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Abstract: First, this study proposed a metamaterial beam model with spatially varying interval
density. The interval dynamic equation of this model could be established by incorporating the
decomposition results of the interval field based on Karhunen–Loeve expansion into the finite element
method. An interval perturbation finite element method was developed to evaluate the bounds
of the dynamic response interval vector. Then, an interval vibration transmission analysis could
be performed, and the frequency range of the safe band gap could be determined. Meanwhile,
Monte Carlo simulations and the vertex method are also presented to provide reference solutions.
By comparison, it was found that the calculation accuracy of the interval perturbation finite element
method was acceptable. The numerical results also showed that the safe band gap range was
significantly smaller than that of the deterministic band gap.

Keywords: metamaterial beam; safe band gap; interval field; interval perturbation finite
element method

1. Introduction

Acoustic metamaterials are artificial periodic materials with unique band gap prop-
erties [1,2]. The band gap represents the range of frequencies in which elastic waves are
always attenuated when propagating through acoustic metamaterials. Therefore, acoustic
metamaterials can provide a new research direction for vibration control. Metamaterials
are formed by the periodic arrangement of several specially designed microstructures, and
it is the locally resonant mechanism of such microstructures that leads to the generation
of band gaps [3]. Hence, the band gap is usually near the natural resonance frequency of
the microstructure.

So far, researchers have constructed diverse metamaterial beam (MB) structures by
periodically adding various forms of microstructures to basic beams. Xiao et al. [4] formed
a basic model of a metamaterial beam by periodically attaching a series of resonators to a
homogeneous beam. It was found that both the resonant and the Bragg scattering band
gaps existed in the model. Wang et al. [5] attached multioscillators periodically to a basic
beam to obtain multiple band gaps. Some researchers have proposed reducing the band
gap frequency range of metamaterial beams by introducing a negative stiffness mechanism
into the resonators [6–8]. Guo et al. [9] studied the wave characteristics of a double-layer
metamaterial beam structure using the transfer matrix method and found that its vibration
reduction effect was better than that of the traditional metamaterial beam. In addition, there
are other resonators of different forms, such as beam-like resonators [10], continuum-beam
resonators [11], and 2-DOF type resonators [12], which can all contribute to the formation
of unique band gaps.

The above-mentioned methods for calculating band gaps were all based on the spatial
periodicity of metamaterial structures. However, due to some uncontrollable factors, the
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design parameters are often affected by spatial uncertainties. Such spatial uncertainties
are often difficult to measure and break the assumption of spatial periodicity to some
extent. When statistical data are seriously lacking, one can simply consider that the value
of the uncertain parameter only fluctuates within a certain known interval range, and
the corresponding interval model becomes the most appropriate method for analyzing
uncertainties. In the interval model, the interval field methods that can be applied to
deal with spatial uncertainties fall into three main categories: (1) the explicit interval field
formulation, (2) interval fields based on Karhunen–Loeve (KL) expansion, and (3) interval
fields based on convex models. Following explicit formulation, an interval field can be
interpreted as the superposition of base functions scaled by interval coefficients [13]. The
interval coefficients are uncertain, but the base functions are deterministic, which ensures
the spatial continuity of the uncertain parameters. The specific form of the base functions
often depends on the engineering experience and intuitive judgment of the researchers.
Sofi et al. [14–17] proposed using KL decomposition to obtain the base functions. KL
expansion quantifies the spatial dependency of the interval field by defining the spatial
dependency function. Recently, some scholars have used convex models to describe
interval field problems. Similarly, the convex model uses the auto-dependence function to
describe the spatial dependence of the interval field [18–21]. The commonly used convex
models include the ellipsoidal model [22], multidimensional parallelepiped model [23],
and improved multidimensional parallelepiped model [24].

Wu et al. [25] and He et al. [26] used the interval analysis technique and stochas-
tic analysis technique, respectively, to study the uncertainties in acoustic metamaterials.
However, there have been no studies on spatial uncertainties in acoustic metamaterials.
Therefore, after introducing the band gap calculation method for deterministic metamate-
rial beams in detail, a metamaterial beam model with spatially varying interval density
is first proposed in this paper. Section 2 introduces the main features of this model, and
an interval perturbation finite element method (IPFEM) is proposed to study the dynamic
response of this model. In Section 3, numerical examples are presented to demonstrate the
efficiency and accuracy of the IPFEM. Finally, the conclusions are summarized in Section 4.

2. The Model and Method

After briefly introducing the band gap calculation method for a deterministic MB in
Section 2.1, an interval MB structure with spatial uncertainties is established in this section.
The flowchart for solving the dynamic response of this interval MB structure is shown in
Figure 1. Firstly, assuming the density of the basic beam contains spatial uncertainties, the
interval field based on KL expansion is used to deal with these uncertainties in Section 2.2.
Then, in Section 2.3, the interval field decomposition results are introduced into the finite
element method to obtain the interval dynamic equation. Next, an interval perturbation
finite element method is proposed to solve this interval dynamic equation in Section 2.4. Fi-
nally, an interval vibration transmission analysis is implemented in Section 2.5 to intuitively
reflect the influence of spatial uncertainties on the band gap.

2.1. Deterministic Metamaterial Beam Structure and Its Band Gap Calculation

Before analyzing the spatial uncertainties in the metamaterial beam, this subsection
briefly introduces the deterministic metamaterial beam structure and its band gap calcula-
tion method. As shown in Figure 2, a finite conventional MB structure with Nu unit cells
is formed by periodically attaching a series of resonators to a uniform aluminum beam.
The lattice constant is a, and the width and thickness of the aluminum beam are denoted
as b and h, respectively. Each resonator contains a spring k and a mass m. Each unit cell
contains Ne Euler–Bernoulli beam elements. Thus, the uniform aluminum beam can be
divided into NuNe beam elements. It is worth emphasizing that Ne must be even so that
the spring mass resonator can be located just on the node. The stiffness matrix and mass
matrix of the Euler–Bernoulli beam element are shown in Ref. [8]. After assembling these
NuNe elements, the global stiffness matrix Kbeam and global mass matrix Mbeam of the
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aluminum beam can be obtained. It should be noted that node numbering is carried out
from left to right along MB during assembly. Furthermore, the global dynamic stiffness
matrix Dbeam of the aluminum beam can be obtained as follows:

Dbeam = Kbeam −ω2Mbeam (1)

Uncertain density modeled as an interval field

Interval field finite element formulation 

Interval perturbation finite element method

Interval vibration transmission analysis

Figure 1. Flowchart of the method for solving the dynamic response of the interval MB structure.

Response point

Excitation point

a

k

m
b

h

……

Ne Euler-Bernoulli beam elements

Figure 2. Conventional MB structure.

Here, ω is the circular frequency. On the other hand, the influence of the spring
mass resonator on the dynamic behavior of the MB can be obtained by the methodology
described in Ref. [4]. The dynamic effect matrix of the spring mass resonator DR is defined
as follows:

DR(i, j) =

{
1

(1/k)−(1/ω2m)
i = j = Ne(2s− 1) + 1(s = 1, 2 · · ·Nu)

0 else
(2)

DR Has the same dimensions as Dbeam . Obviously, the global dynamic stiffness matrix
of the metamaterial beam D is equal to Dbeam + DR. The dynamic equation of the finite
MB can be written in the following form:

DU = F (3)

where U is the dynamic response vector and F is the structural load vector
The band gap frequency range can usually be determined by performing a vibration

transmission analysis. The transmission coefficient of vibration T is defined as:

T = 20× log10

∣∣∣∣uout

uin

∣∣∣∣ (4)

In the above, uin and uout represent the displacements of the excitation point and the
response point, respectively. The left and right ends of the metamaterial beam are selected
as the excitation and response points, respectively. Therefore, uin and uout are located in the
first and penultimate rows of the vector U, respectively. Assuming that the displacement
of the excitation point is 1 (U(1, 1) = uin = 1), the implementation method is: (1) modify
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D(1, 1) to a value far greater than the other elements in D, such as D(1, 1) = 1050; (2) define
F as follows: {

F(n, 1) = 1050, n = 1
F(n, 1) = 0, n 6= 1

(5)

Finally, solving Equation (3) yields uout. If |uin | is greater than |uout |, namely, T is
less than 0, it indicates that the flexural wave is attenuated when propagating through
the metamaterial beam. Therefore, the frequency range wherein T is less than zero is the
band gap.

2.2. Uncertain Density Modeled as an Interval Field

In the deterministic metamaterial beam structure, the basic beam (aluminum beam)
is considered to be homogeneous. Obviously, the basic beam may have spatially varying
uncertainties under the influence of many uncertain factors. In order to study the effect
of spatial uncertainties on the band gap, an interval field model based on KL expansion
is used to deal with the spatially varying uncertainties. In the interval field model, the
correlation between physical parameters at different positions is defined by the spatial
dependency function. Then, the spatial dependency function is expanded into the form
of the superposition of base functions by KL decomposition, which guarantees the spatial
continuity of the physical parameters and reduces the number of interval parameters. It
is assumed that the density of the basic beam has spatially varying uncertainties, and its
form is:

ρI(x) = [ρ(x), ρ(x)], x ∈ [0, Lbeam ] (6)

Here, the superscript I represents the interval quantities; ρ(x) and ρ(x) denote the
lower and upper bounds of the interval field, respectively; and Lbeam = Nua represents the
length of the basic beam. The midpoint ρ0 and deviation amplitude ∆ρ(x) of the interval
field can be expressed by Equation (7).

ρ0 =
ρ(x) + ρ(x)

2
; ∆ρ(x) =

ρ(x)− ρ(x)
2

(7)

The interval field can also be written in dimensionless form:

ρI(x) = ρ0

[
1 + BI(x)

]
, x ∈ [0, Lbeam ] (8)

Here, BI(x) represents a dimensionless interval function whose midpoint is zero.
The spatial dependency function ΓB

(
xi, xj

)
of BI(x) at different positions xi and xj can be

defined as:

ΓB
(

xi, xj
)
= mid

{
BI(xi)BI(xj

)}
=

mid
{

ρI(xi)ρ
I(xj

)}
ρ2

0
− 1 (9)

Here, mid{•} indicates the midpoint symbol. BI(x) can be expanded using KL expan-
sion technology:

ΓB
(

xi, xj
)
=

+∞

∑
n=1

λnψn(xi)ψn
(
xj
)
⇒ ΓB(xi, xi) = mid

{(
BI(xi)

)2
}

=
+∞

∑
n=1

λnψn(xi)
2 (10)

where λn represents the nth eigenvalue of ΓB
(
xi, xj

)
and ψn(x) is the corresponding eigen-

function. According to Equations (9) and (10), and retaining the first N terms in KL
expansion, we can obtain:

BI(x) =
N

∑
i=1

√
λiψi(x)[εi] (11)
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where [εi] is an interval parameter [−1, 1], whose deviation amplitude ∆εi is equal to 1.
Substituting Equation (11) into Equation (8) gives

ρI(x) = ρ0(1 +
N

∑
i=1

√
λiψi(x)[εi]) (12)

In this paper, we assume that ΓB
(

xi, xj
)

has the following exponential form:

ΓB
(
xi, xj

)
= C2

B exp
(
−
| xi − xj |

lB

)
(13)

Here, CB and lB are parameters affecting the deviation amplitude and the spatial
dependency of the interval field, respectively.

2.3. Interval Field Finite Element Formulation

In this subsection, the results of the interval field decomposition shown in Equation (12)
are introduced into the finite element method, and the deterministic dynamic equation
shown in Equation (3) is extended to the interval dynamic equation. As shown in Figure 3,
a coordinate system is established along the direction of the basic beam. The origin is
established at the left end of the metamaterial beam, while xn represents the coordinate
of the left end of the nth beam element. As we all know, density only affects the system
mass matrix, and the interval mass matrix of the nth beam element m(n)I can be obtained
by integration as follows:

m(n)I =
∫ xn+1

xn
ρI(x)SN(n)T

N(n)dx (14)

L
beam0

x
n
x
n+1

nth Euler-Bernoulli beam element

Figure 3. Coordinate diagram of the basic beam’s finite element meshing.

Here, N(n) stands for the shape function matrix, and S = bh is the area of the cross-
section. Substituting Equation (12) into Equation (14), m(n)I can be recast as:

m(n)I = m(n)
0 +

N

∑
i=1

m(n)
i [εi] (15)

Here, m(n)
0 = ρ0S

∫ xn+1
xn

N(n)T
N(n)dx and m(n)

i = ρ0S
√

λi
∫ xn+1

xn
ψi(x)N(n)T

N(n)dx. Af-
ter assembly, the interval global mass matrix of the basic beam MI

beam can be expressed in
the following form:

MI
beam = M0 +

N

∑
i=1

Mi[εi] (16)

where

M0 =
Nu Ne

∑
n=1

L(n)T
m(n)

0 L(n); Mi =
Nu Ne

∑
n=1

L(n)T
m(n)

i L(n) (17)

Here, L(n) is the connectivity matrix of the nth element. Furtherly, the interval dynamic
equation of the metamaterial beam can be expressed as:

DIUI = F (18)
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where
DI = DI

beam + DR = Kbeam −ω2MI
beam + DR

= Kbeam −ω2M0 + DR −ω2
N

∑
i=1

Mi[εi]

= D0 −ω2
N

∑
i=1

Mi[εi]

(19)

Here, DI represents the interval global dynamic stiffness matrix, and UI is the dynamic
response interval vector. Similarly, in order to make uin always equal to 1, D0(1, 1) needs to
be changed to 1050, and Mi(1, 1) needs to be changed to 0. F still represents the structural
load vector, which is defined according to Equation (5). Hence, F is not an interval vector.

2.4. Interval Perturbation Finite Element Method (IPFEM)

A classical method to solve Equation (18) is IPFEM. The core of IPFEM is to use the
first-order Taylor series to expand the dynamic stiffness matrix and then use the first-order
Neumann series to approximate the inverse of the interval dynamic stiffness matrix and
finally obtain the derivative of the dynamic response interval vector with respect to [εi].
The first-order Taylor series expansion of UI around [εi] = 0 can be expressed as:

UI = Um +
N

∑
i=1

∂Um

∂[εi]
[εi] = Um + ∆UI (20)

where Um is the midpoint of UI , which is the solution to Equation (18) when [εi] = 0. ∆UI

denote the deviation amplitude of UI . ∂Um

∂[εi ]
can be obtained as:

∂Um

∂[εi]
= D−1

0

(
∂F

∂[εi]
− ∂D0

∂[εi]
Um
)
= ω2D−1

0 MiUm (21)

Therefore, ∆UI can be expressed as:

∆UI = ω2
N

∑
i=1

D−1
0 MiUm[εi] = ω2

N

∑
i=1

∣∣∣D−1
0 MiUm∆εi

∣∣∣ = ω2
N

∑
i=1

∣∣∣D−1
0 MiUm

∣∣∣ (22)

Finally, the lower and upper bounds of UI can be calculated by:

U = Um −ω2
N

∑
i=1

∣∣∣D−1
0 MiUm

∣∣∣; U = Um + ω2
N

∑
i=1

∣∣∣D−1
0 MiUm

∣∣∣ (23)

2.5. Interval Vibration Transmission Analysis (IVTA)

Finally, this paper proposes studying the effect of spatial uncertainties on the band
gap by implementing interval vibration transmission analysis. The penultimate rows of U
and U represent the lower bound uout and upper bound uout of uout , respectively. Then,
we can define the interval transmission coeffcient as follows:

T I = [T, T] (24)

where
T = 20 log10

(
max

(∣∣uout
∣∣, |uout |

))
(25)

{
T = 20 log10 min

(∣∣uout
∣∣, |uout |

)
uout × uout > 0

T → −∞ uout × uout ≤ 0
(26)

Here, T and T denote the lower and upper bounds of the interval transmission coeff-
cient, respectively. By observing Equation (26), it can be found that when uout × uout ≤ 0,
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T → −∞, which makes the specific value of the coeffcient T difficult to obtain. Therefore,
only the coeffcient T is presented in the numerical examples of this paper.

3. Results and Discussion

This section mainly includes the following parts. First, the band gap calculation of
a deterministic MB is presented. Then, a numerical example is investigated to validate
the accuracy of the IPFEM in analyzing a metamaterial beam with spatial uncertainties
regarding density. Meanwhile, the Monte Carlo method (MCM) with a million samples
and the vertex method (VM) are also implemented as reference methods. Next, the effects
of the number of terms in KL expansion and the interval field parameters on the band gap
behavior are investigated. Finally, on the basis of the above interval field analysis, the effect
of resonator uncertainties is further studied.

3.1. Band Gap Analysis of Deterministic Metamaterial Beam

Figure 4 displays the transmission coefficient curve of a deterministic MB. This de-
terministic MB contains a total of 12 unit cells, and each unit cell consists of four beam
elements. The lattice constant a is 0.07 m. The thickness h and width b of the basic beam
are equal to 0.0025 m and 0.01 m, respectively. The mass m and spring stiffness k are
equal to 0.0225 kg and 769.04 N/m, respectively. The Young’s modulus E and density ρ
of aluminum are equal to 7.76× 1010 Pa and 2730 kg/m3, respectively. As shown in the
shaded areas in Figure 4, this metamaterial beam can form a band gap from 29.4452 Hz to
69.9634 Hz.

Figure 4. Vibration transmission of a finite MB.

3.2. Metamaterial Beam with Interval Density Field

In this subsection, the density of a basic beam is considered to contain spatial uncertain-
ties. The midpoint of the interval density field is ρ0 = 2730 kg/m3. The number of terms
in KL expansion is N = 10. The interval field parameters CB and lB are equal to 0.05 and
0.8Lbeam, respectively. The other parameters are the same as in Section 3.1. Thus, an IVTA
can be carried out, and its results are displayed in Figure 5. For comparison, Figure 5 also
shows the deterministic IVTA results (midpoint line), i.e., the calculation results in Figure 4.
The yellow line, blue line, and red line represent the coefficient T calculated by IPFEM, VM,
and MCM, respectively. The four curves in Figure 5 basically coincide at the low frequency
range. However, when the frequency gradually approaches the ending frequency of the
band gap, the coefficient T deviates obviously from the deterministic analysis results. For
convenience, the frequency range where the upper bound of the interval transmission
coeffcient T is less than 0 is referred to as the safe band gap. No matter how the interval
density field fluctuates, the metamaterial beam structure can always provide vibration
attenuation in the frequency range of the safe band gap. For example, the safe band gap ob-
tained by the two reference methods (MCM and VM) ranged from 29.4452 Hz to 67.7894 Hz
(see the purple rectangular frame in Figure 5), which reduced the frequency range of the
safe band gap by 5.37% compared to the deterministic band gap range. However, in fact,
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near the ending frequency, the curves representing the calculation results of the VM and
MCM did not coincide exactly. For the IPFEM, the safe band gap ranged from 29.4452 Hz
to 69.3760 Hz (see the light blue frame in Figure 5). In order to validate the calculation
precision of the IPFEM, the relative error of the IPFEM with respect to the MCM was also
calculated as follows:

δ =
| fP − fM|

fM
× 100% (27)

where fP represents the beginning frequency or ending frequency of the safe band gap
calculated by the IPFEM, and fM denotes the beginning frequency or ending frequency
of the safe band gap calculated by the MCM. That is to say, in the numerical example
shown in Figure 5, the relative error of the beginning frequency of the safe band gap
is 0%, and the relative error of the ending frequency is 2.34%. At the same time, the
calculated result curve of the IPFEM in Figure 5 also had a certain deviation from the
two reference methods near the ending frequency. The reason for this was that there was
a natural frequency near the ending frequency, and the nonlinearity was strengthened
near the natural frequency, which led to the gradual deviation of the calculation results
of various interval methods [27,28]. In other words, due to the spatial uncertainties of
the density of the basic beam, the safe band gap frequency range was narrower than the
deterministic band gap frequency range (29.4452–69.9634 Hz). Specifically, only the ending
frequency of the safe band gap is affected by the spatial uncertainties of the density of a
basic beam, but the beginning frequency is not. This is mainly because, in the deterministic

metamaterial beam structure, the beginning frequency is 1
2π

√
k
m and the ending frequency

is 1
2π

√
k
m

(
1 + m

ρSa

)
[6]. Obviously, the uncertainties of the density of a basic beam only

affect the ending frequency.

Figure 5. IVTA of MB with interval density field (CB = 0.05, lB = 0.8Lbeam).

3.3. Influences of the Number of Terms in KL Expansion on the Safe Band Gap

Figure 6 displays the convergence of the ending frequency of the safe band gap with
the number of terms N in KL expansion under three different cases. N takes the first
15 orders in MCM and IPFEM. However, in the vertex method, the computation time
increases dramatically as N increases. When N is greater than 11, the computational
efficiency is extremely low. Thus, only the first 11 orders of N are taken in the vertex
method. It can be seen that a larger N denotes a more accurate interval density field
simulation; thus, the ending frequency of the safe band gap is also more accurate. But it
also means more computing time. In these three figures, the ending frequencies obtained
by the three methods all changed rapidly when N < 5 and became stable until N was near
10. Considering the calculation accuracy and efficiency comprehensively, the final value of
N was determined to be 10. Another interesting phenomenon is that in all the numerical
examples presented in these three figures, as N increased, the ending frequencies obtained
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by the MCM and VM gradually coincided. However, the ending frequency obtained by the
IPFEM was always higher than the calculation results of the MCM and VM.
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Figure 6. Influences of the number of terms in KL expansion N on the ending frequency of the safe
band gap. (a) CB = 0.05, lB = 0.8Lbeam. (b) CB = 0.02, lB = 0.5Lbeam. (c) CB = 0.06, lB = 0.3Lbeam.

3.4. Influences of Interval Field Parameters on the Safe Band Gap

In this subsection, we further study the influences of interval field parameters CB and
lB on the safe band gap, and the results are presented in Figure 7. It was observed that
the calculation results of the MCM and VM were in perfect agreement. In Figure 7a, as CB
increased, the ending frequency of the safe band gap gradually decreased, which led to the
gradual narrowing of the safe band gap. Obviously, the greater the deviation amplitude
of the interval field, the greater the influences of spatial uncertainties on the band gap. In
Figure 7b, as lB increased, the ending frequencies obtained by the MCM and VM increased
significantly, while the ending frequency obtained by the IPFEM increased slightly. In other
words, the stronger the spatial dependency of the interval field, the weaker the influences
of spatial uncertainties on the band gap. In addition, as shown in Figure 7, the ending
frequency obtained by the IPFEM was always higher than the reference solutions (MCM
and VM). To validate the accuracy of the IPFEM, Figure 8 shows the relative errors of the
IPFEM with respect to the MCM. As can be seen from Figure 8, an increase in CB or a
decrease in lB led to an increase in relative errors. However, the relative errors presented in
Figure 8 were basically controlled within 6%.
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Figure 7. Influences of interval field parameters on the ending frequency of the safe band gap.
(a) Influences of CB. (b) Influences of lB.
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Figure 8. Relative error of the ending frequency of the safe band gap according to IPFEM for different
interval field parameters. (a) Different CB. (b) Different lB.

3.5. Metamaterial Beam with Interval Density Field and Interval Resonator

Since there may be uncertainties in the basic beam, it is obvious that there may be
uncertainties in the spring-mass resonator. The spring stiffness and mass in each resonator
can be assumed to be an independent interval variable and expressed as follows:

mI
i = m(1 + ∆mi[εi]), kI

i = k(1 + ∆ki[εi]), (i = 1, 2, · · ·Nu) (28)

The values of m and k are shown in Section 3.1. ∆mi and ∆ki denote the dimensionless
deviation amplitude of mI

i and kI
i , respectively. Figure 9a shows the IVTA results consider-

ing both the uncertainties in the density of the basic beam (CB = 0.05, lB = 0.8Lbeam) and
the uncertainties in the resonators (∆mi = ∆ki = 0.02, (i = 1, 2, · · ·Nu)). It should be noted
that due to the extremely low computational efficiency, the vertex method was not used in
the numerical examples presented in this subsection. When the interval parameters of the
resonators were added into the calculation, the beginning frequency was also influenced
by uncertainties. The safe band gap range predicted by the MCM was from 29.7639 Hz to
67.2779 Hz, reducing the band gap width by 7.41% compared to the deterministic band
gap. Furthermore, the safe band gap range obtained by the IPFEM was from 29.9966 Hz to
69.3091 Hz. Both the beginning frequency and the ending frequency were higher than those
obtained by the MCM, and the relative errors were 0.78% and 3.02%, respectively. Another
IVTA could be implemented by keeping interval field parameters CB and lB unchanged
and increasing ∆mi and ∆ki to 0.04. The calculation results are presented in Figure 9b. In
Figure 9b, the safe band gap calculated by the MCM ranged from 29.8576 Hz to 66.7813 Hz,
reducing the band gap width by 8.87%. Meanwhile, the safe band gap calculated by the
IPFEM was from 30.0621 Hz to 69.1674 Hz. Similarly, the beginning frequency and ending
frequency were higher than those obtained by the MCM, and the relative errors were 0.68%
and 3.57%, respectively. That is to say, the IPFEM could not provide a conservative solution
for the safe band gap, but its calculation precision was acceptable.
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(a) (b)

Figure 9. IVTA of MB with interval density field (CB = 0.05, lB = 0.8Lbeam) and interval resonator.
(a) Interval resonator (∆mi = ∆ki = 0.02). (b) Interval resonator (∆mi = ∆ki = 0.04).

4. Conclusions

In this paper, a metamaterial beam model with spatially varying interval density was
first established. Then, the interval dynamic equation could be obtained by integrating
the decomposition result of the interval field based on KL expansion into the standard
finite element formulation. Next, an IPFEM was applied to obtain the bounds of the
dynamic response interval vector. Finally, an IVTA was carried out to intuitively reflect the
uncertainties in the transmission coefficient of vibration. Meanwhile, the MCM and VM
were also presented as reference methods.

For convenience, the frequency range wherein the upper bound of the interval trans-
mission coeffcient T is less than 0 is called the safe band gap. No matter how the interval
density field fluctuates, the elastic wave within the safe band gap cannot propagate through
the metamaterial beam. In other words, in engineering, if researchers only know the specific
ranges of uncertainties in the MB structures but cannot determine the exact values, they
can use the method in this paper to deal with the uncertainties and calculate the safe band
gap. Then, using the safe band gap range instead of the deterministic band gap range can
ensure that the metamaterial beam always provides vibration attenuation characteristics
and is safe enough during application processes.

The numerical results showed that the interval density field of the basic beam could
only affect the ending frequency of the safe band gap. On the other hand, the uncertainties
of the resonators affected both the beginning frequency and ending frequency of the
safe band gap. When both the uncertainties in the density of the basic beam and the
uncertainties in the resonators were considered, the safe band gap range could be reduced
by 8.87% compared to the deterministic band gap without considering uncertainties. In
the numerical examples presented in this paper, the beginning frequency calculated by
the IPFEM was basically the same as the reference solutions, but the ending frequency
was always higher than the reference solutions. In other words, the IPFEM could not
obtain a conservative safe band gap frequency range. However, the relative errors of the
IPFEM were basically less than 6%, and its calculation precision could basically meet the
engineering requirements. This paper only considered a one-dimensional metamaterial
beam structure. Next, the authors of this paper will try to study the uncertainties in
two-dimensional or three-dimensional metamaterial structures based on the secondary
development platform of finite element software.
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