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Abstract: Metal magnetic memory (MMM) is a nondestructive testing technology based on the
magnetomechanical effect, which is widely used in the qualitative detection of stress concentration
zones for welded joints. However, there is inevitable residual stress after welding, which brings the
bottleneck of quantitative identification between the weld residual stress concentration and the early
hidden damage. In order to overcome the bottleneck of quantitative identification of weld defect
levels with MMM technology, a modified maximum likelihood estimation (MLE) MMM quantitative
identifying model is first proposed. The experimental materials are Q235B welded plate specimens.
Fatigue tension experiments were operated to find the MMM feature laws of critical hidden crack by
comparing with synchronous X-ray detection results. Six MMM characteristic parameters, which are,
∆Hp(x), Gx

max, Zx
max, ∆Hp(y), Gy

max and Zy
max, are extracted corresponding to the normal state, the

hidden crack state and the macroscopic crack, respectively. The MLE values of the six parameters are
obtained by the kernel density functions with optimized bandwidth from the view of mathematical
statistics. Furthermore, the modified MLE MMM quantitative identifying model is established based
on D–S theory to overcome the partial overlap of MLE values among different defect levels, of which
the uncertainty is as low as 0.3%. The verification result from scanning electron microscopy (SEM) is
consistent with the prediction of the modified MLE MMM model, which provides a new method for
quantitative identification of weld defect levels.

Keywords: metal magnetic memory; defect levels; welded joints; maximum likelihood estimation;
D–S theory

1. Introduction

Welded joints always work in high temperature, high pressure and corrosive en-
vironments, which are prone to cause cracks, fractures and explosions after long-time
operation [1]. For this reason, the testing and evaluation of welded joints are very impor-
tant for pressure vessels, piping and other equipment in service. Principally, it is necessary
to identify the early critical state of hidden cracks because accidents caused by hidden
cracks may occur at any time [2]. However, the stress concentration zones (SCZs) and
early hidden cracks can not be found by traditional nondestructive testing (NDT), such as
ultrasonic testing, X-ray inspect and eddy current testing, until the macroscopic crack has
been formed [3,4]. A new NDT technology, called metal magnetic memory (MMM) testing,
can not only detect macroscopic cracks but also find SCZs and early hidden cracks without
any magnetization devices or special treatment for the tested surface [5,6]. Based on the
self-magnetization phenomenon of ferromagnetic materials, the MMM magnetic-field in-
tensity Hp is characterized by the polarity varying along the normal component Hp(y) and
maximum value along the tangential component Hp(x) on SCZs [7,8].
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The appearance of MMM testing brings a great improvement in SCZs and early
defect detection. Doubov et al. demonstrated that the natural magnetization can be
applied to inspect structural inhomogeneity and residual stresses which formed during
the fabrication of ferromagnetic material by the MMM method [9]. Shi et al., established a
magnetomechanical model based on a nonlinear constitutive relation, and analyzed the
model using the finite element method quantitatively [10]. Avakian et al. presented a
constitutive modelling for ferromagnetic materials under multiaxial multifield loading
with different boundary conditions, which can predict magnetization, strain and stress [11].
Ni et al. established a damage model represented by MMM characteristics through fatigue
experiments of three point bending and developed a fatigue life prediction method based
on the relationship of damage parameter and normalized life [12]. Yao evaluated the
contact damage of ferromagnetic materials under nonferromagnetic and ferromagnetic
indenters by measuring the signals of the magnetic flux leakage [13]. Xu et al. studied
the MMM characteristics of buried defects under different load stages and found the
strength of the magnetic field and its gradient decrease with the increasing of the burial
depth [14]. Liu proposed the contour plot method to visually analyze the size of defects
and established a mathematical model of non-uniform magnetic charge for pipeline leak
detection. The peak-to-valley spacing and peak-to-valley values in the contour plot of MFL
signal can directly reflect the location and size of defects, and the signal eigenvalues follow
the trend of first-order decreasing exponential function, and the first-order derivatives of
signal eigenvalues show a trend of first decreasing and then increasing with the decrease
of mesh size, and the extreme point of the derivative curve is the best mesh size [15,16].
By comparing with the Standard JB4730-2005 of X-ray detection, the authors set up the
MMM reliability model and investigated MMM signal characteristics of SCZs for welded
joints [17–19].

However, the MMM signals of welded joints often take on fuzzy and uncertainty
due to the interruption of welding residual stress [20,21]. This brings the bottleneck of
quantitative identification of weld defect levels with MMM technology, especially between
the weld residual stress concentration and the early hidden damage. In order to overcome
the bottleneck, a modified MLE MMM quantitative identifying model is proposed based
on D–S theory from the perspective of mathematical statistics and information fusion.
First, the welded specimens made of Q235B steel are tested with MMM method and
synchronous X-ray detection for comparison under the fatigue tension loading. Six MMM
characteristic parameters are extracted for the normal state, the hidden crack and the
macroscopic crack, respectively. Then, the probability density functions of the six MMM
characteristic parameters are obtained based on optimized kernel density function, and
an MLE MMM model is established for weld defect level identification. Furthermore, the
reliability function is established by calculating the proximity of the MLE value of different
defect levels considering that in the identification results from the MLE MMM model exist
partial overlaps. The D–S decision rules are obtained by allocating and fusing reliability
function. Finally, the MLE MMM quantitative identifying model is innovatively presented
based on D–S theory. The modified model solves the overlapping and fuzzy problem
of different weld defect levels in MMM signal analysis. The proved results show the
uncertainty degree is 0.3%, which provides a new idea of MMM quantitative identification
of weld defect levels.

2. Experiments

Steel Q235B, widely used in practical engineering, was selected for the base material of
welded plate specimens and H08Mn2SiA for the welding wire. The chemical composition
and mechanical properties of Steel Q235B are shown in Tables 1 and 2, respectively. The
base metal (BM) of each specimen was machined from a single Q235B plate. Then, the
V-shaped groove was adopted, and each specimen was welded from the two identical BM
plates. The specimen size and testing lines are shown in Figure 1.
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Table 1. The chemical composition of experimental material (wt.%).

C Si Mn P S

≤0.20 ≤0.35 ≤1.40 ≤0.045 ≤0.045

Table 2. The mechanical property of experimental material.

Yield Strength
σs/MPa

Ultimate Strength
σb/MPa

Percentage Elongation after
Fracture δ/%

≥235 370~500 ≥26
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Figure 1. Specimen size and testing lines (in mm).

In order to meet the statistical requirements, 100 specimens were experimented on.
The experiments were applied by fatigue tensile loading at room temperature accord-
ing to the Chinese Standard GB/T 3075-2008 [22]. The maximum tensile stress was
83.3 MPa and the stress ratio was 1/3. In order to control the location of crack initia-
tion and observe its evolution conveniently, the lack of penetration, with a dimension of
10 mm (length) × 2 mm (width) × 2 mm (depth), was prefabricated in the center of each
specimen when the argon-arc welding was used for backing. For each experiment, a speci-
men was randomly selected from 100 specimens for testing. Every 20 kilocycles (kc), the
MMM signals were tested by TSC-2M-8 instrument along the longitude and horizontal line
L1, L2 and L3, respectively. In order to verify the MMM testing result, the X-ray detection
was carried out synchronously.

3. Experiment Results

In Figure 2, the results of X-ray detection show the evolution of fatigue cracks. In
Figure 2a, there is only the prefabricated defect without any fatigue cracks, i.e., the normal
state. Then, the hidden crack of 1.2 mm was generated after 1280 kc, which has been
marked with a circle in Figure 2b and cannot be seen with the naked eye. At last, the
macroscopic crack visible to eyes appeared after 1560 kc.
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By referring to X-ray testing results, the tangential signals Hp(x) and normal compo-
nent signals Hp(y) of different defect levels and their corresponding fatigue cycle numbers
are extracted, as shown in Figure 3. The fluctuation of MMM tangent component Hp(x)
of hidden crack state is bigger than that of the normal state, although a small jump of
Hp(x) occurs on the welded joints in the normal state due to the welding residual stress in
Figure 3a. The jump of Hp(x) grows higher when the hidden crack is generated. The value
becomes highest when the macroscopic crack is generated. In Figure 3b, the peak-to-peak
value of the normal signal component Hp(y) in weld position increases in turn from normal
state to hidden crack and then to macroscopic crack, in which the defect levels can be
identified by MMM curves. When macroscopic cracks are produced, the polarity varies
along the normal component Hp(y) on the SCZs.
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Figure 3. Identifiable defect levels by MMM signals for specimen #55.

Sometimes, due to the interruption of welding residual stress, it is difficult to distin-
guish between the hidden crack state (1260 kc) and the normal state (0 kc) only by MMM
curves shown in Figure 4. The fluctuations of Hp(x) curve in the hidden crack state are very
similar to that in the normal state, as shown in Figure 4a. At the same time their curves
of Hp(y) overlap with each other in Figure 4b. However, in Figure 5, the result of X-ray
detection showed that there was a hidden crack of 1.8 mm on left of the prefabricated defect
which has been marked with a circle when the fatigue cycles reach 1260 kc.
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4. MLE MMM Modeling

The multiple parameters should be adopted comprehensively because the single
MMM characteristic parameter cannot accurately determine the defect levels. For the
multiple parameters estimation from the view of mathematical statistics, MLE method is
well-suited.

4.1. MLE MMM Modeling

The characteristic parameters of the tangential and normal MMM signals are extracted
from the experiment data.

(1) Peak-to-peak value

∆Hp(x) = Hmax
p (x)− Hmin

p (x) (1)

∆Hp(y) = Hmax
p (y)− Hmin

p (y) (2)

where ∆Hp(x) is the tangential peak-to-peak value and ∆Hp(y) is the normal one. Hp
max(x)

and Hp
max(y) are the maximum values of the MMM tangential and normal magnetic

induction intensity, respectively. Hp
min(x) and Hp

min(y) are the minimum values of the
tangential and normal magnetic induction intensity, respectively.

(2) Gradient
Gx = dHp(x)/dx (3)

Gy = dHp(y)/dy (4)

where Gx is the tangential gradient, and Gy is the normal one.
(3) Gradient limit state coefficient

Zx = Gmax
x /Gave

x (5)

Zy = Gmax
y /Gave

y (6)

where Zx is the tangential gradient limit state coefficient, and Zy is the normal one. Gx
max

and Gx
ave are the maximum value and average value of the tangential gradient in the

testing zones, respectively. Gy
max and Gy

ave are the maximum value and average value of
the normal gradient, respectively.

4.2. Kernel Density Function

In order to quantitatively establish the MLE MMM model, the probability density
function needs to be built first. X1, X2, . . . , Xn are set as independent and identically
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distributed random variables in the space R. The probability density function of random
variable X in kernel method [23] is defined as:

f̂ =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(7)

where K(x) is the kernel function, h is the bandwidth, xi is sample values of X, n is the
sample size, and f̂ presents the estimated probability density.

The experiment results show that the MMM data obey Gaussian distribution [14],
so the Gauss kernel is adopted. The bandwidth h has a great impact on the result of the
probability density estimation. If h is too small, the result will be unstable. Otherwise,
the resolution ratio of the result is too low. So, the optimized bandwidth algorithm is
adopted, which is mainly based on mean integral square error (MISE). Its formula is given
in reference [24]. The optimal bandwidth is then calculated by solving the equation with
the formula

hop =
5

√√√√√√ 4nh6

n
∑

i=1

n
∑
j≺i

[ √
π

16h3

{[(
xi − xj

)2 − 6h2
]2
− 24h4

}
exp

(
− (xi−xj)

2

4h2

)] (8)

The iterative algorithm is adopted to find the most optimal bandwidth. First h1 = hop(h0)
and h0 = 1.06σn−1/5 are calculated, where n is the sample size, σ is the standard deviation
of the sample observations. δ is set as a minimum value. When |h1 − h0| > δ, cycle steps
are performed as follows:

1. Assign the h1 to the h0, that is, h0 = h1;
2. Bring the new h0 into h1 = hop(h0) to calculate the new h1;
3. h1 = (h0 + h1)/2.

According to the above algorithm, the results of the optimized bandwidth are shown
in Table 3.

Table 3. Results of optimized bandwidth.

∆Hp(x) Gx
max Zx

max ∆Hp(y) Gy
max Zy

max

8.046 1.9236 0.1421 6.9817 1.8659 0.2482

Then, the kernel functions of six MMM characteristic parameters can be obtained,
which are f̂∆Hp(x), f̂Gmax

x , f̂Zmax
x , f̂∆Hp(y), f̂Gmax

y , f̂Zmax
y . These functions form the probability

density database of the MMM characteristic parameters. And they are brought into the six
kernel density functions to calculate the probability density in the database. The kernel
density function is integrated in order to obtain the probability.

4.3. MLE MMM Modeling

The six MMM parameters above contain damage information from different levels.
On the basis of the experiment data, these characteristic values are divided into three defect
levels, which are normal state, hidden crack state and macroscopic crack state. Considering
X-ray detection was taken as the basis comparison of MMM testing experiments, the
three defect levels are defined, compared with the current quantitative standards of X-ray
detection NB/T 47013.2–2015 and SY/T 4109–2020. In the X-ray detection standards, level
I is defined as normal and no defects, level II is defined as the defect length is less than T/3,
and level III is specified as the defect length is less than 2T/3, in which T is the nominal
thickness of the base metal. The normal state in this paper is consistent with level I of the
X-ray detection standard. The hidden crack state, where cracks are invisible to the naked
eye and less than 2 mm (T/3) in length, is equivalent to level II of the X-ray detection
standard. The macroscopic crack state, where cracks are visible to the naked eye and greater
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than 2 mm in length, corresponds to level III in the X-ray detection standard. Here, 2 mm
only refers to the length of the fatigue crack generated from the end of the prefabricated lack
of penetration. The classification standard in this paper is stricter than the X-ray detection
standard in order to reflect the advantages of MMM in early damage detection.

From the view of MLE [25], if the total X is discrete, its distribution law is P{X = x} = p(x;θ),
θ∈Θ. Here, θ is the estimated parameter, Θ is the possible range of θ. x1, x2, . . . , xn are set
as sample values of X1, X2, . . . , Xn. Then, the probability of the incidents {X1 = x1, X2 = x2,
. . . , Xn = xn} is

L(θ) = L(x1, x2, .., xn; θ) =
n

∏
i=1

p(xi; θ), θ ∈ Θ (9)

where L(θ) is the likelihood function.
The MLE estimation models based on MMM characteristic parameters are:

Lx =
n

∏
i=1

px(xi) = p
(
∆Hp(x)

)
· p(Gmax

x ) · p(Zmax
x ) (10)

Ly =
n

∏
i=1

py(xi) = p
(
∆Hp(y)

)
· p
(

Gmax
y

)
· p
(

Zmax
y

)
(11)

where Lx and Ly are the MLE values of the tangential and normal signals, respectively.
px(xi) and py(xi) are the probability of xi based on optimized bandwidth kernel density
estimation, respectively.

The MLE probabilities of three defect levels, which are, normal state, hidden crack
and macroscopic crack, are shown in Figure 6. The mathematical expectation values of the
MLE probability are calculated through mathematical statistics.
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where Lx and Ly are the MLE values of the tangential and normal signals, respectively. 
px(xi) and py(xi) are the probability of xi based on optimized bandwidth kernel density es-
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In this paper, 100 specimens were divided into 10 groups during the fatigue tensile
experiments. Each specimen was scanned and the MMM signals were recorded every
20 kilocycles, and 6 characteristic values of each signal curve were extracted. On average,
more than 50 sets of data were recorded for each specimen. In total, over 30,000 characteris-
tic values were recorded, along with the corresponding fatigue cycles and defect levels. The
Gauss kernel probability density functions of the three defect levels were established based
on the database of 30,000 characteristic values. Then, the mathematical expectation values
of MLE probability in Table 4 were obtained by integrating the Gauss kernel probability
density functions for each defect level.
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Table 4. Mathematical expectation of MLE probability.

Mathematical Expectation Tangential Signal Normal Signal

Normal state 0.05 0.09
Hidden crack 0.18 0.17

Macroscopic crack 0.41 0.48

It can be seen in Figure 6 that the three damage states can be mostly identified, but
there is still partial overlap. Considering that the D–S theory is capable of dealing with
uncertain information for small sample data, D–S theory is introduced to modify the above
MLE MMM model in order to increase identification accuracy.

5. Modified MLE MMM Model Based on D–S Theory
5.1. MLE Value Neartude

In order to identify the defect levels of welded joints using the D–S evidence theory,
the identified framework should be set first. The propositions of the identified framework
are the three defect levels which constitute the feature vector. dij is the distance between
MLE probability of the unknown defect level and the mathematical expectation of two
MMM signal directions. tij is proximity. The formulas are as follows:

dij =
∣∣Aij − Ej

∣∣ (12)

tij = 1−
d2

ij

d2
1j + d2

2j + d2
3j

(13)

where Ej is an unknown defect level of different MMM signal directions. Aij is the mathe-
matical expectation.

5.2. Reliability Function

Assuming that there is a target to identify, Θ represent all the possible results for the
identifying target, and all the possible results are called hypothesis [26]. Θ is set as an
identified framework if the set function m:2Θ→[0, 1] meet the following requirements:

m(ϕ) = 0 (14)

∑
A⊂Θ

m(A) = 1 (15)

m is known as the basic reliability allocation (Mass function) of the identified frame-
work. The Formula (14) means no reliability is produced for the empty proposition, and
Formula (15) reflects that the sum of all the proposition’s reliability is 1. A is called focal
element when m > 0 [27]. The m(A) is the basic reliability of subset A, which represents
the reliability degree of subset A. For any proposition sets, the reliability function Bel is
defined as:

Bel(A) = ∑
B⊂A

m(B) (16)

B is an element of subset A. In this paper, subset A is selected as the weld defect level
set, and B is the normal state, hidden crack and macroscopic crack.

5.3. Basic Reliability Function Allocation

The basic reliability allocation function mij and uncertainty mj(Θ) of each proposition
in the identified framework are as follows:

mij =
tij

S− 1
(1− Ri) (17)
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mj(Θ) = Ri (18)

where Ri = bi·µi represents the overall uncertainty whilst identifying the defect level, and
µi is the uncertainty of MLE probabilities as evidence body in the framework, which can be
given by expert opinion or data statistics of the experiment, 0.1 is taken. S = 3 represents
three defect levels.

bi =

√√√√√√√
1
2

3

∑
j = 1
j 6= m

(tij − ui)
2 (19)

ui =
1
2

3

∑
j = 1
j 6= m

tij (20)

where bi is the variance of the proximity except for the biggest proximity of the proposition
close to the unknown defect level. And ui is the mean value of the proximity except for the
biggest proximity of the proposition that is close to the unknown defect level.

5.4. D–S Information Fusion

(1) Two Reliability Functions Fusion
Bel1 and Bel2 are two reliability functions of the same target framework set, m1 and m2

are the basic reliability allocation of function Bel1 and Bel2, respectively. MLE probabilities
of the tangential and normal MMM characteristic value are selected as the Bel1 and Bel2. C
and D represent the defect levels of tangential and normal signals, respectively.

∑
Ci∩Dj=ϕ

m1(Ci)m2(Dj) < 1 (21)

Then, the basic reliability allocation is:

m(C) =


0 C = ϕ

∑
Ci∩Dj=C

m1(Ci)m2(Dj)

1−k C 6= ϕ
(22)

k =

 ∑
Ci∩Dj=ϕ

m1(Ci)m2
(

Dj
) (23)

where k represents the inconsistency factor. i, j = 1, 2, 3 represent the level of defect levels,
which are: 1 is normal state, 2 is hidden crack state and 3 is macroscopic crack state.

(2) Decision rules of D–S theory

m(C1) = max(m(Ci), C ⊂ Θ) (24)

m(C2) = max(m(Ci), C ⊂ Θ, Ci 6= C1) (25)


m(C1)−m(C2) > ε1
m(Θ) < ε2
m(C1) > m(Θ)

(26)

The recognition result is C1 when meeting the conditions of Formulas (24) to (26),
where m(Θ) is the uncertainty degree, and ε1 and ε2 are set as threshold value.
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6. Validation

Under the same experimental conditions, thirty specimens of unknown weld defect
levels had been selected to verify the modified MLE MMM model based on the D–S theory.
Take specimen 17 as an example, after 980 fatigue kilocycles, the specimen, which showed
no macroscopic crack visible to the naked eye, was examined by X-rays. The result of X-ray
detection showed that there were no hidden cracks on both sides of the prefabricated defect
shown in Figure 7.
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Then, by analyzing the MMM data, the tangential and normal components of ∆Hp,
G and Z are (28.9, 5.75, 2.441) and (9.6, 6.5, 5.007), respectively. Then, the tangential
and normal MLE probabilities are calculated, respectively, by Formulas (10) and (11), the
results are 0.16 and 0.12. The proximity of the unknown defect level are obtained by
Formulas (12) and (13), and the results are listed in Table 5. Then, the basic reliability
allocation is calculated by Formulas (17) and (18), shown in Table 6.

Table 5. MLE probability proximity of the identifying damage state.

Proximity Tangential Signal Normal Signal

Normal state 0.84 0.99
Hidden crack 0.99 0.98

Macroscopic crack 0.17 0.03

Table 6. Basic reliability allocation of the identifying damage state.

Basic Reliability Allocation Tangential Signal Normal Signal

Normal state 0.47 0.41
Hidden crack 0.47 0.48

Macroscopic crack 0.01 0.08
Uncertainty degree 0.047 0.033

It can be seen that the basic reliability allocations of the normal and hidden crack are
similar. It is still difficult to identify the unknown defect level only based on the basic
reliability allocation. So, it is necessary to use the information fusion. The information
fusion results are listed in Table 7.

Table 7. Information fusion results.

mbel1 = D1(0.41) mbel1 = D2(0.48) mbel1 = D3(0.08) mbel1 = Θ(0.033)

mbel2 = C1(0.47) C1(0.1927) Φ(0.2256) Φ(0.0376) C1(0.01551)
mbel2 = C2(0.47) Φ(0.1927) C2(0.2256) Φ(0.0376) C2(0.01551)
mbel2 = C3(0.01) Φ(0.0041) Φ(0.0048) C3(0.0008) C3(0.00033)
mbel2 = Θ(0.047) C1(0.01927) C2(0.02256) C3(0.00376) Θ(0.00155)
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The inconsistency factor k is calculated by Formula (23), and the result is as follows:

k = 0.2256 + 0.04 + 0.0376 + 0.1458 + 0.1927 + 0.0376 + 0.0041 + 0.0048 = 0.5024

So, the basic reliability allocation of the evidence Bel1 and Bel2 is calculated by Formula (22).
And the reliability allocation after information fusion is shown in Table 8.

Table 8. Reliability allocation of information fusion.

Reliability m (Tangential Normal)

Normal state 0.46
Hidden crack 0.53

Macroscopic crack 0.0098
mj(Θ) 0.003

According to the decision rules of the D–S theory, ε1 and ε2 are taken as 0.01 and
0.001, then the prediction result is hidden crack. The results show the reliability is 53% and
uncertainty degree m(Θ) is 0.3%.

In order to determine the unknown defect level from the experimental point of view,
a scanning electron microscopy (SEM) has been applied to test the selected specimen.
At the end of the prefabricated defect, the wire-electrode cutting was used to obtain the
SEM specimen as shown in the dashed box in Figure 8. The cutting surface 1 is the SEM
observation surface with the length of 15 mm. The distance from the cutting surface 2 to 1
was 10 mm.
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Figure 8. SEM unit acquisition program.

The SEM result is shown in Figure 9. Some hidden cracks circled by ellipses with a size
of about 0.25 mm have appeared in Figure 9. This result is consistent with the predictions
of the modified MLE MMM model, which shows that the modified MLE MMM model can
identify hidden crack damage earlier than X-ray detection. The other 29 specimens have
the same verification process as specimen 17. The smallest uncertainty degree is 0.30%, the
largest one is 7.09%, and the average one is 3.66%, as shown in Figure 10. The results verify
the validity of the modified MLE MMM model based on the D–S theory.
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Figure 9. Scanning electron microscope along cutting surface 1, photo showing two hidden cracks on
specimen 17#.
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7. Conclusions

(1) Due to the existence of welding residual stress, it is difficult to distinguish between
the normal state and the hidden crack state. At the same time, considering that a single
MMM feature parameter cannot accurately reflect the level of welding defects, it is necessary
to extract multiple MMM feature parameters, namely ∆Hp(x), Gx

max, Zx
max, ∆Hp(y), Gy

max

and Zy
max for quantitative identification;

(2) The different defect levels, that is, normal state, hidden crack and macroscopic
crack, can be identified based on the MLE MMM model from mathematical statistics. But
there exists a partial overlap between normal state and hidden crack state. So, the modified
MLE MMM model based on the D–S theory is presented, of which the smallest uncertainty
degree is 0.3%, the largest one is 7.09%, and the average one is 3.66%;

(3) The validation results are consistent with the prediction result of the modified
MLE MMM model based on D–S theory. It shows that the modified model is effective in
distinguishing early hidden cracks from welding residual stress, which is earlier than X-ray
detection. The method is suitable for ferromagnetic materials such as Q235B and Q345.
This provides a new tool of MMM quantitative identification for weld defect levels.
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