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Abstract: In this study, we demonstrate the viability of applying artificial intelligence (AI) techniques
to conduct inspections at the OLED cell level using simulated data. The implementation of AI
technologies necessitates training data, which we addressed by generating an OLED dataset via
our proprietary A2G algorithm, integrating the finite element method among concerns over data
security. Our A2G algorithm is designed to produce time-dependent datasets and establish threshold
conditions for the expansion of dark spots based on OLED parameters and predicted lifespan. We
explored the potential integration of AI in the inspection phase, performing cell-based evaluations
using three distinct convolutional neural network models. The test results yielded a promising 95%
recognition rate when classifying OLED data into pass and fail categories, demonstrating the practical
effectiveness of this approach. Through this research, we not only confirmed the feasibility of using
simulated OLED data in place of actual data but also highlighted the potential for the automation of
manual inspection processes. Furthermore, by introducing OLED defect detection models at the cell
level, as opposed to the traditional panel level during inspections, we anticipate higher classification
rates and improved yield. This forward-thinking approach underscores significant advancement in
OLED inspection processes, indicating a potential shift in industry standards.

Keywords: AI; big data; OLED; machine learning

1. Introduction

OLED panels, now holding a global market share of over 40%, have gained consider-
able traction in recent years, predominantly focusing on the development and production of
higher-value flexible OLEDs [1]. This rapid expansion and increasing market demand have
necessitated stringent and reliable encapsulation processes for these delicate devices. The
encapsulation plays a pivotal role in preserving the organic layers from external damage,
especially moisture and oxygen infiltration, which is the leading cause of device degrada-
tion. Consequently, thin-film encapsulation (TFE) has emerged as the most crucial, albeit
demanding task, as OLED devices require the highest degree of protection from moisture
and oxygen compared with other electronic devices [2]. Despite employing high-quality
materials and advanced encapsulation structures, the organic compounds in OLEDs are
highly susceptible to the ravages of moisture and oxygen exposure [3]. This susceptibility
often results in irreversible damage, leading to the formation of dark spots—areas where
the light emission is markedly impaired. It also precipitates a degradation phenomenon
commonly referred to as luminance degradation over time. Even with robust and well-
established encapsulation processes, OLEDs invariably experience a certain degree of
moisture permeation. This permeation is quantified by the water vapor transmission rate
(WVTR), a crucial metric in the evaluation of OLED device longevity and performance. It is
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worth noting that moisture permeation in OLED devices is not a unidirectional process, but
occurs through various routes. These routes encompass potential reliability issues in the
encapsulation method, inherent issues associated with the encapsulation materials used,
and manufacturing defects, among others.

To achieve stable OLED operation and enhance device lifespan, it is paramount to
maintain WVTR below a certain threshold value. According to the standards set for white
OLEDs, WVTR should remain below the specified limit for over 10,000 operational hours [4].
This stringent standard underscores the critical importance of effective encapsulation
processes in OLED manufacturing and the continuous need for innovative solutions to
improve device durability and performance.

The aforementioned requirement in Table 1 is determined by measuring the time it
takes for the magnesium cathode, which serves as an electrode material in OLEDs, to
oxidize and become transparent, ultimately transforming into magnesium oxide (MgO).
This value was determined by Professor Burrows’ team in 2001 [5]. If the OLED components
have higher humidity and oxygen permeability than the recommended levels, oxygen and
moisture will continuously infiltrate the components during their operating lifetime. This
will cause the OLED components to degrade more quickly owing to external factors. To
tackle this problem, the International Technology Roadmap for Semiconductors (ITRS) has
established a criterion for the largest permissible size of dark spots during the operational
lifespan of the display. For an area equivalent to a 300 mm diameter wafer, there should
be no more than five small dark spots, each measuring between 20 and 30 nanometers in
size. Major manufacturers of OLED panels, such as Samsung Display and LG Display, have
even more stringent requirements for mass production. However, the specifics of these
standards are confidential and cannot be disclosed.

Table 1. Encapsulation requirements.

Parameter Minimum Requirements

Water vapor transmission rate 10−6 g/m2-day
Oxygen permeability rate 10−5 cm3 (STP)/m2-day

Dark spot standard 300 mm/under 5 dark spots
Wafer 20~30 nm

To detect defects using machine learning, it is necessary to train the model on a large
amount of data. However, because of security concerns in the OLED industry, obtaining a
substantial amount of data is challenging. Therefore, in this study, we generated a simulated
dataset using the finite element method to detect defects using artificial intelligence.

The deep convolutional neural network (CNN) is the state-of-the-art solution for large-
scale visual recognition [6,7]. To assess the application of artificial intelligence, we con-
ducted recognition rate tests using representative algorithms, namely, VGG-16, ResNet50,
and Conv-Next Tiny. To evaluate the prediction accuracy, we compared metrics such as
accuracy, loss, AUC-ROC, specificity, and sensitivity among the algorithms. The final
confirmation was made by assessing the accuracy of predictions based on these metrics.

2. Related Research
2.1. Moisture Diffusion for OLED Artificial Intelligence Applications

In the field of OLED displays, artificial intelligence has been continuously used to
research and develop new materials and substances. AI has been employed in the process
of synthesizing and evaluating molecular structures to achieve desired properties. Recently,
there have been ongoing efforts to apply AI in inspection stages.

Many OLED manufacturers grapple with low yield rates due to defects such as dark
points, surface scratches, non-uniform luminance, and lack of color uniformity [8]. Broadly
speaking, these defects can be divided into two groups. One is glass defects and the other
is cell defects. Defects can manifest in the form of scratches, contamination, hair, and
dust particles. Scratches and other similar defects are considered genuine defects, while
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defects that can be removed by air, such as hair and dust, are referred to as superficial
defects. Research on artificial intelligence for data-driven inspection processes to detect
genuine cell defects is currently underway based on studies of dark spot growth. The paper
titled “Extraction of the OLED Device Parameter based on Randomly Generated Monte
Carlo Simulation with Deep Learning” by Seung Yeol You and two other authors proposes
techniques for accelerated computer simulation and parameter reverse engineering [9].
These techniques efficiently analyze the relationship between OLED process variables and
luminescent performance.

Dark spots can be influenced by various factors including the thickness of the organic
light emitting layer (L), humidity (C0), temperature (T), pressure (P), and degradation time
(t) [10]. Conducting performance experiments based on all process conditions can be very
costly. Therefore, computer simulations were generated using each factor to obtain results.
The generated samples represent the growth of dark spots with varying degradation times
(t), number of pinholes (N), and sizes (r0). The growth of dark spots can be represented by
Equation (1), which relates the radius (D) and degradation time (t) [11].

dw/dt = (βLDC0)/(4πL/r0) · 1/d (1)

where d = organic layer diffusion coefficient, w = diffusion area, t = degradation time,
β = water flux per unit coefficient, L = thickness of EL, r0 = pinhole size, C0 = humid, and
D = dark spot area.

Equation (1) is similar to the one presented in the paper titled “Dark spot growth and
its acceleration factor in Organic Light Emitting Diodes with Single Barrier Structures” by
Takeru Okada and his colleagues [12]. This equation is based on the comparison of the
performance of organic light emitting diodes (OLEDs) under high temperature and high
humidity to that of edge shrinkage at the cathode edge.

In the case of the diffusion of dark spots, a moisture diffusion equation based on
pinholes is essential. The equation for moisture diffusion can be defined as follows: The
water flux per unit length is LDC0 = w when the diffusion coefficient of the organic layer
is D and the thickness of the organic layer is L. It is assumed that D is a function of
temperature but is independent of water concentration within the range of this experiment.
Assuming that the rate of edge shrinkage is a product of the water flux per unit length and
the coefficient β, the width of the edge shrinkage, w, can be expressed in a rate equation.

dw/dt = (βLDC0)/w (2)

Solving this equation leads to

w =
√

(2βLDC0 t.) (3)

Based on this equation, a computer simulation for the dataset of dark spot creation
and diffusion was conducted.

2.2. Impact of Dark Spots on OLED and the Use of Artificial Intelligence

In a research paper titled “Effect of Organic Layer Combination on Dark Spot Forma-
tion in Organic Light Emitting Devices” authored by Yoon-Fei Liew et al., the evolution of
dark spots in OLEDs was examined through optical image analysis technology [13]. The
study unearthed that both single and multilayered OLEDs can develop dark spots, nega-
tively influencing the performance of OLEDs’ organic constituents. During the operational
degradation of OLEDs, non-emissive “dark spots” can emerge, with potential causes being
manufacturing defects and damage to surface protection [14]. The insights garnered from
this paper lead to the understanding that the organic layers integral to OLEDs contribute
to the formation of dark spots.
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Therefore, the paper’s primary focus lies in investigating the morphology of dark
spots and enhancing the lifespan and efficiency of OLED displays by understanding the
implications of dark spots on OLEDs.

Currently, automated optical inspection (AOI) is commonly used in production to
detect pre-defined Mura, providing accurate and fast results compared with human ex-
pertise [15]. However, AOI has a limitation as it cannot detect new Mura [16,17]. Another
approach for defect detection is through a vision system, often employed for position-based
defect detection of panels. This method requires high precision inspection equipment, and
errors can lead to significant costs [18]. In the paper titled “A Study on Defect Detection
of Flexible OLED Using Deep Learning” by Kim, S. K. et al., the researchers used a deep
learning algorithm to identify defects in flexible OLEDs [19]. After learning about defects in
OLEDs, a deep learning algorithm was applied. The test results showed high performance
in detecting not only previously learned defects but also multiple defects [20]. In this
study, machine learning was used to detect Mura based on the panel, in contrast to the
current research that focused on the cell unit level and used different artificial intelligence
algorithms for detecting dark spots and predicting lifespan.

Based on the case study above, it is confirmed that dark spots can harm OLED cells and
ultimately cause Mura expansion. Therefore, dark spots play an important role in predicting
the lifespan of OLEDs. Several studies have explored the use of artificial intelligence in
inspection processes. However, this study is unique in its focus on cell-level analysis rather
than panel-based inspection.

3. Research on OLED Prediction Based on Dark Spots

Dark spots in OLEDs can be influenced by various factors, including the thickness of
organic light emitting layer, humidity, temperature, pressure, and aging time. To implement
a dataset using the finite element method (FEM), we used an FEM solver and identified
factors that directly or indirectly affect the performance of OLED cells as follows.

Pinhole size and number were determined based on a study titled “Extraction of the
OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with
Deep Learning” by Seung Yeol You et al. Criteria for image processing in big data were
established using minimum moisture content as a factor [10]. Temperature and humidity
were maintained at 25 ◦C and 50%, respectively, to ensure consistency in the dataset, while
the atmospheric pressure was set to 1 atm, which is the standard for ambient air. All
datasets were created with a minimum requirement of 10,000 h of lifetime, which meets the
minimum requirement for the lifetime of the white OLED. The diffusion coefficient can be
calculated using the average free path and average velocity of molecules in an ideal gas
distribution, such as the Maxwell–Boltzmann distribution. One of the goals of this research,
namely the generation of the OLED dataset, involved constructing a three-dimensional
composition of the continuously flowing time and space variables in order to calculate
the diffusion of moisture spaces based on the flow of 10,000 h and pinholes, as depicted
in Figure 1.
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OLEDs encompass various components such as organic resonant tunneling diodes,
organic phototransistors, organic photodetectors, and organic photovoltaic cells [21]. Thus,
an OLED is made up of several layers composed of organic matter sandwiched between two
electrodes, an anode and a cathode [22]. Figure 1 demonstrates the simulation process of
organic light-emitting diodes (OLEDs). This process is fundamentally rooted in the effects
of surface chemical treatments on the morphology of inkjet-printed polymer films [23],
highlighting that pinholes, an integral part of injecting organics into each layer, are a natural
consequence of this process. Further to this, as depicted in Figure 2, we finely segmented
the area where the dark spots proliferate by methodically slicing it layer by layer and
subdividing it into finite meshes.
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Figure 2. OLED dark spot simulated cell based on FEM.

This divided mesh serves as a measure of the precision achieved during the physi-
cal simulation within each internal area. The areas colored deeper green indicate higher
accuracy in the results. All datasets were processed with mesh precision exceeding 75%.
Moreover, because of denser meshing, higher simulation accuracy, and the longer compu-
tational time [24], employing a ‘Fine Mesh’ with heightened precision ensured that each
segment had a minimum of 100 mesh values.

The FEM Solver used was COMSOL Multiphysics Simulation. COMSOL Multiphysics®

(known as FEMLAB before 2005) is a commercial finite element software package designed
to address various physical phenomena [25,26]. The solver calculates the area of moisture
spread from pinholes in the EL liquid layer of the OLED display using finite values. In
the case of dark spots, their formation is based on the work of Ohzu et al., where they
calculated the dark spot formation in flexible OLEDs in relation to the amount of water that
penetrated into the device [27]. Additionally, the integrity of the finite element method was
verified through mesh analysis, which is one of the validation techniques used in FEM. The
image dataset was created using our own algorithm called OLED A2G (Automatic Affine
Generator). Algorithm 1 is designed as follows.

OLED A2G is a sophisticated, time-dependent dataset generation algorithm that we
developed with a specific focus on creating datasets for the diffusion of moisture, particu-
larly as it pertains to pinholes—a significant factor affecting the lifespan of OLED displays.
This algorithm expertly captures and predicts essential information about OLED lifespan,
which is accomplished by closely examining and modeling the occurrence and expansion of
pinholes. This process is accomplished through a combination of computational modeling
and advanced data processing techniques. In this research, we determined the number of
datasets to be generated through the variable known as oled_data_count. For simplicity and
compatibility, the file extension was specified as .png. We used the variable pinhole_count
to represent the number of pinholes created during the computational simulation process.
The variables OLED_cell_x and OLED_cell_y were designated to indicate the size of cells
used in the computational model. Furthermore, to account for the natural variation that
occurs in the manufacturing process, the range and the number of pinholes were randomly
generated using base and m_base variables. Upon generating these pinholes within the
model, they were then incorporated into the cell. The time frame from 0 to 10,000 h was
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divided into sequential frames and computed according to the specified Equation (3). The
dataset generated through this rigorous process is subsequently used in machine learning
algorithms to determine the lifespan and defect classification criteria of OLED panels.
While these data may not be directly applicable to an artificial intelligence model, they
nonetheless lay a solid foundation for such a model by producing a significant volume of
computationally simulated data.

Algorithm 1 OLED A2G (Automatic Affine Generator)

# Feature
oled_data_count: Number
File_extention: PNG
Pinhole_count: Number

# Variable
x: oledcell x axis
y: oledcell y axis
base: pinhole x
m_base: pinhole y
base, m_base: random number in oledcell x and y
# Study
WHILE oled_data_count > 0:

SET COMPONENT x, y to base, m_base
Comsol build mesh
IF mesh_accuracy >= 80%:

Comsol build time_dependent
Comsol build frame
run molecule diffusion study
save data in “location”

ELSE:
rebuild

oled_data_count -= 1

After completing this large image dataset, we conducted a thorough accuracy analysis
among several machine learning algorithms. The aim of this analysis was to compare the
performance of various prediction models when they were exposed to the same dataset. As
a result of this analysis, we identified the model with the highest accuracy. The prepared
OLED dataset was then fed into this top-performing model to evaluate its recognition rate.
This intricate process plays a vital role in enhancing the practicality and effectiveness of AI
applications in the field of OLED inspection and prediction.

4. Discussion

A comprehensive dataset of 2000 image samples was generated for the study. These
images were created by specifying the grayscale color table within the A2G algorithm, based
on the parameter values outlined in Table 2. To ensure suitable threshold determination, the
threshold level was established according to minimum moisture content criteria. The mini-
mum moisture level criterion was defined based on the observation that, when the moisture
within the OLED substrate reaches a certain threshold, the OLED luminance decreases
by more than 50%. Consequently, the images generated visually illustrate the spread of
moisture, represented by randomly distributed dark spots rendered using grayscale. The
generated dataset was then applied to various machine learning algorithms to assess their
performance, and the comparative results are summarized in Table 3. In-depth analysis
of the results presented in the form of graphical representations can be found in Figure 3.
Through these rigorous evaluations and comparisons, the performance of each machine
learning algorithm in predicting moisture spread, as represented by dark spot distribution,
was assessed. The assessments were aimed at identifying the most effective algorithm for
predicting and analyzing moisture distribution and its effects on OLED performance.



Appl. Sci. 2023, 13, 8016 7 of 10

Table 2. Simulation parameter.

Parameter Range

Initial pinhole radius 1.2 (µm)
Number of dark spots 10~100 (Ea)

Degradation time 10,000 (h)
Minimum humidity inflow (for edge detection) 1 (%)

OLED panel width/length 1000/1000 (µm)
Moisture 50%

Temperature 25 (◦C)
Absolute pressure 1 ATM

diffusion coefficient 2.6 × 10−5 [µm2/s]
Max dark spot growth 10%

Table 3. Machine learning results.

Algorithm Loss Accuracy Specificity Sensitivity AUC-ROC

VGG-16 0.053 0.982 0.981 0.985 0.983
ResNet50 0.052 0.981 0.98 0.984 0.982

Conv-Next Tiny 0.039 0.986 0.988 0.984 0.986
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From the results displayed in Table 3 and Figure 3, it is evident that the Conv-Next Tiny
algorithm emerges as a superior performer among its counterparts, exhibiting the lowest
loss value and the highest accuracy. These results strongly suggest that the Conv-Next
Tiny algorithm possesses an advanced ability to learn and recognize complex dark spot
patterns with a high degree of precision. This is a critical attribute, especially considering
the intricate structures and behaviors of OLEDs, which demand meticulous handling in
analysis and classification tasks.

While Conv-Next Tiny outperforms other algorithms, it is equally important to high-
light that other convolutional neural network (CNN) algorithms, such as VGG-16 and
ResNet50, also deliver impressive accuracy values of 0.98 or above. This not only under-
scores the overall effectiveness of CNN-based algorithms in defect detection tasks, but
also indicates their proficiency in identifying particular anomalies such as dark spots.
As we delve deeper into a more nuanced analysis, considering the unique features and
characteristics of each algorithm, it becomes clear that lightweight algorithms such as
Conv-Next Tiny offer certain distinct advantages. For instance, these algorithms provide
faster training time and improved computational performance compared with their more
complex counterparts. This is a crucial factor in practical situations where the speed of
execution and efficient utilization of computational resources are of utmost importance.
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A testament to the practicality and effectiveness of the Conv-Next Tiny algorithm is its
superior performance on a batch of 100 OLED test data samples, which were classified as
either pass or fail. The Conv-Next Tiny model, which boasted the highest accuracy among
the trained algorithms, achieved a remarkable recognition rate of 95%. This excellent
performance in real-world testing strongly suggests that the Conv-Next Tiny algorithm has
great potential to serve as a powerful tool for accurate and efficient OLED defect detection.

Such proficiency in defect detection can greatly benefit OLED manufacturing processes
by potentially reducing wastage and improving yield. The significance of this can be
further appreciated considering the economic and environmental implications of waste
reduction in the manufacturing industry. This breakthrough underscores the potential of
machine learning algorithms, particularly lightweight models such as Conv-Next Tiny, in
revolutionizing OLED manufacturing processes and paving the way for industry-wide
adoption of AI-based inspection and prediction techniques.

5. Conclusions

OLEDs, known for their requirement of sustained brightness over prolonged periods,
pose challenges when traditional physical methods of measurement are employed because
of their inherent limitations. Recognizing these challenges, our study showcases the
promising potential of using A2G-based simulated data generation and artificial intelligence
techniques as alternatives for longevity measurements and passive inspections of OLEDs.
To combat the scarcity of training data, a dataset revolving around dark spots, which
significantly affect the OLED lifespan, was synthesized using the finite element method
(FEM) and the A2G algorithm. This synthesized dataset served as the foundation to
train an AI model. Remarkably, the trained AI model demonstrated high proficiency in
recognizing OLED test data, hinting at its valuable application in defining the criteria
for defective OLED panels. These findings underline the possibility of automation in the
inspection process and project the capability of executing more precise AI inspections at
the intricate OLED cell level, shifting away from conventional panel-level inspections.
Furthermore, the A2G algorithm, which is employed for creating OLED simulation data,
enables result confirmation up to 10,000 h through data generation via virtualization
post-physical calculation-based design. This methodology deviates from the traditional
sequential design–manufacture–evaluation process, highlighting the feasibility of assessing
various operational results within a significantly reduced time frame.

Considering these findings, we advocate for the expansion of future research to delve
into potential issues that may arise within the OLED manufacturing process. Incorporating
AI throughout the complete process, including the inspection stage, opens up the possibility
of crafting research that considers the impact of factors such as organic materials, plastics,
and rubbers that occur within the various OLED layers. This holistic approach can lead
to better quality control and efficiency in OLED production, advancing the technology to
new heights.

Moreover, this work suggests a roadmap toward the advent of an integrated manu-
facturing process underpinned by artificial intelligence. Future studies can explore and
expand the application of AI models and algorithms not only in OLED manufacturing, but
also in other microelectronic devices. Additionally, it would be worth investigating the
incorporation of AI-driven feedback mechanisms that can self-improve and self-correct
during the manufacturing process. The combination of AI-driven data generation, AI-based
predictive modeling, and AI-enabled decision-making and control mechanisms could usher
in a new era of smart manufacturing, contributing to the Fourth Industrial Revolution.
We also recommend the development of standard testing protocols that can fully exploit
the advantages of AI, thereby ensuring reliable and robust manufacturing processes. By
using AI in tandem with traditional manufacturing practices, we foresee a future where
technology and human expertise coalesce, leading to remarkable advancements in the
electronics industry.
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