0.02359 0.03241 0.02755 0.1446 0.1446 0.1446 0.1446 0.1446 0 0 0 0 0 0 0 0 0 0 0
SC5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SC6 0.07457 0.02072 0.15521 0.02878 0.03744 0 0 0 0 0 0.2119 0.2119 0.2119 0.2119 0.2119 0.2119 0 0 0 0 0
SC7 0.05621 0.01562 0.11699 0.02169 0.02822 0 0 0 0 0 0.15972 0.15972 0.15972 0.15972 0.15972 0.15972 0 0 0 0 0
SC8 0.10103 0.02808 0.2103 0.03899 0.05072 0 0 0 0 0 0.28711 0.28711 0.28711 0.28711 0.28711 0.28711 0 0 0 0 0
SC9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SC10 0.06037 0.01678 0.12566 0.0233 0.03031 0 0 0 0 0 0.17156 0.17156 0.17156 0.17156 0.17156 0.17156 0 0 0 0 0
SC11 0.05972 0.0166 0.12431 0.02305 0.02998 0 0 0 0 0 0.16971 0.16971 0.16971 0.16971 0.16971 0.16971 0 0 0 0 0
SC12 0.0625 0.041 0.02506 0.19812 0.03122 0 0 0 0 0 0 0 0 0 0 0 0.33459 0.33459 0.33459 0 0
SC13 0.08679 0.05693 0.03481 0.27513 0.04336 0 0 0 0 0 0 0 0 0 0 0 0.46464 0.46464 0.46464 0 0
SC14 0.0375 0.0246 0.01504 0.11888 0.01873 0 0 0 0 0 0 0 0 0 0 0 0.20077 0.20077 0.20077 0 0
SC15 0.03049 0.01489 0.01322 0.02146 0.24173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44804 0.44804
SC16 0.03756 0.01835 0.01629 0.02644 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.55196 0.55196
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Table 8. Priorities of the sub-criteria.

Sub-Criteria sj Priorities Rank

Processing power (SC1) s1 0.13146 1
Graphic performance (SC2) s2 0.12842 2

Memory storage (SC3) s3 0.07652 5
Connectivity (SC4) s4 0.05687 10

Power consumption (SC5) s5 0
User interface (SC6) s6 0.07457 6
Compatibility (SC7) s7 0.05621 11
Voice assistant (SC8) s8 0.10103 3

Update and support (SC9) s9 0
APP (SC10) s10 0.06037 8

Cyber security (SC11) s11 0.05972 9
Brand preference (SC12) s12 0.06250 7

Market share (SC13) s13 0.08679 4
Company sustainability (SC14) s14 0.03750 13

Maintenance cost (SC15) s15 0.03049 14
Upgrade costs (SC16) s16 0.03756 12

4.4. Obtain the Ranking of the Operation System Alternatives

In phase 3, the ranking of the operation system alternatives is calculated. A question-
naire was prepared asking experts to evaluate the expected performance of each operating
system according to each sub-criteria. Four operation systems were evaluated, and five
experts (k1–k5) were invited to complete the questionnaire based on the seven linguistic
levels of performance shown in Table 3. The results are shown in Table 9. Through the
arithmetic mean method, a fuzzy decision matrix is developed, as shown in Table 10.

Table 9. Performance evaluation of the four operation systems by the experts.

Sub-Criterion
Operation System A1 Operation System A2 Operation System A3 Operation System A4

k1 k2 k3 k4 k5 k1 k2 k3 k4 k5 k1 k2 k3 k4 k5 k1 k2 k3 k4 k5

Processing power (SC1) MG F MG F MG MG G G G MG VG VG VG G VG G G G G VG
Graphic performance (SC2) F F MW F MG G MG G VG G G VG G VG MG G VG G VG G

Memory storage (SC3) VG G G G VG G MG VG G VG VG G MG G MG VG MG VG G VG
Connectivity (SC4) MG MG F G F MG G MG MG G G G F MG F MG G MG MG G
User interface (SC6) VG G G VG G MG G G MG MG G G MG G G MG G G MG MG
Compatibility (SC7) VG VG G VG G G G G VG G G G MG G MG G VG G VG G
Voice assistant (SC8) W VW W VW W G G F W F MG MG MG F MG G VG F W F

APP (SC10) MW F W F W W W MW VW MW W W F W MW W W MW VW MW
Cyber security (SC11) W W MW W MW F F MG F F MW MW W F W F F MG F F

Brand preference (SC12) F F MW F MW F MG F MG F MW W W MW MW F MG F MG F
Market share (SC13) MW F MW MW F G G G VG G MG F MG F MG VG G G VG G

Company sustainability
(SC14) W W MW VW MW W VW W VW W W W MW VW MW W VW W VW W

Maintenance cost (SC15) G F MG G MG MW F MW MW F G F MG G MG MW F MW MW F
Upgrade costs (SC16) MG F MG F MG G VG VG MG G MG F MG F MG G VG VG MG VG

Table 10. Fuzzy decision matrix P̃
′
.

Sub-Criterion Operation System A1 Operation System A2 Operation System A3 Operation System A4

Processing power (SC1) (0.44, 0.59, 0.74) (0.62, 0.74, 0.86) (0.78, 0.96, 0.98) (0.72, 0.84, 0.92)
Graphic performance (SC2) (0.38, 0.53, 0.68) (0.68, 0.81, 0.90) (0.70, 0.85, 0.92) (0.74, 0.88, 0.94)

Memory storage (SC3) (0.72, 0.84, 0.92) (0.70, 0.85, 0.92) (0.64, 0.78, 0.88) (0.72, 0.89, 0.94)
Connectivity (SC4) (0.48, 0.62, 0.76) (0.50, 0.65, 0.80) (0.52, 0.65, 0.78) (0.50, 0.65, 0.80)
User interface (SC6) (0.76, 0.92, 0.96) (0.54, 0.68, 0.82) (0.62, 0.74, 0.86) (0.54, 0.68, 0.82)
Compatibility (SC7) (0.76, 0.92, 0.96) (0.72, 0.84, 0.92) (0.62, 0.74, 0.86) (0.74, 0.88, 0.94)
Voice assistant (SC8) (0.04, 0.16, 0.32) (0.31, 0.44, 0.57) (0.47, 0.62, 0.77) (0.33, 0.48, 0.59)

APP (SC10) (0.16, 0.28, 0.44) (0.10, 0.22, 0.38) (0.14, 0.29, 0.44) (0.10, 0.22, 0.38)
Cyber security (SC11) (0.11, 0.26, 0.41) (0.38, 0.53, 0.68) (0.14, 0.29, 0.44) (0.38, 0.53, 0.68)

Brand preference (SC12) (0.32, 0.47, 0.62) (0.41, 0.56, 0.71) (0.17, 0.31, 0.47) (0.41, 0.56, 0.71)
Market share (SC13) (0.29, 0.44, 0.59) (0.72, 0.84, 0.92) (0.44, 0.59, 0.74) (0.74, 0.88, 0.94)

Company sustainability (SC14) (0.14, 0.29, 0.44) (0.03, 0.12, 0.29) (0.10, 0.22, 0.38) (0.03, 0.12, 0.29)
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Table 10. Cont.

Sub-Criterion Operation System A1 Operation System A2 Operation System A3 Operation System A4

Maintenance cost (SC15) (0.55, 0.68, 0.81) (0.26, 0.41, 0.56) (0.55, 0.68, 0.81) (0.26, 0.41, 0.56)
Upgrade costs (SC16) (0.44, 0.59, 0.74) (0.70, 0.85, 0.92) (0.44, 0.59, 0.74) (0.72, 0.89, 0.94)

Apply Equation (15) to normalize the fuzzy decision matrix P̃
′
, and the result P̃ is

listed in Table 11. Next, apply Equation (16) to compute the weighted normalized fuzzy
decision matrix, as shown in Table 12. Next, use Equations (17) and (18) to calculate the
fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS), respectively,
and the results are shown in Table 13. Finally, the distance of each operation system from
FPIS, d∗τ , and the distance of each operation system from FNIS, d−τ , are calculated using
Equations (19) and (20), respectively. The results are shown in Tables 14 and 15. The
closeness coefficient of each operation system is calculated by applying Equation (21). For
example, the closeness coefficient of operation system 1 is as follows:

CC1 =
d−1

d∗1 + d−1
=

0.0596
0.2166 + 0.0596

= 0.2157

Table 11. Normalized fuzzy decision matrix P̃.

Sub-Criterion Operation System A1 Operation System A2 Operation System A3 Operation System A4

Processing power (SC1) (0.46, 0.61, 0.77) (0.67, 0.80, 0.93) (0.80, 0.98, 1.00) (0.77, 0.89, 0.98)
Graphic performance (SC2) (0.40, 0.50, 0.71) (0.74, 0.88, 0.98) (0.71, 0.87, 0.94) (0.79, 0.94, 1.00)

Memory storage (SC3) (0.75, 0.88, 0.96) (0.76, 0.92, 1.00) (0.65, 0.80, 0.90) (0.77, 0.95, 1.00)
Connectivity (SC4) (0.50, 0.65, 0.79) (0.54, 0.71, 0.87) (0.53, 0.66, 0.80) (0.53, 0.69, 0.85)
User interface (SC6) (0.79, 0.96, 1.00) (0.59, 0.74, 0.89) (0.63, 0.76, 0.88) (0.57, 0.72, 0.87)
Compatibility (SC7) (0.79, 0.96, 1.00) (0.78, 0.91, 1.00) (0.63, 076, 0.88) (0.79, 0.94, 1.00)
Voice assistant (SC8) (0.04, 0.17, 0.33) (0.34, 0.48, 0.62) (0.48, 0.63, 0.79) (0.35, 0.51, 0.63)

APP (SC10) (0.17, 0.29, 0.46) (0.11, 0.24, 0.41) (0.14, 0.30, 0.45) (0.11, 0.23, 0.40)
Cyber security (SC11) (0.11, 0.27, 0.43) (0.41, 0.58, 0.74) (0.17, 0.32, 0.48) (0.40, 0.56, 0.72)

Brand preference (SC12) (0.33, 0.49, 0.65) (0.45, 0.61, 0.77) (0.14, 0.30, 0.45) (0.44, 0.60, 0.76)
Market share (SC13) (0.30, 0.46, 0.61) (0.78, 0.91, 1.00) (0.45, 0.60, 0.76) (0.79, 0.94, 1.00)

Company sustainability (SC14) (0.15, 0.30, 0.46) (0.03, 0.13, 0.32) (0.10, 0.22, 0.39) (0.03, 0.13, 0.31)
Maintenance cost (SC15) (0.57, 0.71, 0.84) (0.28, 0.45, 0.61) (0.56, 0.69, 0.83) (0.28, 0.44, 0.60)

Upgrade costs (SC16) (0.46, 0.61, 0.77) (0.76, 0.92, 1.00) (0.45, 0.60, 0.76) (0.77, 0.95, 1.00)

Table 12. Weighted normalized fuzzy decision matrix.

ṽτj τ = 1 τ = 2 τ = 3 τ = 4

j = 1 (0.0603, 0.0808, 0.1013) (0.0886, 01057, 0.1229) (0.1046, 0.1288, 0.1315) (0.1007, 01175, 0.1287)
j = 2 (0.0508, 0.0709, 0.0910) (0.0949, 0.1131, 0.1256) (0.0917, 0.1114, 0.1206) (0.1011, 0.1202, 0.1284)
j = 3 (0.0574, 0.0670, 0.0733) (0.0582, 0.0707, 0.0765) (0.0500, 0.0609, 0.0687) (0.0586, 0.0724, 0.0765)
j = 4 (0.0284, 0.0367, 0.0450) (0.0309, 0.0402, 0.0495) (0.0302, 0.0377, 0.0453) (0.0303, 0.0393, 0.0484)
j = 6 (0.0590, 0.0715, 0.0746) (0.0438, 0.0551, 0.0665) (0.0472, 0.0563, 0.0654) (0.0428, 0.0539, 0.0651)
j = 7 (0.0445, 0.0539, 0.0562) (0.0440, 0.0513, 0.0562) (0.0356, 0.0424, 0.0493) (0.0443, 0.0526, 0.0562)
j = 8 (0.0042, 0.0168, 0.0337) (0.0340, 0.0483, 0.0626) (0.0485, 0.0639, 0.0794) (0.0355, 0.0516, 0.0634)

j = 10 (0.0101, 0.0176, 0.0277) (0.0066, 0.0144, 0.0249) (0.0086, 0.0179, 0.0271) (0.0064, 0.0141, 0.0244)
j = 11 (0.0068, 0.0162, 0.0337) (0.0247, 0.0344, 0.0441) (0.0104, 0.0189, 0.0286) (0.0241, 0.0337, 0.0432)
j = 12 (0.0208, 0.0306, 0.0404) (0.0279, 0.0380, 0.0482) (0.0089, 0.0185, 0.0281) (0.0273, 0.0372, 0.0472)
j = 13 (0.0262, 0.0398, 0.0533) (0.0679, 0.0792, 0.0868) (0.0390, 0.0523, 0.0655) (0.0683, 0.0813, 0.0868)
j = 14 (0.0055, 0.0113, 0.0172) (0.0012, 0.0049, 0.0118) (0.0038, 0.0084, 0.0145) (0.0012, 0.0048, 0.0116)
j = 15 (0.0175, 0.0216, 0.0257) (0.0086, 0.0136, 0.0186) (0.0171, 0.0212, 0.0284) (0.0084, 0.0133, 0.0182)
j = 16 (0.0172, 0.0231, 0.0290) (0.0286, 0.0347, 0.0376) (0.0169, 0.0226, 0.0284) (0.0288, 0.0356, 0.0376)
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Table 13. Fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS).

ṽ*
j Fuzzy Positive-Ideal Solution (FPIS) ṽ−j Fuzzy Negative-Ideal Solution (FNIS)

ṽ∗1 (0.1046, 0.1288, 0.1315) ṽ−1 (0.0603, 0.0808, 0.1013)
ṽ∗2 (0.1011, 0.1202, 0.1284) ṽ−2 (0.0468, 0.0669, 0.0870)
ṽ∗3 (0.0586, 0.0724, 0.0765) ṽ−3 (0.0500, 0.0609, 0.0687)
ṽ∗4 (0.0309, 0.0402, 0.0495) ṽ−4 (0.0284, 0.0367, 0.0450)
ṽ∗6 (0.0590, 0.0715, 0.0746) ṽ−6 (0.0428, 0.0539, 0.0651)
ṽ∗7 (0.0445, 0.0539, 0.0562) ṽ−7 (0.0356, 0.0424, 0.0493)
ṽ∗8 (0.0485, 0.0639, 0.0794) ṽ−8 (0.0032, 0.0126, 0.0305)
ṽ∗10 (0.0101, 0.0179, 0.0277) ṽ−10 (0.0064, 0.0141, 0.0244)
ṽ∗11 (0.0247, 0.0344, 0.0441) ṽ−11 (0.0068, 0.0162, 0.0255)
ṽ∗12 (0.0279, 0.0380, 0.0482) ṽ−12 (0.0089, 0.0185, 0.0281)
ṽ∗13 (0.0683, 0.0813, 0.0868) ṽ−13 (0.0235, 0.0371, 0.0506)
ṽ∗14 (0.0055, 0.0113, 0.0172) ṽ−14 (0.0012, 0.0048, 0.0116)
ṽ∗15 (0.0175, 0.0216, 0.0257) ṽ−15 (0.0084, 0.0133, 0.0182)
ṽ∗16 (0.0288, 0.0356, 0.0376) ṽ−16 (0.0169, 0.0226, 0.0284)

Table 14. Distance of each operation system from FPIS.

d(ṽτj,ṽ
*
j ) τ = 1 τ = 2 τ = 3 τ = 4

j = 1 0.0416 0.0169 0.0000 0.0353
j = 2 0.0461 0.0057 0.0087 0.0461
j = 3 0.0037 0.0010 0.0095 0.0037
j = 4 0.0035 0.0000 0.0028 0.0027
j = 6 0.0000 0.0137 0.0123 0.0148
j = 7 0.0000 0.0015 0.0093 0.0007
j = 8 0.0457 0.0156 0.0000 0.0320
j = 10 0.0001 0.0032 0.0009 0.0035
j = 11 0.0182 0.0000 0.0151 0.0175
j = 12 0.0075 0.0000 0.0196 0.0066
j = 13 0.0392 0.0012 0.0268 0.0392
j = 14 0.0000 0.0054 0.0025 0.0056
j = 15 0.0000 0.0080 0.0004 0.0083
j = 16 0.0110 0.0005 0.0115 0.0110

d∗τ 0.2166 0.0729 0.1193 0.2269

Table 15. Distance of each operation system from FNIS.

d(ṽτj,ṽ
−
j ) τ = 1 τ = 2 τ = 3 τ = 4

j = 1 0.0000 0.0251 0.0416 0.0353
j = 2 0.0000 0.0445 0.0413 0.0500
j = 3 0.0083 0.0087 0.0000 0.0016
j = 4 0.0000 0.0035 0.0012 0.0027
j = 6 0.0127 0.0012 0.0029 0.0127
j = 7 0.0093 0.0081 0.0000 0.0007
j = 8 0.0000 0.0329 0.0485 0.0349
j = 10 0.0071 0.0004 0.0029 0.0071
j = 11 0.0000 0.0182 0.0031 0.0175
j = 12 0.0102 0.0196 0.0000 0.0086
j = 13 0.0000 0.0411 0.0152 0.0419
j = 14 0.0033 0.0002 0.0031 0.0033
j = 15 0.0083 0.0003 0.0079 0.0083
j = 16 0.0005 0.0111 0.0000 0.0110

d−τ 0.0596 0.2148 0.1415 0.1710

The closeness coefficients of the four operation systems are: CC1 = 0.2157, CC2 = 0.7465,
CC3 = 0.5426, and CC4 = 0.4298. Since CC2 has the largest value, operation system 2 is the
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most recommended system. This can be seen from Table 14, which shows that operation
system 2 performs well in connectivity (SC4), cyber security (SC11), and brand preference
(SC12), as its performance is the same as the Fuzzy Positive-Ideal Solution (FPIS) of each of
these sub-criteria with d(ṽτ j, ṽ∗j ) equals to 0. By observing d(ṽτ j, ṽ−j ) in Table 15, we can
see that operation system 2 performs rather well in terms of graphic performance (SC2),
market share (SC13), and voice assistant (SC8) since its position is farther away from the
Fuzzy Negative-Ideal Solution (FNIS).

5. Conclusions

In this research study, we aimed to examine the selection of the most suitable operation
system for new product development. A three-phased Multi-Criteria Decision-Making
(MCDM) model, which integrates Interpretative Structural Modelling (ISM), Fuzzy Analytic
Network Process (FANP), and fuzzy TOPSIS, is described. The reasons for applying the
proposed model instead of using the traditional AHP are that the AHP assumes that all
criteria are independent and that decision makers are very certain in determining the
relative importance of the criteria and the relative performance of the alternatives with
respect to each criterion. Since the criteria are often interrelated and uncertainty exists in
the problem setting, the FANP can tackle these problems. However, adopting the FANP
can lead to the construction of a very lengthy questionnaire. The proposed model can solve
this problem. By using ISM, the interrelationship among criteria and among sub-criteria
can be understood, and the FANP questionnaire can be shortened considerably. FANP
analysis can obtain the relative importance weights of sub-criteria to evaluate operation
systems. Since the fuzzy TOPSIS questionnaire is rather short compared with the FANP
questionnaire in evaluating the operation systems, the ranking of the operation systems is
computed by the fuzzy TOPSIS questionnaire.

The case study results show that operation system requirement (C2) is the most im-
portant criterion in the opinion of experts, followed by system on chip (C1) and reputation
(C3). The most important sub-criteria are processing power (SC1), graphic performance
(SC2), voice assistant (SC8), market share (SC13), memory storage (SC3), and user interface
(SC6) (in descending order). Based on the ranking of these systems, companies can choose
the most suitable operation system when developing new smart TVs.
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