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Abstract: The adsorption equilibrium of methyl blue (MB) at different temperatures was optimized
using activated graphene (AG) as an adsorbent. The experimental data were compared using five
linear and nonlinear adsorption isotherms, namely, Langmuir, Freundlich, Redlich–Peterson (R-P),
Sips, and Toth, to estimate the best fit of the equilibrium data. Five distinct error functions were
utilized to conduct nonlinear regression for the adsorption equilibrium: SSE, ARE, HYBRID, MPSD,
and EABS. These functions offered a wide range of residuals for comparison. For a more accurate
prediction of the isotherm model, two statistical techniques—SNE and CND—were applied. By
using these techniques in conjunction, a more objective analysis of the error and deviation between
the observed and predicted data was achieved, ultimately leading to improved accuracy in the
error analysis. The sorption results demonstrated the highest MB removal of 691.89 mg g−1, which
amounted to 98.32% within 120 min. The error analysis findings indicated that the SSE and HYBRID
functions produced the smallest error residuals. Based on the “goodness of fit” criterion, the models
in this study were ranked as R-P > Toth > Langmuir > Sips > Freundlich. Among these models, the
R-P isotherm demonstrated the best fit for the data, exhibiting the lowest variance in residuals. Its
CND value ranged between 0.0025 and 0.0048, which further supports its superior fit compared to
the other models. The combination of multiple error functions and statistical methods allowed for a
comprehensive and objective assessment of the nonlinear regression models. The results highlight
the importance of using various techniques to improve the accuracy of error analysis and identify the
best-fitting isotherms for adsorption.

Keywords: adsorption; graphene; nano-adsorbent; isotherm modeling; error analysis

1. Introduction

Rapid civilization and industrial progress accelerate the continuous release of indus-
trial waste into natural water streams. Waste from the cosmetics, paper making, food
processing, and textile industries [1,2] is known to produce a number of hazards, with
effluent dye pollution being one of the most significant [3,4]. Dyes are hazardous chem-
ical constituents extensively used in the textile industry, and their discharge into water
bodies can lead to the formation of toxic byproducts that persist for a long time and may
cause respiratory problems, skin irritation, and even cancer [5,6]. Typically, MB has been
identified as detrimental when released into water, affecting dissolved oxygen levels and
harming aquatic life. Moreover, studies have demonstrated that MB dye can lead to various
human health concerns due to its toxic nature, including skin irritation, allergic reactions,
eye burns, and even cancer. Ingestion of the dye can also cause gastrointestinal distress,
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such as vomiting, diarrhea, and nausea. Given these risks, it is imperative to prioritize
the complete removal or degradation of MB from discharge in open streams to promote
sustainable ecology [7–9].

Diverse treatment techniques based on physical, chemical, and/or biological degra-
dation have been developed to reduce the damaging effects of dyes on the environ-
ment [10–13]. Over the years, due to its low cost, straightforward operation, and effective
remediation of pollutants, the adsorption process has been established as a well-recognized
pollutant remediation technique. It has been widely used in various industries [14–16].

Activated carbon, zeolites, and agricultural wastes are being studied as adsorbents
due to their moderate surface and porosity attributes, while graphene derivatives are
emerging as promising alternatives due to their structural eminence, high efficiency, and
low-cost feasibility. Moreover, graphene derivatives have exhibited excellent performance
in removing heavy metals, organic pollutants, and dyes from wastewater [17–20]. They can
also be easily modified to enhance their adsorption capacity and selectivity. However, to
determine the sorption performance and capacity of an adsorption system under various
experimental circumstances, the adsorption parameters must be understood and quantita-
tively compared. Since adsorption is a one-step process involving one or more physical
and chemical phenomena of the adsorbate and adsorbent, an isotherm study is a straight-
forward approach to identifying the equilibrium conditions [21–23]. The isotherm study
involves the determination of the type of isotherm model that best fits the experimental
data to ensure an accurate prediction of the adsorption behavior. Additionally, under-
standing the equilibrium relationship between the adsorbent properties and the adsorption
parameters is key for designing better adsorption systems for specific applications [9,24].

In most cases, the best-fit isotherm is determined using linear regression. However,
researchers have concluded that linearizing adsorption isotherms usually changes the error
structure of experimental data [24,25]. Moreover, the linearization of isotherms with three,
four, and more parameters is not possible, as two or more unknown components limit
simple linearization [26]. Nonlinear regression analysis provides a rigorous method of
defining adsorption parameters using isotherm equations in their original form. It involves
a stochastic distribution used to minimize the errors between experimental and simulated
isotherm data [27]. Hence, a trial-and-error approach can be a solution used to minimize
or maximize the objective function. However, this approach can be time-consuming and
may not always guarantee the optimal solution. With the development of computer
algorithms, this process has become faster, more reliable, and more efficient, allowing
for quicker optimization of the objective function [28]. The statistical error functions
are more reliable objective functions for the development and comparison of suitable
nonlinear regression methods. To analyze the errors, a number of mathematically rigorous
equations are used [28,29]. The sum of squared errors (SSE), the sum of absolute errors
(SAE), the average relative error (ARE), the hybrid fractional error function (HYBRID), and
Marquardt’s percent standard deviation (MPSD) are some of the most commonly cited
regression functions used to search for best-fitting relationships in a solid–liquid adsorption
system [30–34]. These regression functions yield different sets of residuals arising from
different mechanisms [27]. To compare the residuals, numerous studies have reported
on the standard normalizing process using the sum of normalized errors (SNE), as stated
by Porter et al. [35–38]. In comparison, some other studies documented the selection of
the optimal isotherm model based on the value of the highest R2 and the lowest error
function [4,39–41]. From a statistical perspective, although this proof of concept shows
some quantitative relation among the error values, it cannot correlate with the variance of
the residuals. Kumar et al. explained the accuracy of error analysis based on the coefficient
of non-determination (CND) to identify the best-fit isotherm model [42]. The CND is a
useful metric for measuring the proportion of variance in the dependent variable that
is explained by the independent variables. Still, it does not provide information about
the variability of the residuals around the fitted line. To fully improve the accuracy and
reliability of model predictions, the combination of other statistical measures, such as the



Appl. Sci. 2023, 13, 8106 3 of 20

SNE, root mean square error (RMSE), average percentage error (APE), or mean absolute
error (MAE), can be particularly useful for complex datasets, where feature selection is
crucial for model performance.

In the present study, the equilibrium data of MB sorption on AG at four different
test temperatures was computed using five linear and nonlinear adsorption isotherms,
namely, Langmuir, Freundlich, Redlich–Peterson (R-P), Sips, and Toth. The underlying
errors between the experimental and simulated isotherms were compared using five error
functions, namely, the SSE, ARE, HYBRID, MPSD, and EABS. This offered a wide range
of derived isotherm constants, making it challenging to determine the so-called optimal
or the best-fitting relationship. Therefore, two different statistical methods, the SNE and
CND, were used. The combination of these methods provided a more objective approach
to quantifying the error and deviation between the observed and predicted data in dif-
ferent interpretations so as to compare the accuracy of the error analysis. Thus far, no
studies combining ther SNE and CND to determine the best-fitting relationship with a
detailed error analysis have been reported. Therefore, this study aims to fill this gap by
proposing a novel approach that combines the SNE and CND methods to determine the
best-fitting relationship with a comprehensive error analysis of dye sorption isotherms on
various materials.

2. Experimental
2.1. Materials and Methods

The AG used as an adsorbent in this study is prepared from graphene oxide (GO).
Typically, 10 mg of aqueous GO solution is successively stirred and ultrasonicated for
30 min and 1 h. Then, in an N2 atmosphere, 5% NaBH4 is slowly added and raised to a
temperature of 200 ◦C for 12 h. Methyl blue (MB) is used as a sample pollutant adsorption
indicator. Table 1 lists the physical and chemical properties that were determined using
standard procedures [9]. The details of the chemicals used are provided in Supplementary
Table S1.

Table 1. Specifications of AG used as an adsorbent.

Particulars Unit

Surface area 589.06 m2 g−1

Average pore size 4.49 nm
Pore volume 5.62 × 10−1 cm3 g−1

Crystal size 4.49 Å
Crystallite lattice sizes 15 nm

C 88.13%
O 11.5%
N 0.37%

2.2. Batch Adsorption

The batch adsorption of MB is carried out by adding 0.005 g AG with 30 mL dye
solution (conc. 50 mg/L) of a predefined primary concentration at four different solution
temperatures of 303, 313, 323, and 333 K. After 12 h of the retention time, which is sufficient
to reach equilibrium, 2 mL of the solution is systematically added to 3 mL of DI water before
the UV-vis analysis. A 0.45 µm PVDF membrane is then used to filter the supernatant. The
dye’s equilibrium concentration (Ce) is determined through spectral analysis. In contrast,
the dye separation% is estimated using Equation (1), and the sorption capacity (qe) of the
adsorbent at equilibrium is measured using Equation (2):

S% =
C0 − Ce

C0
× 100 (1)

qe =
C0 − Ce

m
× V (2)
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Here, C0 and Ce denote the initial and equilibrium concentrations, respectively; m and
V stand for the adsorbent mass and volume of the solute adsorbate, respectively.

2.3. Isotherm Model Fitting

Adsorption isotherm model fitting using either theoretical or empirical equations is a
practical way to design and operate an adsorption system. MB dye sorption via AG was
carried out by establishing a fitting correlation of the equilibrium curve. In this context,
typical two-parameter isotherm models, namely, the Langmuir and Freundlich models,
and three-parameter-based models, namely, the R-P, Sips, and Toth models, were tested
linearly and non-linearly to construct a fitting correlation through comparison. We aimed
to determine the least significant deviation from the model fitting to the experimental data
for a best-fit equation of the isotherm parameters. The corresponding linear and nonlinear
model forms, plotting techniques, and parameters are presented in Table 2 [6,43].

Table 2. The linear and nonlinear forms of isotherm models and their parameters.

Model Nonlinear Linear Linear Plot Parameters

Langmuir qe =
kLqmCe
1+kLCe

Type-1 1
qe

= 1
KLqmCe

+ 1
qm

1
qe

vs. 1
Ce

KL, qm

Type-2 1
Ce

=
KLqm

qe
− KL

1
Ce

vs. 1
qe

Type-3 qe = qm − qe
KLCe

qe vs. qe
Ce

Type-4 qe
Ce

= KLqm − KLqe
qe
Ce

vs. qe

Type-5 Ce
qe

= Ce
qm

+ 1
KLqm

Ce
qe

vs. Ce

Type-6 Ce = qm
Ce
qe

− 1
KL

Ce vs. Ce
qe

Freundlich qe = k f C
1
n
e LnK f +

1
n LnCe Lnqe vs. LnCe KF, n

R-P qe =
ACe

1+BCg
e

ln
(

A Ce
qe

− 1
)
= gln(Ce)− ln(B) ln

(
A Ce

qe
− 1

)
vs. ln(Ce) A, B, g

Sips qe =
qmbsc

1
n
e

1+bsc
1
n
e

ln
(

qe
qm−qe

)
= 1

n ln(Ce) + ln(bs)
1
n ln

(
qe

qm−qe

)
vs. lnce qm, bs, n

Toth qe =
qmKTCe

[1+(KCe)n] 1
n

ln
(

qe
qm−qe

)
= nlnKT + nln(Ce) ln

(
qe

qm−qe

)
vs.ln(Ce) qm, KT, n

3. Results and Discussion
3.1. Material Characterization

Field-emission scanning electron microscopy (FE-SEM) using an ULTRA 55 instrument
from Carl Zeiss AG, Germany, was employed to study the microstructures and morphology
of the samples under vacuum conditions at an accelerating voltage of 20 kV. Before exami-
nation, the samples were mounted on carbon-based adhesive tape and coated with a 2 nm
thick platinum layer. The SEM image (Figure 1a) displays a significant number of wrinkles
and corrugations on the graphene’s basal plane, while its fluffy appearance indicates the
expansion of inter-sheet packs within numerous carbon layers due to exfoliation [44–46].
At a higher magnification (Figure 1b), irregular flakes are observed, which are intertwined
due to the cohesive force from the π–π stacking of sp3 hybridized carbon atoms. Addition-
ally, the pseudo-color topographic contrast of the SEM image from Mountains® surface
profiling, Digital Surf, SA. Besançon, France https://www.digitalsurf.com/ (accessed on
10 September 2022) (Figure 1c), reveals that the combination of chemical and thermal
treatments produced a thin, paper-like material with an extensive surface area and porous
channels [47]. Fourier transform infrared (FTIR) spectroscopy (Nicolet IS-50, Thermo
Scientific, Waltham, MA, USA) of the sample demonstrated the presence of several oxygen-
containing functional groups, such as C-O, C-OH, and C-O-C, at 1658, 1415, and 1125 nm−1,
respectively (Figure 1d) [48]. The low intensity of these bands indicates that thermal treat-
ment has induced graphitization within the carbon framework [49]. The strong, broad
band at 3450 cm−1 confirms the presence of carboxylic functional groups [50]. As expected,
the sample has a high carbon content, which is crucial for determining the bonding nature.
Furthermore, the combination of chemical and thermal treatments disrupts the structural
arrangement and introduces defects, leading to the deconvolution of the C-O and O-C-O

https://www.digitalsurf.com/
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bonds [51]. X-ray diffraction (XRD) analysis (D8 Advance, Bruker Corp., Billerica, MA,
USA) of the sample revealed a broad peak at 27.34◦, indicative of graphitization, which
corresponds to an interplanar spacing of 3.7 Å (Figure 1e) [52]. An additional peak at
47.92◦, associated with the (100) plane, suggests the formation of flake-like structures with
crystal sizes less than or equal to 1 nm. Raman spectroscopy (In-Via confocal, Renishaw
plc., Wotton-under-Edge, UK) was further performed to investigate the samples’ structural
features, such as their intrinsic structural disorder (ID/IG ratio) and crystallite lattice size
(La) (Figure 1f) [53]. The typical D and G bands were observed at 1350 and 1586 cm−1,
respectively, as the defect-inducing chemical exfoliation provided reactive sites within the
sample [54]. Consequently, the high ID/IG ratio of 1.05 is consistent with the chemical
exfoliation process, yielding a crystallite lattice size (La) of 15 nm [55].
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3.2. Adsorption Study

The adsorption of MB was assessed through UV-vis spectral analysis, with the maxi-
mum sorption capacity at equilibrium and the dye separation percentage being calculated
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as per Equations (1) and (2). The data obtained are plotted in Figure 2a. It is clear from
Figure 2a that the adsorption capacity (qe) increases rapidly at a lower equilibrium con-
centration (Ce). At a Ce of 150 mg L−1, the maximum qe exceeded 650 mg g−1, achieving
a removal efficiency greater than 97% within 80 min. However, once a saturation peak
was reached, the sorption process leveled off, with only minimal additional adsorption
observed. The maximum sorption capacity attained was 691.89 mg g−1, equating to a
98.32% removal rate within 120 min. It is anticipated that the microstructure morphol-
ogy of the adsorbent drove the adsorption process. The presence of numerous reactive
carbonaceous groups (epoxy, hydroxyl, carboxylic, and phenolic) in the AG facilitated
an electrostatic interaction with the dye’s mass center. As a result, the AG demonstrated
superior adsorption compared to the other similar graphene family materials (as shown
in Figure 2b) (relevant data detailed in Supplementary Table S3). The skeleton structures
of these materials are nearly identical and likely to exhibit some degree of π-π stacking
interaction. However, higher levels of oxygen functionalities may result in a lower affinity
for the dye molecules, leading to either reduced adsorption or an extended time needed to
achieve equilibrium.
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Figure 2. (a) MB adsorption capacity and dye separation efficiency. (b) Sorption performance
comparison of the present work with other reported graphene adsorbents [56–65].

3.3. Linear Fitting

Linear regression is the most common isotherm fitting technique that uses the linear
least-squares method. It provides structurally evolving isotherm equations for straight-
forward experimental data fitting using the coefficient of determinant. The linearization
approach of the Langmuir isotherm model allows for data fitting through the six different
forms of simple linear regression for various parameters. The plotting techniques of the
linearized forms that are used to estimate qm and KL are given in Table 2. Interestingly,
the linear models obtained have pairs due to the analogous iterative interexchange of
variables (Table 2). The corresponding “Type-1 & 2, Type-3 & 4, and Type-5 & 6” result
from the interchange of independent and dependent variables during the linearization of
the governing equation (Figure S1) [22]. Theoretically, it is assumed that the independent
variable is error-free, as it is the experimental entity. However, relocating the numerator and
denominator for regression may alter the correlation results. Therefore, deviations in the
different parameters of a fitted equation enable one to search for the best error distribution
through comparison. All five models’ linear fit isotherm parameters, including the data
obtained from the six linear-transformed Langmuir models, are documented in Table 3,
and the fitted curves are shown in Figure 3. Table 3 shows that the Langmuir isotherm
parameters differ from each other in terms of the linear forms. Among the six Langmuir
models, Type-1 and Type-2 give the highest R2 values for all measured temperatures [25].
Meanwhile, these two forms have a lower maximum adsorption capacity (qm) than the oth-
ers. These effects result from the methods adopted for extrapolating the isotherm model’s
linearization, where the error distribution either conforms or deflects.
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Table 3. Data obtained from linear-fitted isotherm models (units, qmax: mg g−1, KL: L mg−1, KF:
(mg g−1) (L g−1) n, bs: L g−1, B: L mg−1, A: L g−1).

Models Parameters
Temperature (K)

303 313 323 333

Langmuir Type-1
qmax 660.491 766.344 721.527 727.711
KL 0.027 0.025 0.033 0.037
R2 0.999 0.999 0.999 0.999

Langmuir Type-2
qmax 661.636 766.768 722.122 728.578
KL 0.027 0.025 0.033 0.037
R2 0.999 0.999 0.999 0.999

Langmuir Type-3
qmax 810.821 797.165 807.475 828.349
KL 0.0194 0.023 0.026 0.029
R2 0.889 0.915 0.888 0.884

Langmuir Type-4
qmax 844.915 820.192 837.234 858.515
KL 0.017 0.021 0.023 0.025
R2 0.889 0.915 0.888 0.884

Langmuir Type-5
qmax 820.772 801.373 816.299 851.26
KL 0.019 0.023 0.026 0.026
R2 0.990 0.993 0.991 0.993

Langmuir Type-6
qmax 812.614 796.02 855.012 845.473
KL 0.019 0.024 0.021 0.027
R2 0.990 0.993 0.991 0.993

Freundlich
1/n 0.666 0.642 0.623 0.612
KF 19.509 22.705 26.035 28.779
R2 0.956 0.942 0.943 0.944

Sips

qm 691.9 696.456 714.864 748.873
n 0.996 0.991 0.99 1.001
bs 0.019 0.023 0.026 0.027
R2 0.985 0.986 0.977 0.982

R-P

g 0.737 1.073 0.837 0.814
B 0.096 0.017 0.071 0.09
A 18.67 19.09 23.9 27.39
R2 0.987 0.98 0.99 0.991

Toth

qm 692.907 700.333 716.741 749.844
n 1.004 1.009 1.01 0.999

KT 0.019 0.023 0.026 0.027
R2 0.985 0.986 0.977 0.982

On the other hand, the Type-4 Langmuir model form has the highest qm, amounting to
844.9 mg g−1, with a low R2 value (the same as Type-3). From Table 2, we can see that at
333 K (Type-4), the highest qm of 858.515 mg g−1 for MB sorption was found. However, dis-
similarity in the Langmuir constant (KL) and a lower coefficient for particular temperatures
are observed due to the equations with a structurally varying error distribution.

The low R2 from the linear fitting of the Freundlich isotherm (Table 3) and scatter from
the experimental data (Figure 3) for all temperatures show the poor fitting in the present
study. Therefore, the equilibrium data obtained through MB adsorption on the AG were
fitted in the linearized form of three-parameter isotherm models, namely, R-P, Sips, and
Toth. Due to three unknown digits, the traditional linearization of this model was not
possible. Hence, trial-and-error minimization based on computer operating techniques
was applied.
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The R-P isotherm, after linear transformation, was plotted against ln
(

A Ce
qe
− 1

)
vs.

ln(Ce). Since it is a hybrid isotherm generated by combining Langmuir and Freundlich
models, each parameter, including A, B, and g, refers to an empirical condition. Here, the
exponent g signifies the nature of the adsorbent and can explain the adsorption process to
an extent. Within the boundary of 0–1, if the g value tends towards 0, one presumes that
the heterogeneous surface nature of the adsorbent is related to Freundlich-type adsorption
and vice versa. The calculation of the unknown parameters is simplified by maximizing
the coefficient R2 between the maximum adsorption data qe and the values calculated from
the linearized R-P isotherm equation. In Table 2, the R2 value for all four temperatures is
0.987–0.991, which is higher than the data obtained for the Freundlich isotherm’s linear fit-
ting. Consequently, the g values for all four temperatures are close to 1 in the R-P equation,
implying a Langmuir-type mechanism.

Similar to the R-P isotherm, the Sips and Toth isotherm models combine the Lang-
muir and Freundlich models. However, each model has distinctive characteristic features.
Typically, the Sips model predicts heterogeneous surface adsorption and circumvents the
limitation observed at a high adsorbate concentration in the Freundlich model. Thus, the
model predicts heterogeneous surface adsorption at low adsorbate concentrations, while it
assumes monolayer adsorption at higher concentrations. The model’s parameters are also
subject to pH, temperature, and concentration.

In comparison, the Toth isotherm model is suitable for identifying heterogeneous
adsorption systems in an adsorbate’s low- and high-concentration boundary conditions.
Additionally, it considers the adsorbent surface’s heterogeneity, and the exponent n char-
acterizes the heterogenicity of the adsorption system. If n is between 0 and 1, the model
follows the Langmuir equation; however, in the heterogeneous adsorption system, n de-
viates from unity (1). The data obtained from the Sips and Toth models based on linear
fitting at all four temperatures are presented in Table 3. The empirical data tend to have an
identical coefficient for every testing temperature, indicating the Toth model’s superiority
over the Sips model [6]. Table 3 shows that the R2 values of the two models are the same
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for a particular temperature. Except for 333 K, the values of n for the AG are slightly
higher than 1 in all of the studied temperatures for MB adsorption, suggesting the systems’
heterogeneity and providing support for the Freundlich model. Similar to the Sips model,
the Toth isotherm equation also implies the involvement of heterogeneous adsorption for
the consecutively lower temperatures of 303–323 K as n ≤ 1.

Meanwhile, the monolayer adsorption capacity predicted with the Sips and Toth
models follows similar trends to the Langmuir equation. Thus, the comparison of the
values of R2 and the other parameters of all six linearized Langmuir equations with those
of the Freundlich, R-P, Sips, and Toth isotherms shows different outcomes. Figure 3a–d
shows the linear regression of the predicted isotherms against the experimental equilibrium
data at 305, 313, 323, and 333 K, respectively. From Figure 3, it is evident that the linearized
isotherms do not fit well with the experimental equilibrium data. This results from the data
transformations that violate least-squares normality assumptions and indirectly change the
error structure and the error variance [66].

3.4. Nonlinear Fitting

The nonlinear method is a draft process in which a trial-and-error action is functional
under the testing conditions. With contemporary technological progress, the processing
of nonlinear regression has become effective using computer-based solving features. The
present study was carried out to perform nonlinear data fitting through Microsoft Excel’s
solver add-in with a spreadsheet. The curve fitting results for the experimental and pre-
dicted equilibrium data of all five isotherm models using nonlinear methods at consecutive
temperatures of 303–333 K are shown in Figure 4, and the parameters obtained from the
nonlinear forms are included in Table 4.
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Table 4. Data obtained from nonlinear isotherm model fitting (units, qmax: mg g−1, KL: L mg−1, KF:
(mg g−1) (L g−1) n, bs: L g−1, B: L mg−1, A: L g−1).

Models Parameters
Temperature (K)

303 313 323 333

Langmuir

qmax 849.367 831.971 855.012 889.211
KL 0.017 0.020 0.021 0.021
R2 0.981 0.982 0.975 0.982
RL 0.995 0.994 0.994 0.994

Freundlich
1/n 0.358 0.334 0.325 0.324
KF 94.514 108.839 119.043 124.809
R2 0.916 0.915 0.900 0.910

Sips

qm 832.966 821.569 844.092 795.438
n 0.996 0.991 0.990 0.655
bs 0.019 0.023 0.025 0.003
R2 0.98 0.980 0.973 0.991

R-P

g 1.44 1.359 1.418 1.347
B 7.33 × 10−4 1.44 × 10−3 1.02 × 10−3 1.66 × 10−3

A 8.66 10.066 10.343 11.508
R2 0.998 0.995 0.995 0.997

Toth

qm 697.951 704.157 721.800 760.118
n 3.019 2.660 3.210 2.583

KT 0.010 0.012 0.012 0.013
R2 0.998 0.995 0.995 0.996

Since the nonlinear forms use identical x- and y-axes for the experimental and calcu-
lated equilibria, the data fitting for the nonlinear method eliminates the nonconformity
that arisea from the iteration of linear transformation [23]. However, statistically non-
linear regression is not error-free either, as the variables of an isotherm equation do not
possess the same error structures [30,67]. The constructed fitted curves have distinctive
features due to their dissimilarity based on the model principles and empirical predictions
(Figure 4a–d). The present study showed comparable data fitting for the Langmuir and
Sips models, as they overlapped each other for almost every testing temperature, and the
value of R2 remained in the range of 0.973–0.982. A lower coefficient value was observed
for the Freundlich isotherm. In contrast, for the R-P and Toth models, with the highest
coefficients among all the models, the curves over-imposed and traversed the experimen-
tal entity. These anomalies in isotherm model fitting violate an ideal fitting relationship.
Moreover, nonlinear regression using R2 cannot represent nonlinear interactions, as the
regression coefficient R describes the intensity and direction of linear relationships between
two numerical variables [27]. Thus, the statistical error functions are more reliable for the
development and comparison of suitable nonlinear regression methods.

In a single-component isotherm system, statistical error functions evaluate the equi-
librium data fitting of the isotherm by minimizing or maximizing the errors distributed
based on the data convergences. In the present study, for all the isotherm models studied
at the tested temperatures (303–333 K), we carried out nonlinear curve fitting along with
five error functions to analyze the adsorption systems. The interpretation of the functions
and the method of data regression are presented in Supplementary Table S3.

Figure 5 compiles the trends of the experimental and derived isotherms for all four
solution temperatures, minimizing the error distribution using the error functions depicted
in Table S3. It can be seen from the figures (Figures 5–9) that the curve fitting for a
particular isotherm varies depending on the chosen error functions. This is because the
fitted curves have distinct characteristics based on the model principles and empirical
predictions. It can be noted for the Langmuir isotherm (Figure 5) that the lower variance of
this theoretical isotherm derived using the error function indicates a better fit, while the
Freundlich isotherm (Figure 6) shows poor fitting compared to the other models.
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In comparison, the data trends of the R-P and Toth isotherms (Figures 7 and 9) showed
better fitting that complies with the experimental data. However, the nonlinear regression
functions yielded different residuals, generated from diverse error mechanisms, making
it challenging to determine the so-called optimal or best set of isotherm constants [33].
To overcome this complication and enable a meaningful comparison of the error values,
a statistical normalizing process called the sum of the normalized errors (SNE) is used,
being a well-established approach among academics [26,27]. The detailed method for SNE
calculation is presented in the Supplementary Materials. The results obtained from the
error analysis and normalized error values are presented in Supplementary Tables S4–S8.
The bold numbers represent the dataset’s minimum error values and minimum SNE.

From the error analysis, we can see that the Freundlich and R-P isotherms have the
lowest SNE values for all the error functions among all the temperatures (Tables S5 and S6,
respectively). The lowest SNE value for the nonlinear regression of the Langmuir (Table S4)
and Freundlich (Table S5) isotherms is observed for SSE and HYBRID, respectively, while
for the R-P, Toth, and Sips models, both SSE and HYBRID were identical in most of the cor-
responding datasets (Tables S6–S8). Hence, it can be concluded that the SSE and HYBRID
regression functions better represent the curve fitting and residual analysis for MB adsorp-
tion on AG. However, the curve fitting accuracy can be explained by examining the model’s
principle. To speculate the goodness of fit that satisfies the theory of isotherm models based
on optimized error functions (SSE and HYBRID), the curves fitted to the experimental
observation were plotted for all the studied models, as shown in Figures 10 and 11.
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In particular, the parameter sets of the Freundlich model for all the error functions
(Table S5) are significantly high, and the fitted curves (Figures 10 and 11) do not converge
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with the experimental data for all the error functions. A much higher A value (A >> 1)
associated with a small B value (B << 1) of the R-P isotherm parameter (Table S6) sug-
gests that the isotherms tend to follow the Langmuir model more than the Freundlich
model [68,69]. Meanwhile, the error analysis of the Toth isotherm showed a slightly high
SNE value compared to Freundlich and R-P. The obtained parameters provide meaningful
information about the model’s effectiveness for the present study. A high heterogeneity
factor nT (nT > 1) for the optimal SNE functions signifies the wide distribution of binding
energy, with a sufficient availability of adsorption sites on the adsorbent surface, so that
chemisorption is the progressive action. Moreover, an nT value greater than 1 also indicates
that the curvature of the isotherm behaves more like the Freundlich type [69]. Additionally,
the calculated Toth constant, kT, for all the error functions is close to the experimental
data and meets the fitting criteria. Interestingly, the curve fitting to both error functions
shows that the R-P and Toth models overlap each other at almost every test temperature
(Figures 10 and 11). This shows that the model theories apparently show contrasting na-
tures in selecting the most appropriate isotherm model based on the analysis of the SNE
calculations. Therefore, to address this issue, combining more than one measuring tech-
nique provides information about the difference between the observed data and predicted
data with different interpretations in order to compare the accuracy of error analysis. The
use of multiple statistical processes provides a more complete picture of the model’s fit
to the data and allows one to makes more informed decisions about model choice. The
following section discusses the results of the CND analysis of the error functions.

Unlike the SNE, the CND is a measure of the variability in the outcome of a regression
model that remains unexplained. Since the coefficient of determination (R2) is a real number
between 0 and 1, 1-R2 defines K2 as having a value within 0 and 1. A value of K2 close
to 0 means a better alienation of the parameters that are well-explained by an isotherm
model and, consequently, better fitted with the particular error function. Figure 10 presents
the calculated K2 values for the studied error functions for all the isotherm models at
four different temperatures. Figure 12 shows that the R-P isotherm has the lowest K2

(0.0025–0.0048) values for the SSE and HYBRID functions at all four of the temperatures,
suggesting that this isotherm best fits the equilibrium data.
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The Freundlich isotherm shows an exponential-type curve that diverges from the experi-
mental data and thereby fails to meet the equilibrium and saturation point of the present study.
This suggests that the sorption of MB progressed by covering the monolayer surface of the
adsorbent AG. In the CND analysis, a much lower K2, excepting R-P (0.00776–0.01362), was
found for the Toth isotherm, but according to a similar trend in some cases, this overlapped
the R-P isotherm, indicating that this isotherm can also be considered for the ideal fit in the
present study. Hence, the goodness-of-fit order of the adsorption isotherm models in the
present study is as follows: R-P > Toth > Langmuir > Sips > Freundlich. According to the
present study, an important step to note before deciding on a best-fit isotherm model is
to analyze whether the experimental data are consistent with the chosen isotherm theory.
Additionally, both the theoretical basis of the model parameters and the residuals obtained
from the error functions should be appropriately compared to investigate the accuracy of a
good isotherm model.

4. Conclusions

This study aimed to statistically establish the “Goodness of fit” using adsorption
isotherm models for MB adsorption on AG. Five different isotherm models were employed
in this investigation to analyze the equilibrium adsorption data. A comprehensive set of
isotherm parameters and residuals were optimized using five distinct error functions.

The statistical optimization of the residuals, carried out using the SNE and CND,
revealed that the R-P model provided the most accurate representation of the experimental
data. Furthermore, the isotherm parameters were consistent with the magnitude of the error
analysis. According to the data analysis, the variation margin in the residuals ranged from
0.0025 to 0.0048, and the lowest SNE value was generated by the SSE and HYBRID functions
for the R-P isotherm. This suggests that the isotherm model prediction was accurate.

The results of this research indicate that the prediction of the best-fitting isotherm
model depends on the correlation between the errors and the theoretical basis of the
isotherm parameters. This conclusion was drawn from the findings of the present investi-
gation. It is important to note that applying various statistical approaches and isotherm
models can enhance our understanding of the adsorption process and increase our confi-
dence in the accuracy and reliability of model predictions.

A deeper understanding of the interaction between the adsorbate and the adsorbent
can be achieved by employing a range of statistical techniques and isotherm models. This
is crucial for the development of efficient adsorption systems. Additionally, using multiple
statistical methods and isotherm models can aid in the optimization of the operating
parameters, such as the determination of the ideal adsorbent dosage and contact time.
These factors can contribute to an increase in the effectiveness of the adsorption process,
ultimately leading to sustainable and cost-effective solutions for water treatment and
environmental remediation.
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//www.mdpi.com/article/10.3390/app13148106/s1, Figure S1: Linear forms of Langmuir isotherm
models for sorption of MB on AG at (a) 303, (b)313, (c) 323 and (d) 333 K; Table S1: Specification of
chemicals used in the study; Table S2: Comparison of maximum adsorption capacity for MB sorption
with other adsorbents [56–65]; Table S3: Description of error functions; Table S4: Error analysis of
Langmuir isotherm model at four different temperatures for MB adsorption on AG; Table S5: Error
analysis of Freundlich isotherm model at four different temperatures for MB adsorption on AG; Table
S6: Error analysis of R-P isotherm model at four different temperatures for MB adsorption on AG;
Table S7: Error analysis of Toth isotherm model at four different temperatures for MB adsorption on
AG; Table S8: Error analysis of Sips isotherm model at four different temperatures for MB adsorption
on AG.
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Abbreviations

AG Activated graphene
ARE Average relative error
AT Temkin isotherm equilibrium binding constant
Ce Adsorbate concentration at equilibrium
CND Coefficient of non-determination
EABS Sum of absolute errors
FESEM Field emission scanning electron microscopy
FTIR Fourier transform infrared spectroscopy
HYBRID Hybrid fractional error function
KF Freundlich isotherm constant
KL Langmuir affinity constant
KT Toth isotherm constant
MPSD Marquardt’s percent standard deviation
n Freundlich isotherm adsorption intensity
qe Sorption capacity at equilibrium
qm Maximum adsorption capacity
SNE Sum of normalized errors
SSE Sum of squared errors
T Temperature in Kelvin
UV-vis Ultraviolet–visible spectroscopy
XRD X-ray diffraction
nT Toth isotherm heterogeneity factor
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