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Abstract: In today’s network intrusion detection systems (NIDS), certain types of network attack
packets are sparse compared to regular network packets, making them challenging to collect, and
resulting in significant data imbalances in public NIDS datasets. With respect to attack types with
rare data, it is difficult to classify them, even by using various algorithms such as machine learning
and deep learning. To address this issue, this study proposes a data augmentation technique based
on the WGAN-GP model to enhance the recognition accuracy of sparse attacks in network intrusion
detection. The enhanced performance of the WGAN-GP model on sparse attack classes is validated by
evaluating three sparse data generation methods, namely Gaussian noise, WGAN-GP, and SMOTE,
using the NSL-KDD dataset. Additionally, machine learning algorithms, including KNN, SVM,
random forest, and XGBoost, as well as neural network models such as multilayer perceptual neural
networks (MLP) and convolutional neural networks (CNN), are applied to classify the enhanced
NSL-KDD dataset. Experimental results revealed that the WGAN-GP generation model is the
most effective for detecting sparse data probes. Furthermore, a two-stage fine-tuning algorithm
based on the WGAN-GP model is developed, fine-tuning the classification algorithms and model
parameters to optimize the recognition accuracy of the sparse data probes. The final experimental
results demonstrate that the MLP classifier significantly increases the accuracy rate from 74% to
80% after fine tuning, surpassing all other classifiers. The proposed method exhibits a 10%, 7%, and
13% improvement over untuned Gaussian noise enhancement, untuned SMOTE enhancement, and
no enhancement.

Keywords: network intrusion detection; imbalanced data; machine learning; convolutional neural
networks; generative adversarial networks

1. Introduction

Because of the rapid development of wireless technology and semiconductor manu-
facturing, the application of the Internet of Things (IoT) and mobile networks is becoming
increasingly widespread. The application of the IoT is not only limited to computer and
communication applications, but has been extended to e-commerce, industrial manufac-
turing, and other services. Because of the widespread application of the IoT and mobile
networks to all walks of life, cyber-attacks are becoming increasingly frequent, and the
harm to the government and enterprises is now more severe than ever. Therefore, cyber
security is becoming an important issue that cannot be ignored.

Network intrusion detection systems (NIDS) are defense systems for cyber security.
Traditional NIDSs can be divided into two categories: signature-based and anomaly-based.
The detection principle of the signature-based NIDS is to compare the traffic data to be
detected with the attack signature database in the system. Therefore, the attack signature
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database needs to be maintained and updated regularly so that the system can support
effective detection. The anomaly-based NIDS system mainly uses statistical analysis to
detect and identify anomalous traffic data such as an attack. Irrespective of the method
adopted, both detection approaches can no longer adapt to ever-changing cyber-attacks.
The use of artificial intelligence to improve NIDSs has been a significant trend in recent
years. However, many of the NIDS datasets currently used by scholars suffer from severe
data imbalances. It is challenging to identify these types of sparse attack data using
traditional machine learning and deep learning algorithms. While certain types of attacks
are rare, we believe that by improving the accuracy of identifying these attacks with
sparse data, we can prevent more severe attacks in the future. This study mainly used
the WGAN-GP generation model to augment the sparse data in the NSL-KDD dataset to
improve the identification accuracy of sparse attacks in network intrusion detection. To
evaluate the effectiveness of WGAN-GP data enhancement for attacks with sparse data,
this study focused on the performance analysis of three data enhancement methods to
increase the percentage distribution of sparse attack classes through data augmentation,
thereby improving the recognition accuracy of sparse data classes. We then analyzed the
sparse class recognition accuracy to find the best data generation model. Based on this
generation model, a two-stage fine-tuning algorithm was further designed to fine-tune
the parameters of the best data-enhanced model and classification algorithms, thereby
optimizing the recognition accuracy of the sparse attack data.

This paper is structured as follows. Section 1 presents the background and motivation
of the research. Section 2 introduces related research in the field of AI-based network
intrusion detection, research on data imbalance problems, and research on GAN-based
data enhancement. Section 3 concerns data enhancement methods, including Gaussian
noise, WGAN-GP, and the synthetic minority oversampling technique (SMOTE). Section 4
is the data enhancement experimental methodology, mainly introducing the two-stage
fine-tuning algorithm, the data enhancement for rare data in the NSL-KDD dataset, and the
classification algorithms for the enhanced NSL-KDD. Section 5 discusses the experimental
results, including the first-stage results for the three rare data enhancement methods and the
improved results of the second-stage fine-tuning experiments. Section 6 is the conclusion.

2. Related Research
2.1. AI-Based Network Intrusion Detection System

Much of the recent research on NIDS has focused on deploying machine learning
algorithms and artificial intelligence techniques to improve traditional NIDS systems.
Reddy et al. [1] used the NSL-KDD dataset and applied machine learning algorithms,
including KNN and SVM, to enhance traditional NIDS systems. Chopra et al. [2] used
the BoT-IoT dataset and principal component analysis (PCA) techniques to obtain the best
features and then leveraged machine learning algorithms, including Bayesian classifiers
(naive Bayesian), J48 decision trees, and random forests, to detect DDoS attacks on IoT
devices. Dipon et al. [3] proposed a set of data preprocessing frameworks, using PCA
technology to screen features and applying the density-based clustering analysis algorithm
(DBSCAN) to eliminate anomalous data. Using the DARPA99 dataset, the study showed
that the proposed architecture could effectively improve the accuracy of detecting cyber-
attacks. Sadioura et al. [4] used both the KDD99 and the NSL-KDD datasets, applied
information gain technology for feature selection and data preprocessing, and then utilized
machine learning algorithms and deep learning algorithms, including the SVM, MLP, and
CNN algorithms. The study’s experiments revealed that the MLP classifier is the classifier
with the highest accuracy rate.

Our study found few studies discussing the problem of data imbalance in NIDS
systems. None of the aforementioned related studies have taken into account that the
amount of data is too scarce for some attack types in a network intrusion system, resulting
in a significant imbalance in the data distribution of datasets. We found that for some attack
types with rare data, if we only focus on applying different classification algorithms and
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feature selection methods, it is difficult to improve the identification accuracy of Probe,
U2R, R2L, and other rare attack types.

2.2. Data Imbalance Problem

Relevant studies have been reported on classification problems with imbalanced data.
Synthetic minority oversampling technology (SMOTE) [5] is a classical method to address
the class imbalance problem. Oversampling is carried out to expand data for classes with a
small amount of data. Yan et al. [6] proposed a new variant of SMOTE, region-adaptive
SMOTE (RA-SMOTE), and used machine learning algorithms to evaluate its effectiveness.
Bunkhumpornpat et al. [7] used different weights to analyze the data and defined security
levels to identify specific classes of artificially generated data. Gad et al. [8] used the
ToN-IoT dataset for network traffic data and proposed the chi2 technology for feature
screening and SMOTE to improve the class imbalance problem. Lee et al. [9] used the
CICIDS2017 dataset to study the problem of data imbalance. This research used several
data sampling techniques, including oversampling, undersampling, and mixed sampling
techniques, to improve the data imbalance problem. The study concluded that the best
results were obtained using the OSS-BSMOTE hybrid sampling technique.

The abovementioned related studies mainly used data augmentation to solve the data
imbalance problem. Many new approaches for data generation technologies have been
proposed recently, such as autoencoders and generative adversarial networks (GANs).
Developing an effective data augmentation technique to improve the detection of rare
attack data for network intrusions is a worthy research problem.

2.3. GAN-Based Data Enhancement

Generative adversarial networks (GAN) [10] are a new data generation method that
mainly utilizes discriminators and generators similar to convolutional neural network
models to learn the data distribution of real data. This method is commonly used to
generate image data. Figure 1 shows the architecture of GAN, which mainly consists of
a discriminator and a generator. The primary role of the discriminator is to distinguish
whether the real data are similar to the fake data generated by the generator and feed the
judgment result to the generator, thereby optimizing the training of the generator model
to generate data. The primary role of the generator is to learn the data distribution of
the real data, generate the fake data using the random input noise, and then input the
generated fake data into the discriminator for the discrimination process. Therefore, when
the discriminator cannot correctly distinguish the generated fake data from the real data,
it implies that the generator has learned the data distribution of the original real data.
Therefore, the final generated fake data will be very close to the real data distribution.
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Figure 1. Generative adversarial network (GAN) architecture.

Ring et al. [11] were the first group to report using the GAN model to generate network
traffic data. They used two GAN variants, WGAN [12] and WGAN-GP [13], to generate
network traffic data. Their results demonstrated that GAN techniques could efficiently
generate network traffic data. Shahid et al. [14] used an autoencoder combined with WGAN
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and WGAN-GP to generate traffic data for the IoTs. The results of this study revealed
that the generated data have very similar data distribution characteristics to those of the
real data.

Although the abovementioned related research used new data generation technologies
such as an autoencoder and GAN to expand the overall network intrusion detection dataset,
it improved the recognition rate of the comprehensive dataset. However, because of the
severe data imbalance problem in the network intrusion dataset, the improvement of the
recognition rate for rare attack data is still not significant.

3. Data Enhancement Methods

In this study, we applied three data enhancement methods to the rare attack data in the
NSL-KDD dataset, including Gaussian noise data enhancement in Section 3.1, WGAN-GP
data enhancement in Section 3.2, and SMOTE data enhancement in Section 3.3. These
generation methods are described in the following subsections.

3.1. Gaussian Noise Data Enhancement

Gaussian noise is a noise with a normally distributed probability density function, and
is often used to enhance the number of image datasets. When an image dataset is too small
to train a deep learning model, Gaussian noise can be added to each pixel of the original
images to generate more data and reduce the overfitting phenomenon during training,
thereby improving the effect of model training. The experiments in this study adopted
the same concept by adding Gaussian noise to each feature of the NSL-KDD dataset to
increase the amount of data for rare data categories. In addition, some data features of the
original dataset were not continuous attributes like the graphical data, but were classified
as discrete attributes. However, this study dealt with these data by directly assuming they
were continuous, without any additional data transformation processing.

3.2. WGAN-GP Data Enhancement

Another data enhancement method used in this study was WGAN-GP. WGAN-GP is
a variant of a generative adversarial network (GAN), an improved version of WGAN. In
GAN, the core objective is to make the generated data distribution close to the real data
distribution, that is, to make the generated data more like the real data. To compare the real
data distribution with the generated data distribution, traditional generative adversarial
networks use a metric called Jensen–Shannon divergence (JS divergence) [15], which is
based on Kullback–Leibler divergence (KL divergence) [16], as shown in Equation (1),
where Pr(x) represents the real data distribution and Pg(x) represents the generated data
distribution. The KL divergence calculates the asymmetric distance between the two
probability distributions Pr(x) and Pg(x). In contrast, the JS divergence mainly solves the
asymmetric problem of the KL divergence, as shown in Equation (2).

KL(Pr||Pg) =
∫

log (
Pr(x)
Pg(x)

)Pr(x)du(x) (1)

JS(Pr||Pg) =
1
2

KL(Pr||
Pr + Pg

2
) +

1
2

KL(Pg||
Pr + Pg

2
) (2)

However, there is a drawback to this measurement method. When there is no overlap
between the real data distribution Pr(x) and the generated data distribution Pg(x), or when
the overlap is too small, this phenomenon will cause a gradient of zero or a very small
value when the generated adversarial network updates the weights. That is, the weights
cannot be updated. This problem occurs when the discriminator is considerably more
robust than the generator.

For this purpose, WGAN proposes Wasserstein’s distance, also known as the EM
(earth mover) distance, to improve the data distribution measure of the JS divergence in
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traditional generative adversarial networks (GANs). The Wasserstein distance formula is
shown in Equation (3), where the E function denotes the expectation value function.

W(Pr, Pg) = in f γ∼∏ (Pr ,Pg)
E(x,y)∼γ[||x− y||] (3)

The advantage of the Wasserstein distance over the JS divergence is that it can still
reflect the proximity of the two data distributions Pr(x) and Pg(x) when the two distributions
do not overlap. The objective of the WGAN discriminator is to maximize the EM distance
between the real data and the generated data, while the objective of the generator is to
minimize the EM distance between the real data and the generated data.

In addition, WGAN uses a weight clipping method to constrain the gradient of the
weight updating when the weight is updated. This is used to limit the weights of the
discriminator to conform to the 1-Lipschitz continuity [17], that is, Equation (4), where K
denotes a constant. It is conceptualized as imposing a restriction on the continuous function
f by requiring that the elements x1 and x2 in the domain of definition satisfy this condition
when K ≥ 0.

| f (x1)− f (x2)| ≤ K|x1 − x2| (4)

However, the weight clipping method may lead to the problem of gradient explosion
or gradient disappearance. Therefore, WGAN-GP [13] uses the gradient penalty method
to improve these problems caused by the weight clipping method. Equation (5) shows
the loss function LWGAN of the original WGAN. Equation (6) illustrates the weight penalty
term GP introduced by the WGAN-GP. Equation (7) expresses the main improvement of
the WGAN-GP; that is, a new penalty term GP is added to the original loss function of
WGAN to replace the original weight clipping method used by the WGAN. This leads to
the derivation of the new loss function LWGAN-GP for WGAN-GP in Equation (7). It is found
that the use of the gradient penalty makes the network model training more stable and
easier to converge. Therefore, our study used WGAN-GP to augment the sparse attack
classes in the NSL-KDD dataset.

LWGAN = E∼
x∼Pg

[D(
∼
x)]− E∼

x∼Pr
[D(x)] (5)

GP = λE∼
x∼P∼

x
[(||∇∼

x
D(
∼
x)||2 − 1)2] (6)

LWGAN−GP = E∼
x∼Pg

[D(
∼
x)]− E∼

x∼Pr
[D(x)] + λE∼

x∼P∼
x
[(||∇∼

x
D(
∼
x)||2 − 1)2] (7)

With respect to the WGAN-GP data enhancement experiments, the network model
and the related hyperparameters of the WGAN discriminator are presented in Table 1, and
the network model and the related hyperparameters of the WGAN generator are listed in
Table 2. The activation functions of both the discriminator and the generator are Leaky
ReLU functions, the same as in the original GAN model. The main purpose of using this
function was to prevent the output of the activation function from generating zeros. The
sigmoid function was used in the last layer of the generator model because the generated
feature values had to be normalized to have the same value range as the real data, which
were distributed in the interval [0, 1].

Table 1. WGA-GP discriminator model.

Discriminator Model

Layer Hyperparameter Values

Input Layer Shape: 6, 7, 1
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Table 1. Cont.

Discriminator Model

Layer Hyperparameter Values

Conv2D

Kernels: 64
Kernel size: 3, 3

Strides: 2, 2
Padding: same
Use bias: true

Conv2D

Kernels: 128
Kernel size: 3, 3

Strides: 2, 2
Padding: same
Use bias: true

Leaky ReLU Alpha: 0.2

Dropout Rate: 0.3

Flatten Output shape: 512

Dropout Rate: 0.2

Dense Output shape: 1

Table 2. WGAN-GP generator model.

Generator Model

Layer Hyperparameter Values

Input Layer Shape: 1024

Dense Shape: 2, 2, 256

Batch Normalization Default

Leaky ReLU Alpha: 0.2

Reshape Shape: 2, 2, 256

UpSampling2D Up size: 2, 2

Conv2D

Kernels: 128
Kernel size: 3, 3

Strides: 1, 1
Padding: same

Batch Normalization Default

Leaky ReLU Alpha: 0.2

UpSampling2D Up size: 2, 2

Conv2D

Kernels: 1
Kernel size: 3, 3

Strides: 1, 1
Padding: same

Batch Normalization Default

Sigmoid Default

Cropping2D Cropping: 1, 1, 0, 1

3.3. SMOTE Data Enhancement

The third data enhancement technique was the synthetic minority oversampling
technique (SMOTE) [5]. In other words, the data of the minority samples were repeatedly
sampled or synthesized to generate new sample data. For example, Figure 2 shows some
two-dimensional sample data of known human heights and weights. The main idea of
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SMOTE is to select one data item from a small number of samples, such as the red data
point A in Figure 2. The distance between all of the data points and the selected red data
point A is calculated according to the k value (Figure 2, assuming k is equal to 3), and
then the nearest k data points in its vicinity are found. As shown in Figure 2, the data
points in the circle include the selected red data point A, and the three blue data points
closest to the red data point are B, C, and D. Then, a random data point is selected from the
three closest data points. As shown in Figure 2, data point B is the randomly selected data
point among the three data points. Then, n synthetic data are randomly generated between
the originally selected data point A and the randomly selected data point B. As shown in
Figure 2, suppose n is equal to 2; that is, two new data points, S1 and S2, are synthesized
between the red data point A and the blue data point B.
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4. Data Enhancement Experimental Methodology

In this section, we present the steps of how to enhance sparse data classes by using
three data augmentation methods and how to use machine learning algorithms and neural
network models for classification and recognition. There are no definite steps to determine
the optimal parameters used in data augmentation models and classification algorithms
for different datasets. In this study, we designed a two-stage fine-tuning algorithm, which
could be used to analyze the optimal data enhancement models, optimal classifier algo-
rithms, and the related parameters for rare attack data in the NSL-KDD dataset. The
two-stage fine-tuning calculation process can be described as follows.

4.1. Two-Stage Fine-Tuning Algorithm

In this subsection, we describe how to use the two-stage fine-tuning algorithm to
enhance the detection of sparse attack classes in the NSL-KDD dataset.

The first stage of the two-stage fine-tuning algorithm was to determine which data
enhancement models could obtain the best scaling model for sparse data class detection in
the NSL-KDD dataset. The detailed flowchart of the first stage is shown in Figure 3. We
used three data enhancement models, namely Gaussian noise, WGAN-GP, and SMOTE, to
generate 5000 data for each of the sparse data attack classes: Probe, U2R, and R2L. Then,
the augmented datasets were fed into different machine learning algorithms and neural
network models for training. Finally, we compared the performance of these three data
augmentation approaches for classification algorithms to identify sparse data. In this way,
the best data augmentation model was found for the data detection of sparse attack classes.
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The second stage of the two-stage fine-tuning algorithm is shown in Figure 4. In the
first stage of Figure 3, the best data enhancement model and the rare attack class with the
best effect were found. Then, the second stage was to find the optimized parameters for
this data augmentation model and various classification algorithms that could enhance rare
attack detection. First, we used the best enhancement model and the related experimental
parameters obtained from the analysis of the first stage as the initial parameter assumptions
for the second stage. Then, we proceeded to the second stage of fine-tuning the parameters.

In the first step of Figure 4, all of the feature values of the NSL-KDD dataset were
ranked by evaluating their information gain. The second step was to obtain the best
number of feature values for each classification algorithm by filtering the feature values
and then selecting the appropriate number of feature values to classify the sparse attack
classes. In the third step, the best number of features found for each classification algorithm
was used to analyze the optimal data-enhanced quantity of the best data enhancement
model for each classification algorithm. The final step was to fine-tune the parameters of
each classification algorithm. In this study, we focused on designing the number of dense
layers of the MLP model and the number of convolution layers of the CNN model. We
investigated the correlation between the accuracy rate of the sparse attack classification and
the number of model layers. Through this analysis, we identified the best MLP and CNN
model designs. Finally, by using the two-stage fine-tuning procedure, we obtained the best
accuracy rate for rare attack classes and the best parameters for the best data-enhanced
model and classification algorithms.



Appl. Sci. 2023, 13, 8132 9 of 20
Appl. Sci. 2023, 13, 8132 9 of 20 
 

 

Figure 4. Second stage of two-stage fine tuning: parameter fine-tuning procedure. 

4.2. Data Enhancement for Rare Data in NSL-KDD 

In this study, we applied three data enhancement methods, namely Gaussian noise, 

WGAN-GP, and SOMTE, to enhance the number of rare data types in the NSL-KDD da-

taset. As shown in Table 3, the original training dataset in NSL-KDD contained a total of 

125,973 data items, including 67,343 normal traffic data items, 11,656 Probe attack data 

items, 45,927 DoS attack data items, 52 U2R attack data items, and 995 R2L attack data 

items. In our data augmentation experiments, data augmentation was performed for each 

of the three types of rare data attacks, namely Probe, U2R, and R2L, respectively, adding 

an additional 5000 data items for each type. The percentage distribution of the Probe-en-

hanced training data only is illustrated in Table 4, which clearly shows that the percentage 

of Probe rare data increased from 9.25% before the enhancement to 12.72% after the en-

hancement. When only U2R was enhanced for the training data, the obtained percentage 

distribution of the category for the enhanced U2R is illustrated in Table 5, which clearly 

shows that the percentage of U2R rare data increased from 0.04% before enhancement to 

3.59% after enhancement. Similarly, if the training data were enhanced for R2L only, the 

category distribution is illustrated in Table 6, which clearly shows that the percentage of 

R2L rare data increased from 0.79% before enhancement to 4.58% after enhancement. 

In the first stage of the two-stage fine-tuning algorithm, we used three data augmen-

tation methods to enhance the rare data classes according to the data quantities of classes 

in Table 4, Table 5, and Table 6, respectively. Then, we utilized four machine learning al-

gorithms and two neural network models for training and classifying these augmented 

datasets. The obtained experimental results were used to analyze the performance of three 

data augmentation methods for recognizing these rare data types.  
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4.2. Data Enhancement for Rare Data in NSL-KDD

In this study, we applied three data enhancement methods, namely Gaussian noise,
WGAN-GP, and SOMTE, to enhance the number of rare data types in the NSL-KDD
dataset. As shown in Table 3, the original training dataset in NSL-KDD contained a total
of 125,973 data items, including 67,343 normal traffic data items, 11,656 Probe attack data
items, 45,927 DoS attack data items, 52 U2R attack data items, and 995 R2L attack data
items. In our data augmentation experiments, data augmentation was performed for each
of the three types of rare data attacks, namely Probe, U2R, and R2L, respectively, adding an
additional 5000 data items for each type. The percentage distribution of the Probe-enhanced
training data only is illustrated in Table 4, which clearly shows that the percentage of Probe
rare data increased from 9.25% before the enhancement to 12.72% after the enhancement.
When only U2R was enhanced for the training data, the obtained percentage distribution
of the category for the enhanced U2R is illustrated in Table 5, which clearly shows that
the percentage of U2R rare data increased from 0.04% before enhancement to 3.59% after
enhancement. Similarly, if the training data were enhanced for R2L only, the category
distribution is illustrated in Table 6, which clearly shows that the percentage of R2L rare
data increased from 0.79% before enhancement to 4.58% after enhancement.

Table 3. Class distribution of the original NSL-KDD training dataset.

Label Class Quantity Percentage

0 Normal 67,343 53.46%
1 Probe 11,656 9.25%
2 DoS 45,927 36.46%
3 U2R 52 0.04%
4 R2L 995 0.79%

All 125,973 100.00%
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Table 4. Class distribution of NSL-KDD after Probe data enhancement.

Label Class Quantity Percentage

0 Normal 67,343 51.42%
1 Probe 16,656 12.72%
2 DoS 45,927 35.06%
3 U2R 52 0.04%
4 R2L 995 0.76%

All 130,973 100.00%

Table 5. Class distribution of NSL-KDD after U2R data enhancement.

Label Class Quantity Percentage

0 Normal 67,343 51.42%
1 Probe 11,656 8.90%
2 DoS 45,927 35.06%
3 U2R 5052 3.59%
4 R2L 995 0.76%

All 130,973 100.00%

Table 6. Class distribution of NSL-KDD after R2L data enhancement.

Label Class Quantity Percentage

0 Normal 67,343 51.42%
1 Probe 10,656 8.90%
2 DoS 45,927 35.06%
3 U2R 52 0.04%
4 R2L 5995 4.58%

All 130,973 100.00%

In the first stage of the two-stage fine-tuning algorithm, we used three data augmenta-
tion methods to enhance the rare data classes according to the data quantities of classes
in Tables 4–6, respectively. Then, we utilized four machine learning algorithms and two
neural network models for training and classifying these augmented datasets. The obtained
experimental results were used to analyze the performance of three data augmentation
methods for recognizing these rare data types.

4.3. Classification Algorithms for Enhanced NSL-KDD

For the classification training on the enhanced NSL-KDD dataset, various classification
algorithms were used in this study, including machine learning algorithms KNN [18],
SVM [19], random forest [20], and XGBoost [21]; and neural network models MLP [22] and
CNN [23]. As there were 41 features in the NSL-KDD dataset, and the CNN algorithm
mainly dealt with the image recognition of two-dimensional data, the CNN model could
not be directly used to train the feature data of NSL-KDD. In order to convert the NSL-KDD
feature data into a two-dimensional matrix form, this experiment removed one feature
and turned it into 40 features, which were converted into a 5 × 8 two-dimensional matrix
form. In data preprocessing, we also had to convert the non-numerical features into
numerical data and used regularization methods to uniformly scale all the features to the
interval [0, 1].

5. Discussion of Experimental Results
5.1. First-Stage Experimental Results

This section presents the experimental results of the first stage of the proposed two-
stage fine-tuning algorithm. In this stage, we applied the Gaussian noise, WGAN-GP, and
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SMOTE data augmentation techniques to enhance the sparse data classes Probe, U2R, and
R2L in the NSL-KDD dataset, respectively. The augmented data were then combined with
the original dataset for retraining and classification. As shown in the following six tables,
the generated sparse data classes such as Probe, U2R, and R2L included the enhanced data
of each attack class and were merged into the original training dataset. Tables 7 and 8 show
the results of our experiments conducted using machine learning algorithms and neural net-
work models to identify the Gaussian noise data enhancement, respectively. Tables 9 and 10
show the experimental results of identifying WGAN-GP data enhancement by using ma-
chine learning algorithms and neural network models, respectively. Tables 11 and 12 show
the results of our experiments conducted using machine learning algorithms and neural
network models to identify the SMOTE data enhancement, respectively.

Table 7. Accuracy of machine learning algorithms with Gaussian noise rare data enhancement (%).

KNN SVM Random Forest XGBoost

Attack
Class

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Probe 68% 70% 2% 70% 71% 1% 60% 62% 2% 45% 47% 2%
U2R 0% 0% 0% 7% 11% 4% 1% 7% 6% 2% 6% 4%
R2L 1% 5% 4% 0% 6% 6% 1% 3% 2% 4% 7% 3%

Table 8. Accuracy of neural network models with Gaussian noise rare data enhancement (%).

MLP CNN

Attack Class Original Data Enhanced Data Improved Rate Original Data Enhanced Data Improved Rate

Probe 67% 70% 3% 57% 64% 7%
U2R 7% 9% 2% 1% 4% 3%
R2L 0% 4% 4% 0% 4% 4%

Table 9. Accuracy of machine learning algorithms with WGAN-GP rare data enhancement (%).

KNN SVM Random Forest XGBoost

Attack
Class

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Probe 68% 68% 0% 70% 74% 4% 60% 61% 1% 45% 49% 4%
U2R 0% 6% 6% 7% 10% 3% 1% 1% 0% 2% 4% 2%
R2L 1% 4% 3% 0% 1% 1% 1% 1% 0% 4% 6% 2%

Table 10. Accuracy of neural network models with WGAN-GP rare data enhancement (%).

MLP CNN

Attack Class Original Data Enhanced Data Improved Rate Original Data Enhanced Data Improved Rate

Probe 67% 74% 7% 57% 72% 15%
U2R 7% 11% 4% 1% 5% 4%
R2L 0% 3% 3% 0% 5% 5%

Table 11. Accuracy of machine learning algorithms with SMOTE rare data enhancement (%).

KNN SVM Random Forest XGBoost

Attack
Class

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Original
Data

Enhanced
Data

Improved
Rate

Probe 68% 68% 0% 70% 72% 2% 60% 59% −1% 45% 48% 3%
U2R 0% 14% 14% 7% 10% 3% 1% 1% 0% 2% 3% 1%
R2L 1% 8% 7% 0% 15% 15% 2% 4% 2% 4% 11% 7%
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Table 12. Accuracy of neural network models with SMOTE rare data enhancement (%).

MLP CNN

Attack Class Original Data Enhanced Data Improved Rate Original Data Enhanced Data Improved Rate

Probe 67% 73% 6% 54% 60% 6%
U2R 7% 13% 6% 1% 8% 7%
R2L 0% 7% 7% 0% 15% 15%

Tables 7–12 revealed that the data enhancement experiments of the Probe attack class
achieved good results on the NSL-KDD dataset, irrespective of whether the Gaussian noise,
WGAN-GP, or SMOTE methods were used to enhance the data. Most of the classifiers
could effectively improve the recognition accuracy of the Probe class. For the other two
rare attack classes, U2R and R2L, although most of the data enhancement techniques could
also improve the recognition accuracy of these two attack classes, the accuracy rate was still
very low. Observing these two types of experimental data revealed that for all algorithmic
classifiers, even when data augmentation was used to improve the sparse data problem,
these two types of attacks were difficult to identify effectively. In our opinion, the possible
reason was that the percentage of this enhanced class was still very low as compared to
the percentages of other classes. When the percentage of a certain type of data distribution
was very low, it could easily be considered noise and could not be identified by machine
learning and neural network models. In fact, for the U2R or R2U class, the augmented
5000 data items might be distorted, and the percentages of these two data distributions
were still very low as compared to the other classes to improve the recognition accuracies
of these two data types. Due to the extreme paucity of information on these two types of
attacks, U2R and R2L, it is difficult to make significant improvements using different data
enhancement techniques. Priority should be given to increasing the collection of real data
on this type of data. When the amount of data or the accuracy of recognition reaches a
certain level, data enhancement technology can be used to improve it. Therefore, in the
second stage of the experiments, we only fine-tuned the parameters of the experiments
related to the Probe data enhancement.

Further looking at the data, for Probe attack detection, using the Gaussian noise
enhancement could improve the SVM classification accuracy to 71%, both the MLP clas-
sification accuracy and KNN classification accuracy to 70%, and the CNN classification
accuracy to 64%. Among them, SVM had the highest accuracy rate of 71%, and CNN had
the highest improvement rate of 7%. When WGAN-GP was used to enhance the Probe data,
the accuracy of both the SVM classification and the MLP classification could be improved
to 74%, and the accuracy of the CNN classification could be improved to 72%. Among
them, the SVM and MLP classifiers had the highest accuracy, both at 74%. CNN had the
highest improvement rate of 15%, followed by MLP at 7%. If SMOTE was used to enhance
the Probe data, the accuracy rate of the MLP classification could be improved to 73% as the
highest, and the accuracy rate of the SVM classification could be improved to 72%. The
accuracy rate of the CNN classification was only 60% for the Probe data identification.

Overall, for most of the classifiers, the WGAN-GP enhancement had a higher accu-
racy rate and improvement rate than the Gaussian noise enhancement and the SMOTE
enhancement in the case of sparse data detection, particularly for Probe attack detection.
From the experimental results, we concluded that using WGAN-GP to enhance the rare
data of the Probe attack could enhance the classification of MLP with the best results, and
the accuracy rate could be significantly improved to 74%, which was 4% higher than that in
the case of the Gaussian noise enhancement, 1% higher than that in the case of the SMOTE
enhancement, and 7% higher than that in the unenhanced case.

5.2. Second-Stage Experimental Results

This section describes the experimental process and results of the second stage of the
two-stage fine-tuning algorithm. The first step of the second stage was to rank all of the
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feature values of the NSL-KDD dataset in descending order by evaluating the information
gain (I.G.) values [24]. Table 13 shows the ranking list values for the top 15 I.G. values.

Table 13. Ranked list of top 15 information gain values.

Ranking Features No. Features Values I.G. Values

1 5 src_bytes 2.01736

2 3 service 1.73376

3 6 dst_bytes 1.58831

4 35 dst_host_diff_srv_rate 1.21264

5 33 dst_host_srv_count 1.18367

6 34 dst_host_same_srv_rate 1.17743

7 23 count 1.16354

8 4 flag 1.02447

9 40 dst_host_rerror_rate 0.99752

10 30 diff_srv_rate 0.96746

11 29 same_srv_rate 0.93054

12 41 dst_host_srv_rerror_rate 0.85818

13 24 srv_count 0.78858

14 1 duration 0.67224

15 27 rerror_rate 0.62959

Information gain is calculated by entropy. Entropy is mainly used in machine learning
to measure the amount of information obtained after the classification of each feature.
The smaller the entropy, the larger the amount of information obtained. For classification,
the greater the amount of information, the better the classification, that is, the higher the
priority for decision making.

Equation (8) represents the definition of entropy. For classification, when the entropy
was larger, that is, the uncertainty of a certain classification feature X = xi was greater, more
information was needed to specify the classification status, that is, the classification was less
effective. Equation (9) expresses the conditional entropy of a random variable Y conditional
on a random variable X. Y is often used as a classification label. X = xi is often used to
indicate the selection of a feature xi. Finally, Equation (10) defines information gain as the
information entropy of set Y to be classified, minus the conditional information entropy
of Y for a feature X. Information gain is usually used as an indicator for feature selection
in decision trees. For classification, a larger information gain means a better selection of
feature X over label Y, that is, a better classification effect.

In the second stage of the fine-tuning process, we first calculated the information
gain values of all the NSL-KDD features and then arranged them in descending order
to form Table 13. The higher the information gain of the features in this table was, the
better the classification effect was. Therefore, in the next step of studying the optimal
number of feature values, we followed the priority of deleting the feature with the smallest
information gain in Table 13.

Entropy(X) = −∑n
i=1 p(xi)log2 p(xi) (8)

Entropy(Y|X) = ∑
x

p(x)Entropy(Y|X = x) (9)

Gain(Y|X) = Entropy(Y) − Entropy(Y|X) (10)
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5.2.1. Analysis of Optimal Number of Features

According to the experimental results analyzed in the first phase of the previous
section, WGAN-GP served as the best data generation model for the rare attack type
Probe. Therefore, on the basis of WGAN-GP, the second stage of the fine-tuning algorithm
was conducted to find the optimal parameters of the WGAN-GP generation model and
classification algorithms. We first applied the experimental parameters of the initial WGAN-
GP model and the classification algorithms in the first stage. Then, we carried out the
performance study of the classification experiments by using the number of feature values
filtered according to the I.G. ranking in Table 13. From these experiments, we observed
whether the accuracy of the Probe recognition could be further improved by reducing the
number of ranking features. Figures 5–7 show the accuracies of six classifiers for the Probe
detection in terms of the number of filtered features, respectively.
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Figure 5a shows that when the feature number was changed to 15, the Probe recogni-
tion accuracy of the KNN classifier increased to 73% as the maximum. In Figure 5b, the
data diagram of the SVM classifier shows that when the number of features was reduced,
there was no significant improvement in the Probe recognition accuracy, but there was a
decrease in the accuracy. As shown in Figure 6a, in the case of the random forest classifier,
when the number of features was reduced to 22, 21, 20, 19, 18, and 15, the Probe recognition
accuracy rate increased to a maximum of 63%. For the XGBoost classifier in Figure 6b,
a maximum of 53% improvement in the Probe recognition accuracy rate was observed
when the number of features decreased to 18. The MLP classifier in Figure 7a revealed that
when the number of features decreased to 21, the Probe recognition accuracy rate increased
to a maximum of 76%. Similarly, the CNN classifier in Figure 7b shows that when the
number of features dropped to 23, the Probe recognition accuracy increased again, rising to
a maximum of 68%.

Table 14 summarizes the analysis results of the optimal number of features for each
classification. As can be seen from this table, feature selection could effectively improve
the accuracy of the Probe attack recognition. Moreover, when the number of features
decreased, the time required for model training and recognition could be reduced. For
the MLP classifier in this table, we found that the Probe recognition accuracy increased
to a maximum of 76% when fine-tuning the feature number, which was higher than 74%
without fine tuning in Table 10 of the first-stage experimental results.

Table 14. Best feature numbers for all classifiers.

KNN SVM RF XGBoost MLP CNN

Best Feature Number 15 41 15 18 21 23
Probe Accuracy 73% 74% 63% 53% 76% 68%

5.2.2. Analysis of Optimal Number of Data Items Enhanced

On the basis of the results of the abovementioned feature number analysis, we selected
the number of features with the highest accuracy for each classification according to the
I.G. ranking table. Next, we analyzed the number of Probe data augmentations for the
WGAN-GP data enhancement model. The number of augmented data items ranged from
1000 to 10,000. The datasets with different numbers of Probe data items augmented by
WGAN-GP were fed to all of the classifiers with the best number of features. The effect of
different numbers of Probe data augmentations was examined as follows.

Figure 8a shows that when the number of augmentations was changed to 8000, the
Probe recognition accuracy of the KNN classifier increased to 76% as the maximum. As
for the SVM classifier in Figure 8b, we found that the accuracy of the Probe recognition
increased to a maximum value of 75% when the augmentation number became 8000. For
the random forest classifier in Figure 9a, when the augmentation number became 7000,
the Probe recognition accuracy increased to 64% of the maximum value. For the XGBoost
classifier in Figure 9b, a maximum of 55% improvement in the Probe recognition accuracy
rate was found when the augmentation number became 6000. As for the MLP classifier
in Figure 10a, the Probe recognition accuracy increased to 78% of the maximum value
when the augmentation number became 6000. For the CNN classifier in Figure 10b, the
Probe recognition accuracy increased to 72% as the maximum when the number of data
augmentations became 8000.

The results of the best recognition accuracy for different classifiers based on the
optimal Probe enhancement number of WGAN-GP are shown in Table 15. We found
that when using WGAN-GP, the optimal number of data augmentations to achieve the
best Probe recognition accuracy was not necessarily the same for different classifiers,
basically exceeding the 5000 augmentations assumed in the first stage. Table 15 shows
that the accuracy of the Probe attack recognition was improved again by the two-stage
fine-tuning approach when using different augmentation numbers generated by WGAN-
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GP for different classifiers. For the MLP classifier in Table 15, further fine tuning of the
augmentation number improved the Probe recognition accuracy by 78%, which was the
highest among all of the classifiers, and was higher than the 76% in Table 14 for only
fine-tuning the feature number.

Appl. Sci. 2023, 13, 8132 16 of 20 
 

increased to a maximum value of 75% when the augmentation number became 8000. For 

the random forest classifier in Figure 9a, when the augmentation number became 7000, 

the Probe recognition accuracy increased to 64% of the maximum value. For the XGBoost 

classifier in Figure 9b, a maximum of 55% improvement in the Probe recognition accuracy 

rate was found when the augmentation number became 6000. As for the MLP classifier in 

Figure 10a, the Probe recognition accuracy increased to 78% of the maximum value when 

the augmentation number became 6000. For the CNN classifier in Figure 10b, the Probe 

recognition accuracy increased to 72% as the maximum when the number of data aug-

mentations became 8000. 

  
(a) KNN (b) SVM 

Figure 8. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

KNN and SVM. 

  
(a) Random Forest (b) XGBoost 

Figure 9. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

random forest and XGBoost. 

  

(a) MLP (b) CNN 

Figure 8. Accuracy of probe attack detection for various numbers of probe data items enhanced for
KNN and SVM.

Appl. Sci. 2023, 13, 8132 16 of 20 
 

increased to a maximum value of 75% when the augmentation number became 8000. For 

the random forest classifier in Figure 9a, when the augmentation number became 7000, 

the Probe recognition accuracy increased to 64% of the maximum value. For the XGBoost 

classifier in Figure 9b, a maximum of 55% improvement in the Probe recognition accuracy 

rate was found when the augmentation number became 6000. As for the MLP classifier in 

Figure 10a, the Probe recognition accuracy increased to 78% of the maximum value when 

the augmentation number became 6000. For the CNN classifier in Figure 10b, the Probe 

recognition accuracy increased to 72% as the maximum when the number of data aug-

mentations became 8000. 

  
(a) KNN (b) SVM 

Figure 8. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

KNN and SVM. 

  
(a) Random Forest (b) XGBoost 

Figure 9. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

random forest and XGBoost. 

  

(a) MLP (b) CNN 

Figure 9. Accuracy of probe attack detection for various numbers of probe data items enhanced for
random forest and XGBoost.

Appl. Sci. 2023, 13, 8132 16 of 20 
 

increased to a maximum value of 75% when the augmentation number became 8000. For 

the random forest classifier in Figure 9a, when the augmentation number became 7000, 

the Probe recognition accuracy increased to 64% of the maximum value. For the XGBoost 

classifier in Figure 9b, a maximum of 55% improvement in the Probe recognition accuracy 

rate was found when the augmentation number became 6000. As for the MLP classifier in 

Figure 10a, the Probe recognition accuracy increased to 78% of the maximum value when 

the augmentation number became 6000. For the CNN classifier in Figure 10b, the Probe 

recognition accuracy increased to 72% as the maximum when the number of data aug-

mentations became 8000. 

  
(a) KNN (b) SVM 

Figure 8. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

KNN and SVM. 

  
(a) Random Forest (b) XGBoost 

Figure 9. Accuracy of probe attack detection for various numbers of probe data items enhanced for 

random forest and XGBoost. 

  

(a) MLP (b) CNN 

Figure 10. Accuracy of probe attack detection for various numbers of probe data items enhanced for
MLP and CNN.



Appl. Sci. 2023, 13, 8132 17 of 20

Table 15. Best data-enhanced numbers for all classifiers.

KNN SVM RF XGB MLP CNN

Best Feature Number 15 41 15 18 21 23

Best Data-Enhanced Number 8000 8000 7000 6000 6000 8000

Probe Accuracy 76% 75% 64% 55% 78% 72%

5.2.3. Analysis of Optimal Number of Model Layers

Based on the above results of fine-tuning the numbers of feature values and data
augmentations, we further discuss the effect of fine-tuning the layer design of the MLP and
CNN classifiers on the Probe recognition accuracy. Because of the different structures of the
MLP and CNN models, the experiments at this stage were mainly aimed at the design of
changing the dense depth of MLP and the convolutional depth of CNN. The experimental
results are presented in Figure 11a, which shows the effect of changing the number of dense
layers of the MLP classifier on the Probe recognition accuracy. In contrast, the experiment
shown in Figure 11b analyzed the effect of the convolutional layers of the CNN classifier
on the probe recognition accuracy.
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and CNN.

The experimental results of Figure 11 show that the model design with different depths
of the neural network models MLP and CNN had a significant impact on the accuracy
of Probe recognition. As shown in Figure 11a, when the number of dense layers used in
MLP was four, the accuracy of Probe recognition could be improved up to the maximum of
80%. As shown in Figure 11b, when the CNN algorithm was designed with six convolution
layers, the Probe recognition accuracy was improved to a maximum of 73%. Moreover,
we found that the accuracy of Probe recognition decreased when the number of layers in
both of the models became very large. This indicated that both of the classification models
could easily cause the overfitting phenomenon if the design was too complicated for the
NSL-KDD dataset.

The results of the optimal model depth and the Probe recognition accuracy analysis
for the neural network models MLP and CNN are shown in Table 16. This table shows that
the accuracy of the Probe attack recognition could be further improved by fine-tuning the
depth of the model for different neural network models by means of two-stage fine-tuning.
For the MLP classifier in Table 16, when the number of dense layers was fine-tuned further,
the Probe recognition accuracy improved up to 80%, which was higher than the 78% in
Table 15 for only fine-tuning both the feature number and the data-enhanced number.
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Table 16. Best numbers of model layers.

MLP CNN

Best Feature Number 21 23
Best Data-Enhanced Number 6000 8000
Best Number of Model Layers 4 6
Accuracy of Probe Detection 80% 73%

After the two-stage fine-tuning process, we fine-tuned the parameters of the numbers
of feature values, the numbers of Probe data augmentations, and the depths of the neural
network models, and finally obtained the hyperparameter table for the best Probe recog-
nition accuracy, as shown in Table 17. From the results of the first-stage experiments in
Tables 9 and 10, compared with the results of the second-stage experiments of fine-tuning
the parameters in Table 17, we found that the Probe recognition accuracy for all of the
classifiers improved significantly after the fine tuning of the parameters in the second stage.
In particular, the MLP classifier could significantly improve the Probe recognition accuracy
from 74% to 80% after fine tuning, which was the highest among all of the classifiers. Fur-
thermore, the proposed WGAN-GP data enhancement with two stage fine tuning improved
by 10%, 7%, and 13% over the untuned Gaussian noise enhancement, untuned SMOTE
enhancement, and no enhancement, respectively.

Table 17. Best hyperparameters with WGAN-GP data enhancement for all classifiers.

KNN SVM RF XGB MLP CNN

Best Feature Number 15 41 15 18 21 23

Best Data-Enhanced Number 8000 8000 7000 6000 6000 8000

Best Number of Model Layers - - - - 4 6

Probe Accuracy 76% 75% 64% 55% 80% 73%

6. Conclusions

In today’s era of ubiquitous Internet of Things and mobile network applications, it is
obvious that network attacks have become more frequent. Therefore, the study of network
security and defense is becoming increasingly important. Traditional network intrusion
detection systems (NIDS) are no longer effective in detecting ever-changing network attacks.
The use of artificial intelligence to improve NIDS has been an important trend in recent
years. However, many of the NIDS datasets currently used by scholars suffer from a serious
data imbalance. That is, it is particularly difficult to identify the classes of these sparse attack
data by using machine learning and deep learning algorithms. Therefore, this research
studied three data augmentation methods to increase the distribution percentage of the
sparse attack class. Upon increasing the distribution percentage, the recognition accuracy
rate of the sparse data classes could be improved. We also proposed a two-stage fine-tuning
algorithm to optimize the data-enhanced model and all of the important parameters of the
classification algorithms, which could further improve the recognition accuracy rate of the
sparse attack data. The experimental results revealed that the MLP classification accuracy
of the Probe attack sparse data could be significantly improved by using WGAN-GP data
augmentation and the fine-tuning algorithm. However, for attack data with extremely
sparse information, such as U2R and R2L in NSLKDD, we should prioritize increasing the
collection of real data instead of using data augmentation. For attack data with a certain
amount of data, such as Probe attack data in NSLKDD, the method provided in this paper
can be used to improve the attack identification accuracy.
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