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Abstract: Applying machine learning methods to geographic data provides insights into spatial
patterns in the data as well as assists in interpreting and describing environments. This paper
investigates the results of k-means clustering applied to 51 geospatial layers, selected and scaled for
a model of outdoor acoustic environments, in the continental United States. Silhouette and elbow
analyses were performed to identify an appropriate number of clusters (eight). Cluster maps are
shown and the clusters are described, using correlations between the geospatial layers and clusters to
identify distinguishing characteristics for each cluster. A subclustering analysis is presented in which
each of the original eight clusters is further divided into two clusters. Because the clustering analysis
used geospatial layers relevant to modeling outdoor acoustics, the geospatially distinct environments
corresponding to the clusters may aid in characterizing acoustically distinct environments. Therefore,
the clustering analysis can guide data collection for the problem of modeling outdoor acoustic
environments by identifying poorly sampled regions of the feature space (i.e., clusters which are not
well-represented in the training data).

Keywords: k-means; clustering; ambient noise; sound mapping; GIS

1. Introduction

An important aspect of geographical environments, particularly for land use planning,
is sound. In particular, ambient noise, or unwanted outdoor sound due to anthropogenic
activity, may negatively affect human and animal life and is therefore important for land
use planning. Ambient noise may disrupt sleep, cause hearing loss, increase the risk of
cardiovascular disease, and more [1]. For animal species that rely upon sound, competing
sounds (e.g., anthropogenic noise) can have varying levels of impact [2], and ambient
noise has been indicated as a causal factor for changes in avian behavior and community
diversity [3], marine life [4], and anurans (i.e., frogs and toads) [5]. Due to the effects
of ambient noise upon both human and animal life, understanding the geographical
characteristics of sound is important for urban development and planning, preservation of
natural areas (e.g., national parks), and public health.

However, understanding how sound is distributed across, and interacts with, the
geographical environment is complex, as abiotic and biotic components of the environment
differ in their ability to generate or conduct sound. For example, anthropogenic factors,
including urban areas, transportation features/corridors (e.g., railways, airports, etc.),
military bases, and energy development operations have all been linked to high levels
of ambient noise [6,7] and may also impose additive and potentially interactive effects
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on overall sound levels. Organisms, on the other hand, may have an ecological effect on
shaping and contributing to the acoustic landscape. Many invertebrate and vertebrate
species use extensive acoustic displays that periodically influence outdoor sound levels [8,9].
In contrast, vegetation may contribute more to overall outdoor sound levels than animals;
not by generating sound, but rather by attenuating or diffusing sound [10].

Geography, geographic data, and geographic techniques have been used in a variety
of applications to study both biotic and abiotic components of environments. These
applications include using Geographic Information Systems (GIS) to create, store, analyze,
and visualize data in a geographic context. GIS lends itself to a variety of domains and
aids in interpreting environments. Indeed, GIS has been used by urban land planners to
quantify aesthetic values of landscapes [11]. Additionally, GIS has been used in general
landscape analysis (e.g., [12]) and to model specific landscape features, such as the visual
landscapes in the arid northwest Egypt [11].

Machine learning techniques—both supervised and unsupervised—have been imple-
mented within GIS to map and model various landscape features. Examples of studies
which utilize both supervised machine learning and GIS include the use of a decision tree
to identify brown bear habitat [13] and the application of four supervised machine learning
algorithms (multiple linear regression, support vector machine, artificial neural network,
and random forest) to model maize aboveground biomass [14]. Unsupervised machine
learning methods on the other hand have been used to study hydrologic catchments in
Turkey via k-means clustering [15] and prepare mineral prospectivity maps in central Iran
using self-organizing maps and fuzzy c-means [16]. Additionally, supervised and unsuper-
vised machine learning techniques have been used in combination to study urban evolution
in Athens, Greece using fuzzy clustering and neural networks [17], classify wetlands in
Estonia using k-means clustering and support vector machines [18], and more (e.g., [19,20]).

The ability to adequately study and model ambient sound across large geographic
regions is dependent on GIS. Sound mapping is becoming so prevalent in GIS that an
open-source sound mapping toolbox has been created for outdoor sound propagation
modeling in Esri’s ArcGIS software [21]. Some studies have combined GIS and geographic
data with land use regression models to estimate traffic noise [22,23] and overall environ-
mental noise [24]. GIS and supervised machine learning models have also been used over
continental scales to predict average outdoor sound levels [25,26]. Further, soundscapes
(i.e., the acoustic environment as perceived and evaluated by humans) have been studied
using GIS in a variety of outdoor environments [27–30].

In this paper, we describe a k-means clustering analysis of 51 geospatial layers relevant
to outdoor geospatial acoustic modeling in the continental United States (CONUS) [26].
The geospatial layers include descriptors of anthropogenic activity, landscape structure and
characteristics, land use, land cover, and climate. K-means clustering was selected, in part,
because of its simplicity, efficiency, relatively low computational cost, and common use as a
clustering method [31]. Additionally, the application of k-means to our data set produces
clear, human-interpretable clusters. Maps of the clustering results as well as correlations
between the geospatial layers and clusters are used to identify geospatial characteristics
of the different clusters. In particular, we make connections between the clusters and
geospatially distinct environments.

This interpretation of the clusters aids in determining acoustically distinct environments.
Although the clusters are not tied to specific acoustic characteristics, their distinct geospatial
characteristics likely correspond to distinct acoustic environments. Areas corresponding to
the same cluster may share acoustic characteristics despite being separated by potentially
large physical distances.

We discuss how the clustering results can guide acoustic data collection for the prob-
lem of predicting average outdoor sound levels over continental scales using supervised
machine learning. We previously used the 51 geospatial features and acoustic training data
from 496 unique sites to train a supervised machine learning model to predict outdoor
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sound levels over the CONUS [26]. In this paper we identify poorly sampled clusters in the
training data from which to target future data collection efforts.

2. Materials and Methods
2.1. Geospatial Layers

A set of 51 geospatial raster layers, each with a 270 m spatial resolution, was ob-
tained from the National Park Service Natural Sounds and Night Skies and Inventory and
Monitoring Divisions database [32,33]. These layers can be classified into five categories:
topography, climate, land cover and land use, hydrology, and anthropogenic. A list of
these 51 layers is given in Table 2 of the Supplementary Material for [26], and a more
detailed description of each layer is given in Table 1 of the same Supplementary Material.
For simplicity, a list of those layers and their descriptions is copied here in Appendix A
(Table A1). Note that some variable names in that table correspond to multiple layers
due to processing the variable data over different areas or segmenting it based on a given
characteristic property (as in the case of the distance to the nearest stream).

Prior to use in clustering, data were scaled to prevent biases in clustering due to
variations in the range of values in different layers. In particular, layers that do not vary
with distance (from some acoustic source) were scaled using min–max scaling, which scales
data to be between zero and one while preserving the shape of the data distribution. For
geospatial features that rely on distance (e.g., distance to the nearest coastline or distance
to the nearest high-volume airport), an arctangent function was used to scale data to be
between zero and one. An arctangent function was applied to distance-dependent features
to emphasize changes in distance close to points of interest (e.g., the coast, airports). We
note that these 51 features were downselected from a larger set and scaled for the purpose
of modeling outdoor sound levels. For further explanation of how the 51 geospatial layers
were selected and scaled, we refer the interested reader to [34].

The raw geospatial data occupy about 39 GB of disk space and much of the computa-
tion described in this paper was performed on high-memory (128 or 256 GB RAM) nodes
on Brigham Young University’s supercomputer.

2.2. Acoustic Data

Acoustic data were collected at 496 unique geographic sites using high-quality sound
level meters. Data were collected over a minimum of two to three days, but often closer
to two weeks or more, depending on the variability of sound levels at the site, to obtain
average values of various acoustic metrics. Our previous work focused on modeling the
summer daytime A-weighted L50 over the CONUS [26] (A-weighting is a transformation
on the data to account for how the human ear perceives different frequencies, and L50 is
the median sound level). Independent of the acoustic metric is the fact that the acoustic
training data is limited since we have data at fewer than 500 geographic locations and want
to make accurate predictions over the CONUS (See the Supplementary Material for [26] for
further information about the acoustic data).

Ideally, we would have a much larger training data set. However, acoustic training
data are expensive to collect because of travel costs and time, equipment costs, and the
duration of time required to get sufficient data. Therefore, it is necessary to consider which
locations are best for future data collection.

2.3. K-Means Clustering

K-means clustering is an unsupervised machine learning algorithm which clusters
data into k clusters. More specifically, the algorithm first randomly selects k samples
from the data set to initialize the k cluster centroids. Each data point is then assigned to
the cluster corresponding to the closest centroid as measured by the Euclidean distance.
Centroid locations are then updated to correspond to the mean of all data points in the
corresponding cluster. The process of assigning data points to the nearest cluster centroid
and adjusting centroid locations is repeated until cluster centroids are stable. Hence, k-
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means clustering attempts to identify natural clusters in the data [35]. We used k-means
clustering as implemented in the Python library scikit-learn [36].

We note that more advanced clustering methods exist, but k-means is a reasonable
choice for our dataset. Since data are already custom scaled for modeling outdoor acoustic
environments via machine learning, the Euclidean distance is likely a decent indicator of
similarity between points in feature space. More sophisticated clustering methods may use
different distance measures or rescale data, undermining the effect of scaling the data to
describe outdoor acoustic environments.

One challenge of k-means clustering is determining the appropriate number of k
clusters such that data are classified meaningfully and descriptively. Two common methods
for determining the appropriate number of clusters are silhouette analysis and elbow
analysis. Silhouette analysis is performed by calculating the average silhouette score for
k-means clustering models trained using various values of k and selecting the model with
the highest score. The silhouette score is a measure of how similar points within the same
cluster are and how dissimilar points from different clusters are [37]. The silhouette score
ranges from –1 to 1, where 1 represents perfectly clustered data and –1 represents poorly
clustered data.

Similar to the silhouette analysis, elbow analysis requires training multiple k-means
clustering models for different values of k. Elbow analysis uses the inertia (i.e., the sum
of squares distance between the data and its nearest cluster) to identify an appropriate
number of clusters. The inertia is a monotonic decreasing function, and the optimal number
of clusters is the point where adding another cluster to the model begins to only marginally
reduce the inertia [38]. This happens at the “elbow” in a plot of the inertia. We used
silhouette and elbow analyses to identify the appropriate number of k clusters for a set of
51 geospatial layers over the CONUS.

2.4. Subclustering

To further examine the geospatial data and their clusters, we performed a clustering
analysis on each of the initial k clusters. We note that the subclusters identified by this
analysis would generally not be identified in the initial clustering analysis, even allowing
for different numbers of initial k clusters, because the data considered during clustering are
different. During the initial clustering analysis, data from all of the CONUS are used, but
during this subclustering analysis, data are separated by their initial clustering assignment.
Hence, subclustering identifies natural groupings or clusters within each of the initial
clusters, which would not have been apparent in the initial clustering.

Similar to the initial clustering analysis, we had to identify an appropriate number
of subclusters for each of the initial clusters. We used silhouette analysis and found that
for all clusters, the optimal number of subclusters was determined to be two. Note that
the silhouette score cannot be calculated for a single cluster, so silhouette analysis cannot
indicate whether a single cluster (i.e., no subclustering) should be preferred.

Therefore, to determine if subclustering into two subclusters is beneficial for any
individual cluster, the estimated probability densities of the distance (as measured by
the Euclidean norm) between instances within each subcluster and the corresponding
initial cluster centroid were plotted. These plots were overlaid with similar plots using the
identified subcluster centroids (rather than the initial cluster centroid). This was performed
for each cluster to compare the results of subclustering into two subclusters and performing
no subclustering. These distributions can be seen in Appendix B, Figures A1–A8. For the
case in which adding a second centroid (i.e., subclustering into two clusters) significantly
moved both distributions to the left, it is more likely that subclustering is beneficial for
further describing the data. Marginal shifts indicate that subclustering made only minor
improvements in accurately clustering the data at the cost of simplicity in the model.

In this paper, we present results of performing subclustering for all clusters into two
subclusters, independent of the changes in the distributions of the distance to centroids
shown in Figures A1–A8. Depending on the desired application of clustering results, sub-



Appl. Sci. 2023, 13, 8123 5 of 19

clustering may prove useful even when the results of subclustering do not immediately
indicate improved clustering. Although we do not discuss which cases of subcluster-
ing appear most beneficial, the interested reader is referred to Appendix B for further
subclustering results.

3. Results and Discussion
3.1. Determining the Number of Clusters

The results of performing silhouette and elbow analyses on the 51 geospatial layers are
shown on the left and right of Figure 1, respectively. Recall that a higher average silhouette
score is indicative of better clustering, so the silhouette analysis identifies eight clusters as
the optimal number. The results of the elbow analysis are more challenging to interpret
because identifying the “elbow” in the plot (i.e., the location at which adding another
cluster begins to only marginally reduce the inertia) is somewhat subjective. However,
the “elbow” appears to be around seven or nine clusters. Given the subjective nature
of determining the location of the “elbow,” we gave more weight to the results of the
silhouette analysis. Therefore, we used eight as the optimal number of clusters since both
silhouette and elbow analyses indicate this is a reasonable choice. We note that more
advanced methods of determining the number of clusters exist [39–41] and may be worth
exploring in future work.
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Figure 1. Silhouette (left) and elbow (right) analyses showing the average silhouette score and
average inertia, respectively, as the number of clusters is varied.

3.2. Eight-Cluster Model

Letting k equal eight, k-means clustering was applied to the 51 geospatial layers for all
of the CONUS using a 270-m spatial resolution. Each cluster was assigned a color and a
map of the resulting clusters is shown in Figure 2.

To identify geospatial characteristics of the eight clusters, we calculated the correlation
between each cluster and the geospatial layers. Table 1 shows the top three distinct/unique
correlated geospatial variables as ranked by the magnitude of the Pearson correlation coef-
ficient. Correlation coefficients for each cluster were calculated using the scaled geospatial
layers and Boolean values to denote whether a site resided within the given cluster. Note
that for geospatial variables corresponding to multiple layers due to differing areas of
analysis (e.g., barren land cover at 200 m and 5 km areas of analysis), only the largest
magnitude correlation among all layers is reported.
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Figure 2. Continental United States (CONUS) cluster assignments after clustering 51 geospatial
features with a 270-m spatial resolution.

Table 1. Top three distinct/unique correlated geospatial variables ranked by magnitude for
each cluster.

Cluster Number Rank 1 Rank 2 Rank 3

1 Water (0.91) DistCoast (−0.44) DistRoadsAll (0.35)
2 Evergreen (0.78) Slope (0.46) TMinSummer (−0.46)
3 TdewAvgWinter (0.50) Wetlands (0.49) TMinWinter (0.42)
4 Herbaceous (0.88) PPTWinter (−0.28) DistAirpHigh (0.28)
5 Deciduous (0.84) MixedForest (0.29) PPTSummer (0.27)
6 Cultivated (0.89) Shrubland (−0.32) DistRailroads (−0.29)
7 Developed (0.76) RddMajor (0.70) RddAll (0.67)
8 Shrubland (0.90) PPTSummer (−0.49) TdewAvgSummer (−0.44)

From Figure 2 and Table 1, we see that Cluster 1 is strongly correlated with water and
is therefore prevalent along the coasts and larger bodies of water e.g., the Great Salt Lake.
Cluster 2 represents evergreen forests and areas with higher degrees of slope, such as the
Sierra Nevada. Cluster 3 is impacted by winter dew point temperatures and wetlands—thus
representing relatively humid areas such as those in the Gulf and Atlantic coastal plains.
Herbaceous vegetation and low amounts of winter precipitation are represented in Cluster
4 throughout the northern and southern plains. Cluster 5 correlates with both deciduous
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and mixed forest environments while Cluster 6, which includes central California and
much of the Corn Belt, is most strongly correlated with cultivated (crop) land. Cluster 7
is heavily influenced by developed or urban areas. Finally, Cluster 8 is characteristic of
shrubland with low summer precipitation and low summer dew point average, such as the
Great Basin Desert.

Seven of the eight clusters’ most impactful variables are land cover-related and five
of those seven are strongly correlated with vegetation. This indicates that land cover
(especially vegetation) may be the most important factor when differentiating between the
clusters. However, other variables, such as dew point temperature and precipitation are
also important in determining cluster assignments (Table 1). In particular, the only cluster
with a non-land cover variable ranked as the most correlated variable was Cluster 3 (winter
dew point average temperature ranked only slightly higher than wetlands land cover).

Viewing zoomed-in maps can allow for further insights and understanding of the
clustering model. Figure 3 shows a zoomed-in cluster map of the Great Lakes region and
Northeast. The upper Midwest and northeastern United States are dominated by Clusters
5, 6, and 7. Cluster 5 is heavily impacted by deciduous forest and Cluster 6 is mostly
influenced by cultivated (crop) land. The large urban/suburban areas of Chicago, Detroit,
Minneapolis, Boston, New York City, etc. are in Cluster 7, which is most strongly affected
by developed land cover. Additionally, Cluster 1 dominates coastlines both to the ocean
and along the Great Lakes, as well as lakes.
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geospatial features with a 270-m spatial resolution.

Figure 4 (left) shows a zoomed-in cluster map of Utah. The west/southwest region of
the United States (including Utah) is primarily represented by Clusters 8 and 2, which are
most strongly correlated with shrubland and evergreen land cover, respectively. Indeed,
we see many mountainous forested regions of Utah (e.g., High Uinta Wilderness) grouped
into Cluster 2 and flatter desert-like areas (e.g., the Sevier Desert) grouped into Cluster
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8. Interestingly, the Great Salt Lake Desert in northwestern Utah is assigned to Cluster
2, despite not containing evergreen trees or having significant slope. However, the Great
Salt Lake Desert is a unique region and likely has the most similarities with the climate
typical of Cluster 2. In Utah, both the Great Salt Lake and Utah Lake are assigned to Cluster
1, while the most populated cities (e.g., Salt Lake City, Ogden, and Provo) are assigned
to Cluster 7. All eight clusters are present in Utah, possibly indicating a wider variety of
environments than in many other states.
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Figure 4. Cluster assignments in Utah (left) and along the eastern/southeastern coastal plains (right)
as a result of clustering 51 geospatial features with a 270-m spatial resolution.

Figure 4 (right) shows a zoomed-in cluster map of the eastern/southeastern coastal
plains, much of which are represented by Cluster 3, which is positively correlated with
average winter dew point temperatures and wetlands. Deciduous forests are evident in
Cluster 5 throughout much of the Piedmont and Appalachian Mountains. The coastline,
bays, rivers, and lakes are grouped into Cluster 1, while urban/suburban areas are well-
mapped in Cluster 7. In particular, the developed northern Virginia–Washington DC–
Baltimore–Philadelphia corridor is striking.

As apparent with Clusters 6 and 7, anthropogenic features (e.g., cultivation and urban
land development) play a role in landscape-level clusters. However, the way in which
anthropogenic features influence clustering varies across spatial scales. For example, urban
and suburban areas (Cluster 7) demonstrate a concentrated effect on the clusters, whereas
cultivated areas and railroads (Cluster 6) have a much broader effect on clusters that occur
over large expanses (e.g., much of the Midwest). Humans have an influential role on
ecosystems, and it is not surprising that anthropogenic features may impose additive
effects on the clusters across landscapes.
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3.3. Subclustering

Each of the initial eight clusters was further divided into two subclusters. We refer
to the first and second subcluster for each cluster by the corresponding cluster number
and a letter, “a” for the first subcluster and “b” for the second subcluster. For example,
Subclusters 8a and 8b are the subclusters corresponding to Cluster 8 (colored brown in
maps above). For simplicity, we will refer to the model which subclusters each of the
original eight clusters into two subclusters as the 16-subcluster model. A CONUS map
of the subclusters is given in Figure 5 (see Figure A9 for individual CONUS subcluster
maps). The first color for each subcluster, corresponding to all “a” subclusters, is the same
as the initial cluster color. The second color for each subcluster, corresponding to all “b”
subclusters, is a lighter shade of each initial cluster color.
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two subclusters.

The 8-cluster and 16-subcluster models are overall similar in identifying influential
environmental factors underlying the model cluster assignments (see Tables 1 and 2).
Rankings in Table 2 were calculated in a similar manner to those in Table 1. Some of the
largest observable differences between the 8-cluster and 16-subcluster models are the further
distinction of Clusters 3, 7, and 8. In the 16-subcluster model, predominant wetland areas
within Cluster 3 are more clearly separated from the rest of the coastal plains. Subclustering
also helps differentiate between two densities of urban activity (Subclusters 7a and 7b).
In the 8-cluster model, the deserts of the western United States are represented well by
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Cluster 8. In the 16-subcluster model however, Cluster 8 subclusters distinguish between
the cold (Subcluster 8b) and hot (Subcluster 8a) deserts of the western United States.

Table 2. Top three distinct/unique correlated geospatial variables ranked by magnitude for
each subcluster.

Subcluster Number Rank 1 Rank 2 Rank 3

1a Water (0.70) DistCoast (−0.58) DistRoadsAll (0.34)
1b Water (0.60) DistRoadsAll (0.14) TMaxWinter (−0.08)
2a Evergreen (0.78) Slope (0.38) TMinSummer (−0.34)
2b Elevation (0.31) Evergreen (0.30) TMinSummer (−0.29)
3a TdewAvgWinter (0.43) TMaxWinter (0.37) TMinWinter (0.37)
3b Wetlands (0.79) PPTSummer (0.27) TdewAvgWinter (0.23)
4a Herbaceous (0.57) DistMilitary (−0.18) TMaxSummer (0.15)
4b Herbaceous (0.63) DistAirpHigh (0.31) TMinWinter (−0.27)
5a Deciduous (0.78) PPTSummer (0.25) FlightFreq_25km (0.25)
5b MixedForest (0.39) Deciduous (0.29) TMaxWinter (−0.27)
6a Cultivated (0.65) DistAirpHeli (−0.28) Elevation (−0.27)
6b Cultivated (0.53) TMinWinter (−0.31) TMaxWinter (−0.27)
7a Developed (0.44) RddAll (0.31) RddMajor (0.30)
7b RddMajor (0.74) Developed (0.74) RddAll (0.67)
8a Shrubland (0.59) TMaxSummer (0.41) TMaxWinter (0.36)
8b Shrubland (0.62) TdewAvgSummer (−0.48) Elevation (0.45)

3.4. General Applications

The 51 geospatial layers used for the above clustering analysis have previously been
used to predict sound levels across the CONUS and were selected because of their potential
relationship with outdoor sound levels [26]. These layers are therefore potentially relevant
to geospatial acoustic modeling and, more broadly, characterizing acoustic environments.
The k-means clustering analysis above attempted to identify geospatially distinct clusters
with unique characteristics from the 51 layers. Because these layers may be useful in
characterizing acoustic environments, it is not unreasonable to suppose that the clusters
may also correspond to acoustically distinct environments. In general, the clusters correlate
most strongly with the type of land cover, and different types of land cover likely correspond
to different acoustic sources and propagation effects (i.e., distinct acoustic environments).

Characterizing distinct acoustic environments has potential applications in land use
planning, both in anthropogenic and natural environments. Of particular interest are
acoustic environments corresponding to large amounts of anthropogenic noise, since
ambient noise often results in much higher sound pressure levels and can have harmful
effects on human health [42] and wildlife [2]. Identifying acoustic environments with
high/low amounts of anthropogenic noise is valuable in urban planning, public health,
and wildlife policy and management (including identifying suitable wildlife corridors).
More broadly, characterizing distinct acoustic environments is important to understanding
and classifying different geographic locations, as well as finding commonalities between
regions independent of physical distance.

3.5. Limitations of General Applications

The 51 geospatial layers were selected and scaled with the goal of distinguishing
different acoustic environments [26]. However, it is likely that there are acoustic sources
and propagation effects which are not well-represented in the geospatial data. Additionally,
it is possible that some acoustic effects are not well-represented in clusters due to trends in
a larger number of geospatial layers, which dominate clustering assignments. We also note
that the spatial resolution (270 m) makes cluster maps ineffective at investigating local (i.e.,
over small spatial regions; e.g., <1 km) cluster assignments or patterns.
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3.6. Application to Outdoor Sound Level Modeling

Because the clusters may represent different acoustic environments, they can help
identify which locations should be targeted for future acoustic data collection. Figure 6
shows the distribution of clusters in the training data (a) and the CONUS (b). We see that
these distributions are quite different, with Cluster 7 (especially Subcluster 7a) being the
most overrepresented and Cluster 6 being the most underrepresented.
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Recall that Cluster 7 is characterized by developed land cover and high road density
and is therefore likely one of the most complex acoustic environments. Additionally,
ambient noise is likely large within Cluster 7, making accurate predictions of sound levels
within this cluster of greater importance for public health. Therefore, it is reasonable to
sample this cluster more heavily than many of the others for human-focused applications.

Cluster 6, on the other hand, which is generally characterized by cultivated (crop)
land, is the most common cluster in the CONUS and the least common cluster (after
combining data from both subclusters) in the training data. This indicates that we should
target future data collection efforts in Cluster 6 first to improve overall model performance
in the CONUS.

4. Conclusions

We applied k-means clustering to a set of 51 geospatial layers, selected because of their
relevance to geospatial acoustic modeling in the continental United States, and custom-
scaled for such models [26]. The resulting 8-cluster model identified eight geospatially
distinct regions in the continental United States, which differ by land cover, vegetation,
anthropogenic activity, climate, etc. Land cover and largescale patterns of vegetation are
influential in the clustering, with seven of the eight clusters most strongly correlated with a
distinct type of land cover, five of which are vegetation communities. Importantly, each
cluster corresponds to a different type of land cover and/or climate.

Because the 51 geospatial layers used in clustering are relevant to geospatial acoustic
modeling, the geospatially distinct environments corresponding to each cluster may aid
in determining acoustically distinct environments. Indeed, it is reasonable to suppose
that differences in land cover, climate, anthropogenic activity, etc. likely result in different
acoustic sources and propagation effects (i.e., different acoustic environments). Character-
izing acoustic environments has potential applications in land use planning (e.g., urban
planning and wildlife policy and management). More broadly, characterization of acoustic
environments is an important aspect of describing and classifying geospatial environments
and landscapes. These results can be applied to continental-scale modeling of outdoor
acoustic environments by identifying underrepresented clusters in the training data set for
targeted data collection.
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K-means clustering was implemented in this study, in part, because of its simplicity,
interpretability, and low computational costs. These characteristics are all desirable in
data analysis, and k-means is available in multiple coding, software, and platform settings.
Further, k-means is one of the most used clustering algorithms in data analysis [31] and
produces human-interpretable clusters on our data set, which can help characterize acoustic
environments and direct data collection efforts for continental-scale models of outdoor
sound levels. There may be value in exploring additional clustering algorithms, such as
DBSCAN, Gaussian mixture models, and mean-shift clustering, or more advanced methods
of determining the number of clusters [39–41]. However, none of these are computationally
trivial given the size of the dataset, and the results of k-means clustering (and subclustering)
provide sufficient information to guide current acoustic data collection methods. Therefore,
future research will focus on applying these clustering results for targeted data collection
for improving continental-scale models of outdoor sound levels.
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Appendix A

Table A1. CONUS geospatial layers used in clustering, their area of analysis, description and units.

Variable Area of Analysis Description Units

Topography
Elevation
Slope

Point
Point

Digital elevation, height above sea level
Rate of change in elevation

m
degrees

Climate
PPTSummer Point 10-year average summer precipitation mm
PPTWinter Point 10-year average winter precipitation mm
TMaxSummer Point 10-year average summer maximum temperature ◦C
TmaxWinter Point 10-year average winter maximum temperature ◦C
TminSummer Point 10-year average summer minimum temperature ◦C
TminWinter Point 10-year average winter minimum temperature ◦C
TdewAvgSummer Point 10-year average summer minimum dew point ◦C
TdewAvgWinter Point 10-year average winter maximum dew point ◦C

Land Cover
Barren 200 m, 5 km Proportion of barren land cover %
Cultivated 200 m, 5 km Proportion of cultivated land cover %
Deciduous 200 m, 5 km Proportion of deciduous forest land cover %
Developed 200 m, 5 km Proportion of developed land cover %
Evergreen 200 m, 5 km Proportion of evergreen forest land cover %
Herbaceous 200 m, 5 km Proportion of herbaceous land cover %
Mixed Forest 200 m, 5 km Proportion of mixed forest land cover %
Shrubland 200 m, 5 km Proportion of shrubland land cover %
Water 200 m, 5 km Proportion of water (only) land cover %
Wetlands 200 m, 5 km Proportion of wetlands land cover %

Hydrology
DistCoast Point Distance to nearest coastline m
DistStreamO Point Distance to nearest stream with Strahler order greater than 1, 3, or 4 m

https://irma.nps.gov/DataStore/Reference/Profile/2217356
https://irma.nps.gov/DataStore/Reference/Profile/2217356
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Table A1. Cont.

Variable Area of Analysis Description Units

Anthropogenic
DistAirpHeli Point Distance to nearest heliport m
DistAirpHigh Point Distance to nearest high-volume airport m
DistAirpLow Point Distance to nearest low-volume airport m
DistAirpMod Point Distance to nearest moderate-volume airport m
DistAirpMoto Point Distance to nearest airport (any type) m
DistMilitary Point Distance to nearest military flight path m
DistRailroads Point Distance to nearest rail line m
DistRoadsAll Point Distance to nearest road (all roads) m
DistRoadsMaj Point Distance to nearest road (major roads) m
FlightFreq 25 km Total weekly flight observations count
MilitarySum 40 km Sum of designated military flight paths count
PopDensity Point 2010 Census population density data persons/km2

RddAll Point, 5 km Road density, sum of road lengths (major roads only) divided by area of interest km/km2

RddMajor Point, 5 km Road density, sum of road lengths (major roads only) divided by area of interest km/km2

VIIRS 270 m Mean upward radiance at night nW/cm2/sr
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4. Rako-Gospić, N.; Picciulin, M. Underwater noise: Sources and effects on marine life. In World Seas: An Environmental Evaluation,

2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 3, pp. 367–389. [CrossRef]
5. Sun, J.W.; Narins, P.M. Anthropogenic sounds differentially affect amphibian call rate. Biol. Conserv. 2005, 121, 419–427. [CrossRef]
6. Buxton, R.T.; McKenna, M.F.; Mennitt, D.; Brown, E.; Fristrup, K.; Crooks, K.R.; Angeloni, L.M.; Wittemyer, G. Anthropogenic

noise in US national parks–sources and spatial extent. Front. Ecol. Environ. 2019, 17, 559–564. [CrossRef]
7. Jones, N.F.; Pejchar, L.; Kiesecker, J.M. The Energy Footprint: How Oil, Natural Gas, and Wind Energy Affect Land for Biodiversity

and the Flow of Ecosystem Services. BioScience 2015, 65, 290–301. [CrossRef]
8. Sueur, J. Cicada acoustic communication: Potential sound partitioning in a multispecies community from Mexico (Hemiptera:

Cicadomorpha: Cicadidae). Biol. J. Linn. Soc. 2002, 75, 379–394. [CrossRef]
9. Berg, K.S.; Brumfield, R.T.; Apanius, V. Phylogenetic and ecological determinants of the neotropical dawn chorus. Proc. R. Soc.

Ser. B Biol. Sci. 2006, 273, 999–1005. [CrossRef]
10. Aylor, D. Noise reduction by vegetation and ground. J. Acoust. Soc. Am. 1972, 51, 197–205. [CrossRef]
11. Ayad, Y.M. Remote Sensing and GIS in modeling visual landscape change: A case study of the northwestern arid coast of Egypt.

Landscape Urban Plann. 2005, 73, 307–325. [CrossRef]
12. Statuto, D.; Cillis, G.; Picuno, P. GIS-based Analysis of Temporal Evolution of Rural Landscape: A Case Study in Southern Italy.

Nat. Resour. Res. 2019, 28, S61–S75. [CrossRef]
13. Kobler, A.; Adamic, M. Identifying brown bear habitat by a combined GIS and machine learning method. Ecol. Modell. 2000, 135,

291–300. [CrossRef]
14. Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine

learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [CrossRef] [PubMed]
15. Aytaç, E. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means

clustering, a demonstration on Western Black Sea Region of Turkey. Int. Soil Water Conserv. Res. 2020, 8, 321–331. [CrossRef]
16. Abedi, M.; Norouzi, G.H.; Torabi, S.A. Clustering of mineral prospectivity area as an unsupervised classification approach to

explore copper deposit. Arabian J. Geosci. 2013, 6, 3601–3613. [CrossRef]
17. Grekousis, G.; Manetos, P.; Photis, Y.N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the

Athens Metropolitan area. Cities 2013, 20, 193–203. [CrossRef]
18. Ahmed, K.R.; Akter, S.; Marandi, A.; Schüth, C. A simple and robust wetland classification approach by using optical indices,

unsupervised and supervised machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2021, 23, 100569. [CrossRef]
19. Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on remote sensing

images and GIS: Comparisons of supervised and unsupervised machine learning models. Remote Sens. 2020, 12, 502. [CrossRef]
20. Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs.

Appl. Geogr. 2011, 31, 533–544. [CrossRef]
21. Keyel, A.C.; Reed, S.E.; McKenna, M.F.; Wittemyer, G. Modeling anthropogenic noise propagation using the Sound Mapping

Tools ArcGIS toolbox. Environ. Model. Softw. 2017, 97, 56–60. [CrossRef]
22. Aguilera, I.; Foraster, M.; Basagaña, X.; Corradi, E.; Deltell, A.; Morelli, X.; Phuleria, H.C.; Ragettli, M.S.; Rivera, M.; Thomasson,

A.; et al. Application of land use regression modelling to assess the spatial distribution of road traffic noise in three European
cities. J. Exposure Sci. Environ. Epidemiol. 2015, 25, 97–105. [CrossRef]

23. Chang, T.Y.; Liang, C.H.; Wu, C.F.; Chang, L.T. Application of land-use regression models to estimate sound pressure levels and
frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131, 104959. [CrossRef]

24. Xie, D.; Liu, Y.; Chen, J. Mapping Urban Environmental Noise: A Land Use Regression Method. Environ. Sci. Technol. 2011, 45,
7358–7364. [CrossRef]

25. Mennitt, D.J.; Fristrup, K.M. Influence factors and spatiotemporal patterns of environmental sound levels in the contiguous
United States. Noise Control Eng. J. 2016, 64, 342–353. [CrossRef]

26. Pedersen, K.; Transtrum, M.K.; Gee, K.L.; Lympany, S.V.; James, M.M.; Salton, A.R. Validating two geospatial models of
continental-scale environmental sound levels. JASA Express Lett. 2021, 1, 122401. [CrossRef] [PubMed]

27. Eve, S. The embodied GIS. Using Mixed Reality to explore multi-sensory archaeological landscapes. Internet Archaeol. 2017, 44.
[CrossRef]

28. Primeau, K.E.; Witt, D.E. Soundscapes in the past: Investigating sound at the landscape level. J. Archaeol. Sci. Rep. 2018, 19,
875–885. [CrossRef]

29. Hong, J.Y.; Jeon, J.Y. Soundscape mapping in urban contexts using GIS techniques. Inter-Noise 2014.
30. Youssoufi, S.; Houot, H.; Viudel, G.; Pujol, S.; Mauny, F.; Foltete, J.-C. Combining visual and noise characteristics of a neighborhood

environment to model residential satisfactions: An application of GIS-based metrics. Landsc. Urban Plan. 2020, 204, 103932.
[CrossRef]

https://doi.org/10.1121/AT.2019.15.3.38
https://doi.org/10.1111/j.1461-0248.2011.01664.x
https://www.ncbi.nlm.nih.gov/pubmed/21806743
https://doi.org/10.1016/j.cub.2009.06.052
https://www.ncbi.nlm.nih.gov/pubmed/19631542
https://doi.org/10.1016/B978-0-12-805052-1.00023-1
https://doi.org/10.1016/j.biocon.2004.05.017
https://doi.org/10.1002/fee.2112
https://doi.org/10.1093/biosci/biu224
https://doi.org/10.1111/j.1095-8312.2002.tb02079.x
https://doi.org/10.1098/rspb.2005.3410
https://doi.org/10.1121/1.1912830
https://doi.org/10.1016/j.landurbplan.2004.08.002
https://doi.org/10.1007/s11053-018-9402-7
https://doi.org/10.1016/S0304-3800(00)00384-7
https://doi.org/10.1186/s13007-019-0394-z
https://www.ncbi.nlm.nih.gov/pubmed/30740136
https://doi.org/10.1016/j.iswcr.2020.05.002
https://doi.org/10.1007/s12517-012-0615-5
https://doi.org/10.1016/j.cities.2012.03.006
https://doi.org/10.1016/j.rsase.2021.100569
https://doi.org/10.3390/rs12030502
https://doi.org/10.1016/j.apgeog.2010.11.006
https://doi.org/10.1016/j.envsoft.2017.07.008
https://doi.org/10.1038/jes.2014.61
https://doi.org/10.1016/j.envint.2019.104959
https://doi.org/10.1021/es200785x
https://doi.org/10.3397/1/376384
https://doi.org/10.1121/10.0007368
https://www.ncbi.nlm.nih.gov/pubmed/36154374
https://doi.org/10.11141/ia.44.3
https://doi.org/10.1016/j.jasrep.2017.05.044
https://doi.org/10.1016/j.landurbplan.2020.103932


Appl. Sci. 2023, 13, 8123 19 of 19

31. Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
32. DataStore—Geospatial Sound Modeling. Available online: https://irma.nps.gov/DataStore/Reference/Profile/2217356 (ac-

cessed on 3 June 2020).
33. Nelson, L.; Kinseth, M.; Flowe, T. Explanatory Variable Generation for Geospatial Sound Modeling–Standard Operating Procedure.

Natural Resource Report NPS/NRSS/NRR–2015/936. National Park Service, Fort Collins, Colorado. 2015. Available online:
https://irma.nps.gov/App/Reference/Profile/2221202 (accessed on 3 June 2020).

34. Pedersen, K.; Transtrum, M.K.; Gee, K.L.; Lympany, S.V.; James, M.J.; Salton, A.R. Feature Selection for a Continental-Scale
Geospatial Model of Environmental Sound Levels. In Review.

35. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef] [PubMed]
36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
37. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
38. Bholowalia, P.; Kumar, A. EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J. Comput.

Appl. 2014, 105, 17–24.
39. Sun, J.; Li, Z.; Zou, F.; Yang, Y. Adaptive Determining for Optimal Cluster Number of K-Means Clustering Algorithm. In

Proceedings of the 2012 International Conference on Information Technology and Software Engineering: Information Technology
& Computing Intelligence, Beijing, China, 8–10 December 2012; pp. 551–560. [CrossRef]

40. Huan, D.; Nguyen, D.T. An adaptive method to determine the number of clusters in clustering process. In Proceedings of the 2014
International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 3–5 June 2014; pp. 1–6.
[CrossRef]

41. Patil, C.; Baidari, I. Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth. Data Sci. Eng. 2019, 4, 132–140.
[CrossRef]

42. Moudon, A.V. Real Noise from the Urban Environment: How Ambient Community Noise Affects Health and What Can Be Done
About It. Am. J. Prev. Med. 2009, 37, 167–171. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2988796
https://irma.nps.gov/DataStore/Reference/Profile/2217356
https://irma.nps.gov/App/Reference/Profile/2221202
https://doi.org/10.1109/TNN.2005.845141
https://www.ncbi.nlm.nih.gov/pubmed/15940994
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/978-3-642-34522-7_59
https://doi.org/10.1109/ICCOINS.2014.6868373
https://doi.org/10.1007/s41019-019-0091-y
https://doi.org/10.1016/j.amepre.2009.03.019

	Introduction 
	Materials and Methods 
	Geospatial Layers 
	Acoustic Data 
	K-Means Clustering 
	Subclustering 

	Results and Discussion 
	Determining the Number of Clusters 
	Eight-Cluster Model 
	Subclustering 
	General Applications 
	Limitations of General Applications 
	Application to Outdoor Sound Level Modeling 

	Conclusions 
	Appendix A
	Appendix B
	References

