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Abstract: A stochastic cold chain (SCC) is a common supply chain in real life that emphasizes the
need for commodities to arrive fresh within time constraints. In previous research on supply chains,
the time factor was regarded as a fixed number. However, the travel time is a stochastic factor due
to traffic and weather conditions during the delivery. Therefore, this paper concentrates on the two
multi-state factors simultaneously. Network reliability is one of the performance indexes used to
assess the cold chain efficacy, defined as the probability that the flow of SCC can satisfy the demand
within the delivery time threshold. The SCC with two multi-state factors is modeled as a stochastic
cold chain network with multi-state travel time (SCCNMT). To calculate the network reliability of an
SCCNMT, we will calculate the demand reliability and time reliability separately, treating them as
independent events, and multiply the demand and time reliability to estimate the network reliability
of the two multi-state factors.

Keywords: stochastic cold chains (SCC); network reliability; multi-state travel time; two multi-state
factors

1. Introduction

As technological progress advances and generations change, the logistics industry has
become an essential part of daily life [1]. In recent years, competition among businesses
has intensified. To expand their customer base and improve profits, companies aim to cut
costs, shorten delivery times, improve product quality, and offer personalized products.
Therefore, the concept of the cold chain [2,3] is currently trending in the logistics industry.
In the past, the reliability of the cold chain network was considered multi-state based on the
number of carriers, without taking other factors into account. However, a stochastic cold
chain network with multi-state travel time (SCCNMT) takes into account two stochastic
factors simultaneously. This research does not consider time as a fixed constant, but instead
views it as a multi-state factor.

A stochastic network is a real system, such as transportation systems, communication
systems and supply chain systems [4–6]. In a cold chain network, we consider suppli-
ers, logistics companies, and retail stores as nodes, and the path between each node as
an arc. When the network demand is given, we can calculate the probability of success-
fully transmitting the flow from the source to the sink, which is the reliability of cold
chain networks.
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To calculate the reliability of cold chain networks [7–9], we only consider the multi-
state flow caused by the occupied orders. However, time factors such as travel time, are
affected by personnel and environmental factors. In the previous study [10,11], reliability
was calculated without considering the multi-state travel time. Therefore, this research
aims to develop a new reliability measure for a cold chain network that can simultaneously
consider both the multi-state flow and travel time. The reliability of a cold chain network
can be used as a performance indicator to assist cold chain businesses with order planning
and decision-making.

Previous research on stochastic supply chain networks has explored various aspects
of network reliability. Huang [8] studied the different states of available transportation on
different roads and proposed a network performance evaluation algorithm for inventory
issues. Lin et al. [7] investigated the use of different transportation modes in the network
and considered the characteristic of goods being damaged. Niu et al. [12] further examined
the cost concept by incorporating transportation and damage costs into the study and sepa-
rately discussing the damage rates on different routes. Lin et al. [9] specifically discussed
perishable goods, calculated the flow rate that meets the damage rate and ensured that the
product can meet demand under the possibility of damage. As stochastic networks have
been studied by previous studies with only a single multi-state factor, this study attempts
to extend the research by evaluating the network reliability under two multi-state factors.

This study aims to evaluate the reliability of a cold chain throughout the entire produc-
tion process. First, we model the entire cold chain as a network, with nodes representing
cold chain suppliers, logistics companies, and retail stores, and each node connecting a
pair of arcs. We consider the route for a product chain as a path and use the solution to
the network problem to calculate the reliability of a cold chain network. In the past, this
research addressed the issue of multi-state flow but did not account for the time factor as
a multi-state variable [12–14]. Therefore, this study extends the approach to calculate the
reliability of a cold chain network for two stochastic variables. The ultimate goal of this
research is to determine the network reliability for actual products and account for both
flow and time factors simultaneously.

The paper is divided into five sections, organized as follows: In this section, the
introduction is presented. In Section 2, a stochastic cold chain network with a multi-state
travel time (SCCNMT) model is developed. An algorithm is further proposed in Section 3
to evaluate the network reliability with multi-state flow and travel time. In Section 4, a
simple numerical example of a practical cold chain is presented. Lastly, in Section 5, the
remarks of the thesis are presented.

2. Model Construction for an SCCNMT

In this section, the notations and assumptions are introduced first.

2.1. Notations and Assumptions

Let G ≡ (N, A, M) represent an SCCNMT with N being a set of perfect reliable nodes
including suppliers, logistics companies, and retail stores, A = {aq|q = 1, 2, . . . , z} being a
set of z arcs, and M = (Mq| q = 1, 2, . . . , z) with Mq being the maximal capacity of each arc.
At each arc aq, there are several identical carriers [7–9]. The capacity vector X denotes the
number of identical trucks in each arc, and xq takes a value from {0, 1, 2, . . . , Mq}. A cold
chain network is stochastic because each truck on the arc may be occupied by the other
orders. To evaluate the network reliability of cold chain networks in an SCCNMT, the G
model developed in this research satisfies the following assumptions:

I. The flow and time units of an SCCNMT are integer [15].
II. No nodes, including suppliers, logistics companies and retail stores, provide inventory

service.
III. In such an SCCNMT, only one commodity is provided.
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IV. The capacity of any component is statistically independent [15].
V. Flow on the network G satisfies the flow-conservation law [16].
VI. The identical type of truck throughout the entire transportation process is used.

2.2. Total Delivery Time

A cold chain network involves several processes that a product must go through from
supplies to retail stores. Firstly, the product is delivered to the logistics companies, where
it undergoes the first travel time. Once it arrives at the logistics company, the product is
unloaded and awaits loading until all goods have arrived for transportation. Afterward,
the product undergoes the second travel time to reach the retail stores. The service time of
the entire cold chain network is illustrated in Figure 1.
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Figure 1. Service time concept in a cold chain.

The time required to deliver products to the retail stores can be divided into three
parts. The first part is the travel time from suppliers to the logistics companies, taking into
consideration the maximum travel time on the way, denoted by max{vb}. Here, b is a range
from 1 to the arcs before the logistics companies s. After all goods are delivered, unloading
and loading services begin. Hence, the second and third parts consider the unloading and
loading times, and since all goods depart from the logistics company at the same time, the
maximum time among all paths after logistics company is considered, denoted by (U + L)
and max{vq}.

2.3. The Capacity Vector

An SCCNMT exists in more than two suppliers and retail stores. The vector X = (x1,
x2, . . . , xq) is defined as the capacity vector of G, where xq represents the current used
truck number of aq. Here, aq is an integer random variable with a maximum value of Mq.
An SCCNMT can be derived into two areas by logistic companies. One area focuses on
supplying logistics companies with products to meet the demand of retail stores. The other
area is for logistic companies to deliver products to retail stores. Due to the pressure of
time, the capacity must consider both delivery time and demand simultaneously. If the
flow vector F satisfies the following Equations (1) and (2), it is said to be feasible under Mq,⌈

w

∑
o=1

p

∑
k=1

{
f k
o
∣∣aq ∈ Pk

o

}⌉
≤ Mq, for q = 1, 2, . . . , z, (1)
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max
{

f k
o
∣∣aq ∈ Pk

o

}
≤
⌈

I−∆
U

⌉
foro = 1, 2, . . . , w; k = 1, 2, . . . , p;

q = s + 1, s + 2, . . . , z; b = 1, 2, . . . , s, where ∆ = max{vb}+ (U + L) + max
{

vq
}

.
(2)

Equation (1) represents that the demand cannot exceed its maximal capacity Mq.
Equation (2) is inverted by the total delivery time to ensure the number of trucks that can
satisfy the flow on time.

Similarly, to be feasible under the capacity vector X = (x1, x2, . . . , xq), the flow vector F
must satisfy the following Equations (3) and (4),

xq =

⌈
w

∑
o=1

p

∑
k=1

{
f k
o
∣∣aq ∈ Pk

o

}⌉
, for q = 1, 2, . . . , s, (3)

xq =

⌈
U∗max{ f k

o |aq ∈Pk
o}

I−∆

⌉
foro = 1, 2, . . . , w; k = 1, 2, . . . , p;

q = s + 1, s + 2, . . . , z; b = 1, 2, . . . , s, where ∆ = max{vb}+ (U + L) + max
{

vq
}

.
(4)

2.4. Minimal Capacity Vectors and Demand Reliability

Let the set of capacity vectors that satisfy the demand vector D = (d1, d2, . . . , dk) within
time constraints be denoted as G. The demand reliability RD is defined as the probability
that an SCCNMT can satisfy the demand under the maximum time constraint. Thus, RD
can be represented using Formula (5) as follows,

RD = ∑ Pr{X|X ∈ Ω}, (5)

where Pr{X} = Pr{x1} × Pr{x2} × . . . × Pr{xq} with assumption 4.
However, when the network size is very large, it is inefficient to calculate network

reliability by enumerating all X in the set Ω and summing their probabilities. Instead, we
can identify the minimal capacity vector from those capacity vectors X that satisfy the
demand within the max time constraint and regard them as MCV. If there are γ MCVs,
the formulation of demand reliability can be revised. In order to obtain the MCVs, we
need to go through the following steps and present in Table 1 how to obtain the process of
Ωmin. The demand reliability can be evaluated using the recursive sum of disjoint products
(RSDP) algorithm [17,18]. Therefore, we can apply the RSDP algorithm to calculate demand
reliability, as shown in Formula (6),

RD = Pr
{

γ
∪

i=1
{X|X ≥ Xi}

}
. (6)

Table 1. The process of obtaining the Ωmin.

Line 1: Suppose there are γ delivery vector X in Ω

Set I = Ωmin = ∅ (I is stack, which stores the MCV index)
Line 2: For i = 1 to γ with i /∈ I
Line 3: For j = i + 1 to γ with i /∈ I
Line 4: If Xi ≤ Xj, Xi is not a MCV and belongs to Ωmin.
Line 5: Else Xi belongs to Ωmin, I← I ∪ {i} and go to Line 6.
Line 6: End
Line 7: Ωmin ← Ωmin ∪ Xi
Line 8: End
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Various methods can be used to calculate the probability of a union set, including the
inclusion–exclusion principle [17], state space decomposition method [18], sum of disjoint
products [19], and recursive sum of disjoint products [17]. In this study, we employ the
RSDP to obtain the reliability, which represents the probability of meeting time constraints.

2.5. Time Reliability

After considering the multi-state travel time, the travel time for each arc will follow
its own probability distribution, unlike in previous research where it was treated as a
constant value. Therefore, it is possible to calculate the probability of arriving at a specific
destination within a certain time for a given transportation path based on the multi-state
travel times for each arc. Considering all time factors, we can obtain the feasible travel time
vector V using the following Equations (7) and (8),

vmin
q ≤ vq ≤ vmax

q for q = 1, 2, . . . , z, (7)

{
vb + vc

∣∣∣ab, ac ∈ Pk
o

}
≤ I∗, for b = 1, 2, . . . , s; c = s + 1, s + 2, . . . , z. (8)

Through constraint (7) and (8), we can derive travel time upper bound vector S in V.
In order to avoid complex and inefficient calculations, similar to the last subsection, we
also need to find a travel time upper bound as the same as MCVs. However, since time
and capacity are different, we are seeking an upper bound solution, and thus, we need to
use Table 2 to obtain the travel time upper bound vector. Each travel time upper bound
vector represents a feasible configuration that can meet the current travel time. Therefore,
if we obtain ρ travel time upper bound vectors, we can use Equation (9) to calculate time
reliability RT, which represents that an SCCNMT can deliver within the time threshold;
this can be developed as follows:

RT = Pr
{

ρ
∪

h=1
{S|S ≤ Sh }

}
. (9)

Table 2. The process of obtaining the travel time upper bound vector.

Line 1: Suppose there are ρ travel time vector S
Set I = S = ∅ (I is stack, which stores the travel time upper bound vector index)

Line 2: For i = 1 to ρ with i /∈ I
Line 3: For j = i + 1 to γ with i /∈ I
Line 4: If Vi ≥ Vj, Vi is not a travel time upper bound and belongs to S.
Line 5: Else Vi transform into vector Si and belongs to S, I← I ∪ {i}and go to Line 6.
Line 6: End
Line 7: S← S ∪ Vi
Line 8: End

2.6. Estimate the Network Reliability with Two Multi-State Factors

In the last subsection, we calculated the demand reliability RD, which represents
satisfying the demand within the maximum time constraints. We need to calculate the time
reliability RT to consider the multi-state travel time and estimate the network reliability
with the two factors. The time reliability RT [20–22] considers the time factors under a cold
chain, so we need to understand every detail in a cold chain. A cold chain transportation
of a product from the supplier to the retail stores requires passing through the travel time
from the supplier to the logistics company and from the logistics company to the retail
stores. In addition, during the transportation process, the product needs to be unloaded,
picked, and handed over to the carrier again, and there may be a gap for each step. Finally,
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we need to determine a threshold I to limit the latest arrival time. To estimate the network
reliability under the two multi-state factors can be based on Formula (10),

RD, T = RD × RT (10)

3. Algorithm

An algorithm to evaluate the network reliability for an SCCNMT model under time
constraint I is proposed as follows (Algorithms 1–3):
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(2.2) Transform each F into capacity vector X after the logistics company while taking 
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 =
 − Δ
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* max{ }k k
o q o

q

U f a P
x

I
, for o = 1, 2, …, w; k = 1, 2, …, p; 
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(15) 
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in Ω using vector operations. 
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{ }
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 


1

Pr
z

D i
i

R X X X  (16) 
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4. A Numerical Example

We use a simple numerical example to demonstrate an SCCNMT model, including
a simple cold chain network. Figure 3 shows a simple cold chain network to illustrate an
SCCNMT model, which consists of two suppliers, two logistics companies, three retail
stores, and ten arcs. Table 3 shows all the time factors dealt with within the logistics
enterprise. Tables 4 and 5 list the data on the capacity and arrival distribution of each arc.
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Table 3. Data of the service time in the logistics company.

Time Factor Average Time (mins)

Unloading 15

Loading 20

Table 4. Truck data of the numerical example.

Arc Capacity Probability

a1, a2
a3, a4

0 0.7
1 0.1
2 0.15
3 0.05

a5, a6
a7, a8

0 0.7
1 0.2
2 0.05
3 0.05

a9, a10

0 0.6
1 0.2
2 0.05
3 0.15

Table 5. Travel time and arrival probability of each arc.

Arc Travel Time Arrival Probability

a1, a2

35 0.7
37 0.1
40 0.1
45 0.1

a3, a4

27 0.8
30 0.05
32 0.05
35 0.1

a5, a6

35 0.9
37 0.05
40 0.025
45 0.025
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Table 5. Cont.

Arc Travel Time Arrival Probability

a7, a8

20 0.8
25 0.05
27 0.1
30 0.05

a9, a10

30 0.9
33 0.025
35 0.05
40 0.025

The following algorithm is used to obtain the network reliability of an SCCNMT given
D = (2, 2, 2), I = 130 min, M = (3, 3, 3, 3, 4, 4, 4, 3, 3, 3). There are 12 delivery paths in this
network P1

1 = {a1, a5}, P1
2 = {a3, a5}, P1

3 = {a2, a8}, P1
4 = {a4, a8}, P2

1 = {a1, a6}, P2
2 = {a3,

a6}, P2
3 = {a2, a9}, P2

4 = {a4, a9}, P3
1 = {a1, a7}, P3

2 = {a3, a7}, P3
3 = {a2, a10}, P3

4 = {a4, a10}
(Algorithms 4–6).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

a7, a8 

20 0.8 
25 0.05 
27 0.1 
30 0.05 

a9, a10 

30 0.9 
33 0.025 
35 0.05 
40 0.025 

The following algorithm is used to obtain the network reliability of an SCCNMT 
given D = (2, 2, 2), I = 130 min, M = (3, 3, 3, 3, 4, 4, 4, 3, 3, 3). There are 12 delivery paths in 
this network P11 = {a1, a5}, P12 = {a3, a5}, P13 = {a2, a8}, P14 = {a4, a8}, P21 = {a1, a6}, P22 = {a3, a6}, P23 
= {a2, a9}, P24 = {a4, a9}, P31 = {a1, a7}, P32 = {a3, a7}, P33 = {a2, a10}, P34 = {a4, a10}. (Algorithms 4–6) 

Algorithm 4: demand reliability R (2, 2, 2) 

Step 0. Find all feasible flow vectors F = 1 1 1 1 2 2 2 2 3 3 3 3
1 2 3 4 1 2 3 4 1 2 3 4( , , , , , , , , , , , )f f f f f f f f f f f f  satisfy-

ing 
+ + + =
+ + + =
+ + + =

1 1 1 1
1 2 3 4
2 2 2 2

1 2 3 4
3 3 3 3

1 2 3 4

2,
2,
2.

f f f f
f f f f
f f f f

 (22) 

This step generates 1000 flow vectors, which are shown in the first column of Table 
6. 
Step 1. Check whether the flow vectors F exceeds the maximal capacity Mq of each arc or 
not. 
(1.1) Check whether the maximal capacity of each arc has been exceeded by the number
of vehicles used via 
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3 4

3 3
3 4

3,

3,

3,

3,

4,

4,

4,

3,

3,

3.

f f f

f f f

f f f

f f f

f f

f f

f f

f f

f f

f f

 (23) 

(1.2) Check whether the truck departing from the logistics company can arrive within 
the given time and use the maximum value for travel time via 
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Steps 1.1 and 1.2 generate 780 flow vectors, which are shown in the second and the 
third column of Table 6. 
Step 2. Generate the capacity vectors X = (x1, x2, …, x10). 
(2.1) Transform each F into the capacity vector X = (x1, x2, x3, x4) before the logistic company
via 
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(2.2) Transform each F into the capacity vector X = (x5, x6, x7, x8, x9, x10) after the logistic 
company and use the maximal value for travel time via 
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 (26) 

This step transforms 712 flow vectors into capacity vectors X in Ω. 
(2.3) Use the method in Table 1 to eliminate other non-MCVs in Ω. 

This step obtains 47 capacity vectors in Ωmin, which are shown in the fourth column 
of Table 6. 
Step 3. There are 47 MCVs that are shown in Table 6. The demand reliability R(2, 2, 2) in an 
SCCNMT according to Table 4 using the RSDP can be obtained via 

{ }
=

 
= ≥ = 
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47

(2, 2, 2)
1

Pr 0.6321i
i

R X X X  (27) 
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Table 6. The results for a numerical example.

Step 1 Step 1.1 Step 1.2 Step 2 Step 2.3

Find Feasible Flow
Vectors F

Delete the Vectors
Exceed Mi

Delete the Vectors
Exceed the Time
Constraints

Transform F to Delivery
Vectors X Check if X is the MCV

F1 = (0, 0, 0, 2, 0, 0, 0, 2,
0, 0, 0, 2)

F14 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 0, 2)

F14 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 0, 2)

X14 = (0, 1, 0, 5, 0, 0, 0,
2, 2, 2)

X27 = (0, 0, 3, 3, 0, 1, 2,
2, 1, 0)

F2 = (0, 0, 0, 2, 0, 0, 0, 2,
0, 0, 1, 1)

F19 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 1, 1)

F19 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 1, 1)

X19 = (0, 2 0, 4, 0, 0, 0, 2,
2, 2)

X49 = (0, 0, 3, 3, 0, 2, 1,
2, 0, 1)

F3 = (0, 0, 0, 2, 0, 0, 0, 2,
0, 0, 2, 0)

F22 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 2, 0, 0)

F22 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 2, 0, 0)

X22 = (0, 1, 1, 4 0, 0, 0, 2,
2, 2)

X97 = (3, 0, 0, 3, 0, 1, 2,
2, 1, 0)

F4 = (0, 0, 0, 2, 0, 0, 0, 2,
0, 1, 0, 1)

F25 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 1, 0, 1)

F25 = (0, 0, 0, 2, 0, 0, 1, 1,
0, 1, 0, 1)

X25 = (0, 1, 0, 5, 0, 0, 1,
2, 2, 1)

X129 = (3, 0, 0, 3, 0, 2, 1,
2, 0, 1)

F5 = (0, 0, 0, 2, 0, 0, 0, 2,
0, 1, 1, 0)

F31 = (0, 0, 0, 2, 0, 0, 1, 1,
1, 1, 0, 0)

F31 = (0, 0, 0, 2, 0, 0, 1, 1,
1, 1, 0, 0)

X31 = (1, 1, 1, 3, 0, 0, 2,
2, 2, 0)

X277 = (0, 3, 3, 0, 0, 1, 2,
2, 1, 0)

...
...

...
...

...

F998 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 0, 1, 0)

F798 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 0, 1, 0)

F798 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 0, 1, 0)

X798 = (2, 0, 3, 1, 2, 2, 1,
0, 0, 1)

X785 = (3, 0, 0, 3, 2, 0, 1,
0, 2, 1)

F999 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 1, 0, 0)

F897 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 1, 0, 0)

F897 = (2, 0, 0, 0, 2, 0, 0,
0, 1, 1, 0, 0)

X897 = (2, 1, 3, 0, 2, 2, 1,
0, 0, 1)

X812 = (3, 0, 0, 3, 2, 1, 0,
0, 1, 2)

F1000 = (2, 0, 0, 0, 2, 0, 0,
0, 2, 0, 0, 0)

F975 = (2, 0, 0, 0, 2, 0, 0,
0, 2, 0, 0, 0)

F975 = (2, 0, 0, 0, 2, 0, 0,
0, 2, 0, 0, 0)

X975 = (4, 0, 2, 0, 2, 2, 2,
0, 0, 0)

X952 = (3, 3, 0, 0, 2, 1, 0,
0, 1, 2)

1000 vectors 780 vectors 712 vectors 712 vectors 47 vectors
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Algorithm 5: For time reliability R130 
Step 1. Calculate the currently allocatable travel time I* via Equation (28), by referring to 
Table 1 for the unloading and loading time. 

I* = 130 − (20 + 2 × 15) = 130 − (20 + 30) = 80. (28) 
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(2.1) Find the feasible travel time vectors V for each route using Equations (29) and (30), 
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This step generates 8 travel time vectors. 
(2.2) Obtain travel time vectors V using step 2.1 and using the method in Table 2 to elimi-
nate other non-travel time upper bound vectors. 

In this case, the number of travel time upper bound vectors is the same as the number 
of travel time vectors, i.e., 7. 
Step 3. There are 8 travel time upper bound vectors that are shown in Table 7. The time 
reliability R125 in an SCCNMT according to Table 5 using the RSDP can be obtained via 
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Table 7. The results for a numerical example. 

Step 2.2 
Travel Time Vector 
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S4 = (35, 45, 35, 35, 45, 45, 30, 30, 40, 40) 
S5 = (40, 45, 35, 35, 45, 40, 30, 30, 40, 40) 
S6 = (45, 45, 35, 35, 45, 45, 30, 30, 40, 40) 
S7 = (45, 45, 35, 35, 45, 45, 30, 30, 40, 40) 
S8 = (45, 45, 35, 35, 45, 45, 30, 30, 40, 40) 

8 travel time upper bound vectors 
 

Algorithm 6: network reliability R (2, 2, 2), 130  
R (2, 2, 2), 130 = R (2, 2, 2) × R130 = 0.6321 × 0.475= 0.3001. (32) 

5. Discussion and Conclusions 
Network reliability can be used as a performance indicator that indicates the 

SCCNMT’s ability of successfully meeting the demands of retailers and delivering within 
time constraints. This performance indicator can provide logistics companies with a deci-
sion-making basis for determining transportation routes and vehicle configurations, and 
can also be used for sensitivity analysis to identify significant transportation routes. Alt-
hough we consider travel time during transportation, only travel data on highways are 
available from public data. To be more comprehensive, we need travel time data on both 
highways and surface roads for more realistic and accurate performance indicators. 

In this article, we introduce a SCC model, which models the entire product chain and 
calculates network reliability using stochastic flow. Additionally, because travel time is a 
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5. Discussion and Conclusions 
Network reliability can be used as a performance indicator that indicates the 

SCCNMT’s ability of successfully meeting the demands of retailers and delivering within 
time constraints. This performance indicator can provide logistics companies with a deci-
sion-making basis for determining transportation routes and vehicle configurations, and 
can also be used for sensitivity analysis to identify significant transportation routes. Alt-
hough we consider travel time during transportation, only travel data on highways are 
available from public data. To be more comprehensive, we need travel time data on both 
highways and surface roads for more realistic and accurate performance indicators. 

In this article, we introduce a SCC model, which models the entire product chain and 
calculates network reliability using stochastic flow. Additionally, because travel time is a 
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5. Discussion and Conclusions

Network reliability can be used as a performance indicator that indicates the SCC-
NMT’s ability of successfully meeting the demands of retailers and delivering within time
constraints. This performance indicator can provide logistics companies with a decision-
making basis for determining transportation routes and vehicle configurations, and can
also be used for sensitivity analysis to identify significant transportation routes. Although
we consider travel time during transportation, only travel data on highways are available
from public data. To be more comprehensive, we need travel time data on both highways
and surface roads for more realistic and accurate performance indicators.
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In this article, we introduce a SCC model, which models the entire product chain and
calculates network reliability using stochastic flow. Additionally, because travel time is
a crucial factor in a cold chain network, we need to consider it as an additional factor by
calculating time reliability and multiplying it with the multi-state flow to estimate network
reliability. This way, we can evaluate network reliability not only by including multi-state
flow but also considering the multi-state travel time. Currently, this research only considers
a single product in a cold chain network, but in the future, it can be extended to study the
inventory service and multiple commodities.
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Notations and Assumptions

N set of nodes consisting of suppliers, the logistic companies and retail stores.
s number of arcs from the supplier to the logistics company.
z number of arcs in the network.
aq qth arc in the network, q = 1, 2, . . . , s, s + 1, . . . , z.
A {aq|q = 1, 2, . . . , z}: set of arcs.
Mq maximal capacity for arc aq, q = 1, 2, . . . , z.
M (M1, M2, . . . , Mz): maximal arc-capacity vector.
G (N, A, M): an SCCNMT.
vq travel time of arc aq, q = 1, 2, . . . , z.
xq current capacity of arc aq, q = 1, 2, . . . , z.
X (x1, x2, . . . , xz): current capacity vector.
U average unloading time required for a truck at the logistic company and retail store.
L average loading time required for a truck at the logistic company and retail store.
p number of retail stores.
dk demand of the retail store k, k = 1, 2, . . . , p.
D (dk|k = 1, 2, . . . , p): demand vector for each retail store.
w number of delivery paths from supplies to retail stores.
Pk

o the oth delivery path for retail store k, o = 1, 2, . . . , w; k = 1, 2, . . . , p.
f flow on Pk

o , o = 1, 2, . . . , w; k = 1, 2, . . . , p.
F ( f 1

1 , f 1
2 , . . . , f 1

w, f 2
1 , f 2

2 , . . . , f 2
w, f p

1 , f p
2 , . . . f p

w): flow vector.
I the time threshold.
I* the currently available travel time threshold.
RD demand reliability that an SCCNMT can satisfy the demand with maximal travel time.
Ω set of capacity vectors satisfying the demand and time constraints.
Ωmin set of minimal capacity vectors X.
V travel time vector under the feasible time threshold.
vmin

q minimum travel time of arc aq, q = 1, 2, . . . , z.
vmax

q maximum travel time of arc aq, q = 1, 2, . . . , z.
S set of travel time upper bound vector.
RT time reliability that an SCCNMT can deliver within the time threshold.
RD, T network reliability to satisfy the demand within the travel time threshold.
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