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Abstract: To further enhance the performance of wood products, improved tools are needed to study
in situ cellular scale phenomena like mechanical deformations and moisture swelling. Micro-X-ray
computed tomography (µXCT) using brilliant synchrotron light sources now has the spatial and
temporal resolution for real-time visualization of phenomena in three-dimensional cellular structures.
However, the tradeoff for speed includes the loss of intensity contrast between different types of
materials within the imaged structure, such as cell wall and air in wood. This loss of contrast
prevents traditional histogram-based segmentation methods from being used effectively. A new
convolutional neural network (CNN) approach was therefore developed to segment fast µXCT images
of wood into cell wall and air volumes. The fast µXCT and segmentation were demonstrated in the
study of moisture swelling in loblolly pine (Pinus taeda) earlywood and latewood cellular structures
conditioned at 0%, 33%, 75%, and 95% relative humidity (RH). The CNN segmentation results had
a mean intersection over union (IoU) metric accuracy of 96%. Initial analysis of the swelling in the
latewood revealed cell walls swelled about 25% when conditioned from 0% to 95% RH. Additionally,
the widths of ray cell lumina in the transverse plane of latewood could be observed to increase at
higher RH. The segmentation method presented here will facilitate future quantitative analyses in in
situ µXCT studies of wood and other similar cellular materials.

Keywords: wood; cellular structure; X-ray computed tomography; convolutional neural network;
segmentation; relative humidity; synchrotron

1. Introduction

As a construction material, wood is often viewed favorably because of its mechanical
performance, which in bending stiffness per weight is similar to or superior to man-made
engineering composites [1], ease of machining, ready availability, and sustainability [2]. In
addition to established wood construction materials, including solid dimensional lumber,
plywood, oriented strand board, and laminated veneer lumber, new mass timber products
like cross-laminated timber [3] and mass plywood panels [4] are being developed and
becoming viable substitutes for concrete and steel in larger structures, such as mid-rise
buildings and bridges. Because wood is a hierarchical cellular material (Figure 1) whose per-
formance derives from the properties and organization of its smaller-scale components [5,6],
continued progress towards realizing the full potential of wood and wood-based materials
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would be accelerated by improved understanding of behavior at these smaller length scales,
especially observations of in situ dynamic processes. For example, wood cell walls absorb
and desorb water depending on ambient conditions, which cause swelling and shrinking
in wood that can lead to warping [7], splits [7], and wood-adhesive bondline failures [8].
However, the understanding of the swelling and shrinking in the cellular structure of
wood, such as how much the cell wall material itself swells, how lumina volumes change
in intact wood, and the dynamic swelling in real-time, is an active area of research in need
of improved experimental approaches for adequate study [9].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 17 
 

wood-based materials would be accelerated by improved understanding of behavior at 
these smaller length scales, especially observations of in situ dynamic processes. For ex-
ample, wood cell walls absorb and desorb water depending on ambient conditions, which 
cause swelling and shrinking in wood that can lead to warping [7], splits [7], and wood-
adhesive bondline failures [8]. However, the understanding of the swelling and shrinking 
in the cellular structure of wood, such as how much the cell wall material itself swells, 
how lumina volumes change in intact wood, and the dynamic swelling in real-time, is an 
active area of research in need of improved experimental approaches for adequate study 
[9]. 

 
Figure 1. Illustration of softwood cellular structure. Softwood is an anisotropic cellular material de-
fined by the radial, tangential, and longitudinal directions [10]. It is mainly composed of longitudi-
nal tracheids and ray cells. Pits are small openings between cells that facilitate intercellular water 
transport. A single longitudinal tracheid can be thought of as a hollow tube with the open space 
called a lumen. The cell wall is a multilamellar structure with secondary cell wall layers that are 
nanofiber-reinforced composites consisting of helically wound cellulose microfibrils embedded in a 
matrix of amorphous cellulose, hemicelluloses, and lignin [6]. Wood polymers are hygroscopic, and 
as a hygroscopic material wood’s properties and performance depend on the amount of water in 
the wood [7]. Growth rings consist of earlywood and latewood layers. Latewood is denser than 
earlywood because its tracheids have smaller lumina and thicker cell walls. 

Micro-X-ray computed tomography (µXCT) has been established as a valuable tool 
to make static observations in the cellular structure in intact wood specimens. Recent ad-
vancements at synchrotrons also show promise for utilizing µXCT in the study of in situ 
dynamic processes [11]. In µXCT, X-rays are used to illuminate a specimen volume and 
two-dimensional projection images of the specimen are acquired as the specimen is ro-
tated. These images are then used to reconstruct the object’s three-dimensional internal 
structure by employing tomographic image reconstruction [12]. Select µXCT examples in 
wood research include moisture swelling and shrinking [13,14], adhesive penetration 
[15,16], identifying axial gas permeability pathways [17], deformations during tensile ad-
hesive lap-shear specimens [18,19], deformations during three-point bending tests [20], 
and deformations caused by uniaxial compression [21]. 

Figure 1. Illustration of softwood cellular structure. Softwood is an anisotropic cellular material
defined by the radial, tangential, and longitudinal directions [10]. It is mainly composed of longitudi-
nal tracheids and ray cells. Pits are small openings between cells that facilitate intercellular water
transport. A single longitudinal tracheid can be thought of as a hollow tube with the open space
called a lumen. The cell wall is a multilamellar structure with secondary cell wall layers that are
nanofiber-reinforced composites consisting of helically wound cellulose microfibrils embedded in
a matrix of amorphous cellulose, hemicelluloses, and lignin [6]. Wood polymers are hygroscopic,
and as a hygroscopic material wood’s properties and performance depend on the amount of water
in the wood [7]. Growth rings consist of earlywood and latewood layers. Latewood is denser than
earlywood because its tracheids have smaller lumina and thicker cell walls.

Micro-X-ray computed tomography (µXCT) has been established as a valuable tool
to make static observations in the cellular structure in intact wood specimens. Recent
advancements at synchrotrons also show promise for utilizing µXCT in the study of in situ
dynamic processes [11]. In µXCT, X-rays are used to illuminate a specimen volume and
two-dimensional projection images of the specimen are acquired as the specimen is rotated.
These images are then used to reconstruct the object’s three-dimensional internal structure
by employing tomographic image reconstruction [12]. Select µXCT examples in wood
research include moisture swelling and shrinking [13,14], adhesive penetration [15,16],
identifying axial gas permeability pathways [17], deformations during tensile adhesive
lap-shear specimens [18,19], deformations during three-point bending tests [20], and defor-
mations caused by uniaxial compression [21].
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Analyses of three-dimensional µXCT volumes often involve separating different
classes of materials to visualize individual structures and quantify their volumes. A
µXCT volume consists of a three-dimensional array of voxels in which each voxel has an
intensity value. Segmentation is a method to separate the voxels into different object classes
corresponding to different materials. When the intensity contrast between different object
classes is sufficient, then the µXCT volume presents a multimodal intensity histogram. In
such a volume, segmentation is readily achieved through traditional histogram thresh-
olding techniques [22]. Histogram-based thresholding has been successfully utilized to
visualize and quantify wood adhesive flow into wood [15,16,18,19], study swelling and
shrinking of wood cell walls [13], and create models to simulate axial permeability [17].

However, previous µXCT studies in wood have primarily focused on capturing im-
ages of static specimens. High-speed, time-resolved µXCT is now realized at brilliant
synchrotron light sources and can be used for real-time in situ µXCT observations [11].
These new capabilities will enable new innovative experiments to capture in situ dynamic
processes at the cellular length scale in wood and forest products, such as in situ real-time
observations of mechanical deformations, pressure and temperature changes, pyrolysis,
chemical modifications like biorefinery pretreatments, and transport of water and other
chemicals into and out of wood.

Before high-speed µXCT imaging can be effectively utilized to study wood, improved
segmentation methods are needed because the imaging parameters used to gain high
temporal resolution in high-speed µXCT, such as employing higher energy (>10 keV)
polychromatic X-ray beams and propagation-based imaging, result in µXCT volume recon-
structions with less differential contrast between materials. The lower contrast prevents
traditional histogram thresholding techniques from being used. Propagation-based imag-
ing is a type of phase contrast imaging in which Fresnel diffraction at interfaces between
materials with different refractive indices, such as wood cell walls and air in wood, results
in interference fringes recorded by the detector in the projection images [23]. Increases in
sample to detector distance increase the differences between the peaks and valleys in the
recorded interference fringes. Therefore, increasing the sample to detector distance to incor-
porate environmental chambers or mechanical testing fixtures further enhances interference
fringes in the phase contrast images. In reconstructed transverse wood cross-sections, these
phase contrast effects result in large grayscale intensity variations near the lumen-cell wall
interfaces that further inhibit successful implementation of traditional histogram-based
thresholding segmentation techniques [24].

Fortunately, machine learning segmentation approaches based on convolutional neural
networks (CNN) show promise for segmenting X-ray computed tomography images
with limited intensity variations between material classes [25]. U-Net is a CNN that was
originally developed for fast and precise segmentation of biomedical images [26]. Given
U-Net’s effectiveness for segmenting the cellular structure of HeLa cells in light microscopy
images, U-net has promise for segmenting µXCT images of wood cellular structure. U-Net
converts the image segmentation process into a pixel classification problem in which each
specific pixel within an image is assigned to categories corresponding to different object
classes [27]. To accomplish the pixel classification, the network is trained to learn from
prepared reference images known as ground-truth images [28,29]. The two main steps in
the training process algorithm are forward propagation and back propagation [26]. Initially,
filter weights are randomly assigned. In forward propagation, the algorithm performs a
first prediction of segmentation using these random weights. The prediction is compared
with the ground-truth image and an error is calculated using an error minimization function.
This error is then backpropagated through the network to adjust the weights for a better
prediction in the next iteration. The process is continued until the error is completely
minimized or reaches a predefined minimization value [27–29]. Essentially, this means that
the network will learn filters that capture visual information [28]. The filters are tuned to
capture features from the training images such as edges, orientations, and ultimately entire
patterns. After being trained, U-Net takes as input a single-channel gray-scale image and
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outputs a multi-channel image where each channel contains the probability information of
each pixel belonging to a particular class [26]. In the case here for wood cellular structure,
there will be two classes consisting of cell wall material and air.

In this study, we employed a custom-built in situ µXCT relative humidity (RH) cham-
ber designed to study cellular-scale swelling processes in wood and other hygroscopic
materials. The RH chamber was used with fast propagation-based phase-contrast µXCT
imaging to capture full tomogram data sets of wood in only 7.5 s. The goal was to develop
µXCT protocols to meet the recognized need for new tools to study dynamic wood–water
interactions at the cellular length scale [9]. However, the resulting µXCT volumes lacked
sufficient contrast between the air and cell wall volumes. Therefore, traditional histogram-
based thresholding segmentation methods failed. A new segmentation process based on
U-Net CNN [26] was therefore developed and employed in this study to overcome the
shortcomings of traditional segmentation methods. This new segmentation process will
facilitate quantitative analyses of wood and similar cellular materials when fast µXCT
imaging is used.

2. Materials and Methods
2.1. Sample Preparation

Earlywood and latewood micro-X-ray computed tomography (µXCT) specimens
were extracted from loblolly pine (Pinus taeda L.). First, longitudinal-tangential sections
with a nominal thickness of 50 µm, 150 µm, 500 µm, or 1 mm were cut using a Reichert
(Vienna, Austria) sled microtome equipped with a disposable microtome blade. The
sections measured 1 cm in the longitudinal direction. To aid in cutting, the wood was
first saturated with water. An individual wood specimen was cut by hand along the
longitudinal wood axis using a single edge razor blade under a Motic (Schertz, TX, USA)
SMZ-168 stereomicroscope. A total of 24 specimens were prepared with three latewood
and three earlywood specimens for each size.

2.2. Micro X-ray Computed Tomography (µXCT)

Fast phase-contrast µXCT experiments were carried out at the Advanced Photon
Source beamline 2-BM-B at the Argonne National Laboratory (Argonne, IL, USA). Details
of the beamline setup have been described elsewhere [30,31]. Imaging was performed using
a filtered polychromatic X-ray illumination beam with a peak energy of about 25 keV. A
20-µm thick Ce-doped Lutetium Aluminum Garnet (LuAG:Ce) scintillator was positioned
at a distance of 10 cm from the sample and used to convert the transmitted X-rays to visible
light. The images were magnified by a 10× Mitutoyo (Kawasaki, Japan) long working-
distance objective lens and recorded by a PCO.edge™ (Kelheim, Lower Bavaria, Germany)
camera with a 2560 by 2160-pixel count. The experimental setup resulted in a 0.65 µm
pixel size and produced a field-of-view of 1.664 mm by 1.404 mm. Each tomogram data
set consisted of 1500 projections collected over a 180◦ rotation at 0.12◦ angular increments
with 5 ms exposure time for each projection. Each 1500 projection tomogram data set took
approximately 7.5 s to collect. White-field and dark-field images were also collected for each
tomogram data set and used for intensity corrections. A white-field image was collected
while the detector was irradiated without the sample’s obstruction, and the dark-field
image was collected while the X-ray beam was blocked from the detector.

XCT imaging was performed on each wood specimen conditioned in absorption at RH
values of 0% (dry air), 33%, 75%, and 95%. Before imaging, the specimen was placed into an
external chamber for at least 24 h to condition at the given RH, which was controlled using
desiccant or aqueous salt solutions (Table 1). The wood specimen was then transferred
quickly from the external chamber to the in situ beamline RH chamber (Figure 2) and
conditioned for 10 min at the corresponding RH step before imaging. The RH in the
beamline chamber was controlled with an IntruQuest HumiSys™ HF (Coconut Creek, FL,
USA) RH generator. The RH and temperature were measured inside the beamline chamber
during imaging using a Sensirion (Staefa, Switzerland) SHT1x humidity sensor. The
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calibration of the temperature and RH sensor inside of the beamline chamber was verified
using a Control Company (Webster, TX, USA) 4085 Traceable® Hygrometer Thermometer
Dew Point Meter. The temperature ranged from 27 to 28 ◦C. After imaging, the sample
was transferred to the external humidity chamber that was conditioned for the next higher
RH step. Imaging for each RH step occurred on successive days to allow at least 24 h of
conditioning. The process was repeated until all the wood specimens were imaged at each
RH step.

Table 1. Desiccant or salts used in saturated aqueous solutions with corresponding relative humidity
condition created [32].

Relative Humidity

Desiccant 0%
Magnesium chloride 33%

Sodium chloride 75%
Potassium chloride 95%
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Figure 2. Custom-built relative humidity (RH) chamber for APS beamline 2-BM-B. The chamber
separated into two pieces to facilitate sample changes. The top of the chamber consisted of 6.3 cm
length of a Precision Paper Tube Company (Wheeling, IL, USA) Kapton© tube with 127 µm thick
walls and 4.45 cm outside diameter. The Kapton© tube had machined aluminum caps at each
end. The bottom consisted of machined aluminum with a Ted Pella™ (Mountain Lakes Blvd,
Redding, CA, USA) pin mount sample holder that was secured in the chamber with a set screw, a
hose barb connector for the RH generator connection, a Sensirion™ (Staefa, Switzerland) SHT1x
relative humidity and temperature sensor to monitor the conditions inside the chamber, and a
ThorLabs™ (Sparta Ave, Newton, NJ, USA) kinematic mount to attach the RH chamber to the
beamline rotation stage.

2.3. Image Reconstruction

The tomogram data sets were reconstructed using Tomopy Python package [33]. The
raw intensity data were normalized using the white-field and dark-field corrections to
compensate for different detector pixel responses. The intensity data were then scaled
between 0 and 1 by calculating the normalized data’s negative logarithm. Detector artifacts,
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such as ring artifacts and streaks, caused by the drift of the inhomogeneous X-ray beam
or imperfections of the imaging detector system were not entirely removed by normaliza-
tion. The detector artifacts were further reduced by employing stripe removal filtering
in the sinograms using the combined wavelet–Fourier filtering technique [34]. The best
results were obtained with the wavelet Daubechies 5 (db5) with a decomposition level
of 10 and a smoothing factor of 3. Higher-order wavelet filters reduced the sharpness of
the reconstructed images. The filter parameters were chosen as an optimization between
artifact suppression and the preservation of the image object details. However, some streak
artifacts persisted in the reconstructed images as are described later in the manuscript.

For reconstruction, both filtered back projection (FBP) and conjugate gradient least
squares (CGLS) methods were initially performed and compared. FBP methods have
previously been used in µXCT wood studies [18–20]. The FBP reconstruction method is
based on the Fourier grid reconstruction algorithm and has the advantage of computational
efficiency [35]. However, FBP reconstructions have the disadvantage of resulting in a noisier
reconstruction when there is noise in the acquired projection data. The CGLS algorithm is an
algebraic iterative reconstruction method based on numerical approximations determined
by minimizing the difference between the forward projection of the reconstructed image
with the acquired projection data using the conjugate gradient method [36]. Although the
CGLS method is more computationally intensive than the FBP method, it has the advantage
that the effect of noise in the projection images can be reduced by finding the optimum
number of iterations [36]. In this work, the optimal iteration was 100. Lower numbers of
iterations were tested to decrease the computation intensity. However, the lower numbers
resulted in high-frequency noise in the reconstructed images. Figure 3 shows comparisons
from the current experiments between FBP and CGLS reconstructed image slices and
intensity line profiles. The CGLS reconstructed image is less noisy, which will be better for
image segmentation and further analysis [36]. Therefore, the CGLS method was used for
reconstructing the data for further analysis.
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Figure 3. Comparison between the (a) filtered back projection (FBP) and the (b) conjugate gradient
least squares (CGLS) reconstruction algorithms. The images are 8-bit and no filters were applied post-
reconstruction. The line profiles show the noise along the white lines for each algorithm with regions
of void and cell walls indicated with v and c, respectively. Intensity bar has units of grayscale values.

2.4. Post-Processing, Segmentation, and Visualization

Each reconstructed file consisted of 52.7 Gb of data with stacks of 2160 32-bit cross-
sectional images stacked along the longitudinal direction of the wood samples. To reduce
the amount of time during computations and make the segmentation process less memory
intensive, the reconstructed gray-scale images were converted from 32-bit single-precision
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floating-point images to 8-bit unsigned integer images using ImageJ [37]. File sizes were
further reduced for 50 µm, 150 µm, and 500 µm cross-section specimens by cropping
images uniformly along a given stack length to remove excessive void spaces outside of
the wood specimen.

A convolutional neural networks (CNN) image segmentation method was employed
because traditional histogram-based thresholding segmentation methods still failed even
with the improved CGLS reconstructions. The CNN was implemented in Wolfram (Cham-
paign, IL, USA) Mathematica. The µXCT data processing, image reconstructions, and
computations were performed using Python programming language [38]. ImageJ was used
for visualization [37].

3. Results and Discussion
3.1. Reconstructed Grayscale Images

Representative latewood and earlywood reconstructions from 1 mm cross-section
specimens are shown in Figure 4. The two material classes in the images are cell wall and
air filling the void spaces. The cell walls can be readily observed in the reconstructions and
the expected anatomic features are present. Latewood has much thicker cell walls than
earlywood, whereas lumina are much larger in earlywood. The specimens were nominally
cut along the three primary wood axes and the radial and tangential orientations are
indicated in Figure 4a,b. Ray cells (Figure 4a,b) and pits (Figure 4f) are also readily observed.
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The reconstructed images need to be segmented into cell wall and air components for
quantitative analysis of cell wall swelling. For traditional histogram-based segmentation
methods to be successful, a bimodal intensity histogram with distinct peaks corresponding
to cell wall and air is needed. However, the intensity histograms (Figure 4c,d) do not
display an obvious bimodal distribution. The histograms only have one obvious peak.
Close-up views (Figure 4e,f) show that some regions of the cell wall have similar intensity
values to the air. The line profile in Figure 3b also shows that the grayscale intensity
values for cell walls and air-filled voids can overlap. Nevertheless, given the simplicity
of the histogram-based thresholding, different traditional segmentation methods were
tested in the Supplementary Materials. However, none of these traditional histogram
threshold-based methods performed well. The resulting binary images lacked the expected
anatomic features.

3.2. Convolutional Neural Network (CNN) for Image Segmentation

The CNN used in this work was an adaptation from the U-Net architecture [26].
Initial efforts to use the original U-Net architecture resulted in over-fitting. Over-fitting
in machine learning models occurs when the training dataset accuracy is greater than the
testing dataset accuracy [39]. For CNNs, over-fitting indicates that the model has more
filters than needed [39]. To avoid over-fitting, the total network size was decreased by
reducing the number of feature maps calculated in each layer by 50% as compared to the
original U-Net architecture, which also reduced the number of weights and biases from
31 million to 7.7 million. This reduction resulted in training and testing datasets with
similar levels of accuracy. The modified network retained the identical sequences of layers
as U-Net and was composed of a contracting path, a bottleneck, and an expansive path
(Figure 5). Each successive layer doubled the number of feature maps in the contracting
path but halved the resolution of those feature maps by employing convolution and
max-pooling operators. The modified network started with calculating 32 feature maps
in the first layer, then increased in each successive layer until reaching a maximum of
512 feature maps at the bottleneck. Conversely, in the expansive path the number of feature
maps was halved in each successive layer, but the feature map resolution doubled. This
path contained convolution and transposed convolution operations. The U-Net CNN
architecture made use of high-resolution and low-resolution feature maps to classify the
pixels. High-resolution feature maps helped the network identify the context related to
each class, while low-resolution maps helped the network better locate those classes.

For the CNN training and validation, 78 images were randomly chosen from early-
wood and latewood samples at different RH to create ground-truth images. A combination
of traditional threshold and manual segmentation using ImageJ [37] was used to create
ground-truth images. The number of training images was increased by partitioning the
ground-truth images into 588 × 588-pixel sub-images and employing data augmentation.
The training data augmentation was achieved by rotating each sub-image in five different
directions. These operations increased the number of training images from 78 full-size images
to 14,010 sub-images with 588 × 588-pixel dimensions. Seventy percent of the total sub-
images were used for training, while the remaining 30% were used for the model validation.

The network was trained using a stochastic gradient descent algorithm [40] for a
total of 30 iterations. The training algorithm worked by extracting feature maps from the
training images using convolution operators and assigning a weight to each. An error
was then calculated using the cross-entropy loss function. The weights were adjusted in
every iteration to lower the loss value between the predicted result and the ground-truth
image. The result of this training was a CNN that took a single-channel gray-scale image
with size 588 × 588 pixels and outputted a resulting two-channel CNN image with size of
404 × 404 pixels. The two channels corresponded to the probability of the pixel belonging
to the cell wall or air class. Because there are only two classes in this segmentation problem,
all the segmentation information is included in one channel and the cell wall probability
channel was chosen for further analysis.
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Because the CNN output size was smaller than the input size, partitioning the images
into overlapping tiles was necessary to offset information loss. The overlap-tile strategy
worked by partitioning the full image into multiple overlapping sub-images with dimen-
sions equal to the CNN 588 × 588 pixels input size. The sub-images overlapped sufficiently
such that there was no information loss when the smaller 404 × 404 pixels output sub-
images were pieced back together. The resulting CNN images were 8-bit grayscale images
in which grayscale values corresponded to the probability of being in the cell wall class.
Finally, binary images were created by thresholding the CNN image with 0–127 grayscale
values assigned to air and 128–255 values assigned to cell wall.

In the absence of reference standards, it is not possible to quantify the accuracy and
precision of a segmentation technique. However, an alternative evaluation approach is to
use validation metrics for semantic image segmentation that compare ground-truth images
with the resulting network segmentation. In this work, the intersection over union (IoU),
which is a metric that quantifies the overlap between the classes in the ground-truth image
and the network’s resulting binary image [41,42], was used to quantify the accuracy of
CNN. For CNN image P and corresponding ground-truth image G, IoU is calculated for
each pixel class using the following:

IoU =
P ∩ G
P ∪ G

(100%) (1)

where P ∩ G is the size of the area of overlapping intersection, and P ∪ G is the size of the
union [42]. IoU ranges from 0 to 100%, with 0% signifying no overlap and 100% signifying
perfectly overlapping segmentations.

The network testing data set consisted of the 3034 images reserved from the
14,010 generated ground-truth images. First, the IoU was calculated for both the air
and the wood cell wall material classes. The mean IoU for a given image was then cal-
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culated by averaging the air and cell wall IoUs. For the full testing data set, an average
IoU of 96% was calculated. This means that compared to the ground-truth images, 4%
of pixels in the segmented CNN images were misclassified. Compared to the traditional
histogram-based segmentation methods tested in the Supplementary Materials, the CNN
mean IoU of 96% was much higher with none of the other full image methods reaching
50%. Compared to the literature, this value is also higher than the IoU of 92% reported for
the U-Net CNN effectiveness for segmenting the cellular structure of HeLa cells [26]. The
96% IoU also compares favorably to the 73% to 96% IoUs reported for seven different U-net
segmentation tasks in biomedical imaging [43].

3.3. Qualitative Observations

Visual comparisons between reconstructed grayscale, ground-truth binary, and CNN
binary images are shown in Figure 6. These close-up images were chosen to highlight a few
qualitative observations in the segmented wood cellular structure. Softwood is primarily
composed of longitudinal tracheids, whose cross-sections occupy most of the images. The
cell walls and lumina in these tracheids are well-defined in the grayscale images and the
CNN did well to segment them. Often, the cell wall-lumen interfaces are smoother in the
CNN than in the in the ground-truth images, which is more consistent with the grayscale
images and suggests the CNN segmentation can outperform manual segmentation. How-
ever, some differences between the ground-truth and CNN segmentations were observed
in the pits and rays. The arrows in Figure 6a–c show cross sections of two pits that were
missed in the manually segmented ground-truth image but were properly segmented by
the CNN. The pit in the dotted circle in Figure 6a–c was not properly segmented in the
ground-truth nor CNN images. The ray cells, which are indicated by dashed ellipses in
Figure 6d–i, are less regularly defined than the longitudinal tracheids in the grayscale
images. Even when manually segmenting the ground-truth images some user judgments
had to be made with regard to which pixels corresponded to cell wall and air classes in the
rays. Although differences were sometimes observed between the ground-truth and CNN
segmentations, it was often not possible to unambiguously determine the correct pixel
classification. Fortunately, the segmentation uncertainties in pits and rays are not expected
to have a substantial effect on the cell wall quantification because most of softwood is
composed of tracheids. In loblolly pine, tracheids occupy 96% of the total wood cellular
volume and account for 99% of the total cell wall material [44]. Therefore, uncertainties in
the segmenting of pits and rays would not be expected to be more than a few percent at
most, which is consistent with the quantified CNN mean IoU of 96%.

Streak artifacts caused by the image reconstruction algorithm were also observed to
occasionally cause misclassifications in the CNN segmented images. The dashed ellipses
in Figure 7a–d show streak artifacts in grayscale images that were partially segmented
into the cell wall class in the CNN images. Figure 7e–d shows a similar streak artifact in a
grayscale image that was not segmented into the cell wall class. These strong streak artifacts
that were sometimes erroneously segmented into the cell wall class were only observed to
appear at the edges of wood specimens with large ray cells, such as in the chosen close-ups
in Figure 7. As is shown in the next section, streak artifacts that are segmented into the
cell wall class affect the three-dimensional visualization of wood specimens. However, the
number of pixels in the segmented streak artifacts is very small compared to the number of
pixels in the cell wall material. For example, the percentages of pixels in Figure 7b,d that
were misclassified in the streak artifact were 0.9% and 0.5%, respectively. Given Figure 7b,d
depicts only close-up views of portions of the entire specimen, the actual percentage error
would be much smaller and would not be expected to substantially affect cell wall volumes
measured from the CNN segmented images.
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When inspecting the µXCT image stacks, it was possible to detect that some recon-
structed stacks contained blurring noise. After the image segmentation process, it became
obvious that the segmented images in these stacks did not correspond to the expected
cellular structure. For example, portions of the cell wall material were classified as air or
random lumina classified as cell wall, as shown in Figure 8. Also, for a given specimen
tested at different RH conditions, the blurring effect was random and only present in scans
under certain RH conditions. Therefore, the effect was not specimen dependent. It is likely
that this random blurring effect was from lateral vibrations caused by the sample becoming
loose in the mounting clay and vibrating during rotations. It is also possible that airflow
through the RH chamber caused specimen vibrations. These blurred image stacks will
need to be removed in future analyses for calculating moisture swelling because the cell
walls cannot be reliably segmented. Future experiments should use mechanical clamping
instead of mounting clay to minimize this blurring effect.
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3.4. Visualization

Figure 9 shows three-dimensional renderings of a portion of a 1 mm cross-section
latewood sample. Like the two-dimensional images, different wood anatomical features
can be observed, such as rays and longitudinal tracheids on the exposed radial–longitudinal
surface. The small features protruding from the exposed tangential–longitudinal face are
streak artifacts and not a real anatomical feature of wood. With stacks of segmented µXCT
images, it also possible to virtually separate different components to obtain information
about the interior of the sample. For example, Figure 9b–d shows the longitudinal tracheid
cell walls, longitudinal tracheid lumina, and ray cell lumina, respectively, from a sub-
volume virtually excised from the specimen. In addition to visualization, virtual separations
could also be used for quantitative analyses of the different components.

To demonstrate moisture swelling, Figure 10 shows superimposed cross-sectional
images at 0% and 95% RH. To better visualize the interior of the sample, the 0% RH image
was processed to extract the sample edges. It can be readily observed that the size of the
sample cross-section increased as the RH increased. Moreover, it can be observed in the
interior of the sample that the width of the rays also increased. Swelling of the cell wall
itself is not as easy to observe visually. Fortunately, the cell wall swelling can be easily
quantified by using the known 0.65 µm pixel size and summing the number of pixels in the
cell wall class at each RH. For this cross-section, the cell wall area increased from 0.49 mm2

to 0.61 mm2 going from 0% to 95% RH. This is an approximately 25% increase. The increase
in cell wall swelling is much larger than the estimated errors in the CNN segmentation
results, which included from the calculated mean IoU an estimated misclassification of 4%
of pixels and qualitative observations of small errors in the CNN segmentation of pits, rays,
and streak artifacts. Therefore, CNN segmentation will be adequate to calculate cell wall
swelling in wood over this range of RH because the expected amount of swelling is much
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larger compared to the estimated uncertainties. The 25% increase in cell wall area from the
results in Figure 10 was also consistent with previous work. Derome and coworkers also
used µXCT to study swelling in latewood Norway spruce cell walls and reported a 12.5%
increase in cell wall volume when measured over the smaller RH range of 10% to 85% [13].
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4. Conclusions

Fast propagation-based phase-contrast micro-X-ray computed tomography (µXCT)
is poised to become a valuable tool to study in situ dynamic processes at the cellular
length scales in wood. To overcome the segmentation challenges associated with the
decreased grayscale intensity contrast between object classes that occur when materials like
wood are imaged with fast µXCT, a modified U-net convolutional neural network (CNN)
segmentation method was developed for segmenting wood µXCT images into cell wall and
air classes. The efficacy of the new segmentation method was demonstrated in experiments
of loblolly pine wood imaged under different RH conditions. The accuracy of the CNN was
quantified using the intersection over union (IoU) metric calculated through a comparison
of ground-truth binary images to their corresponding CNN binary images. The CNN
scored a mean IoU of 96%. Qualitative observations revealed that the small discrepancies
between the ground-truth and CNN images primarily arose when segmenting pits, rays,
and streak artifacts. Fortunately, these discrepancies represented a very small portion of the
wood µXCT images. A few specimens also displayed blurring noise that was likely caused
by lateral vibrations during µXCT imaging. The µXCT images with blurring noise could
not be reliably segmented and will need to be discarded in future quantitative analyses
of this data set. Future µXCT experiments should employ mechanical holders instead of
mounting clay to hold specimens more securely and minimize lateral vibrations. Initial
observations of moisture swelling in latewood cellular structure revealed that the cell
walls swelled about 25% from 0% to 95% RH, and that in the transverse plane ray cell
lumina became wider at higher RH. Overall, it was determined that the CNN was sufficient
for future quantitative studies of cellular scale processes like moisture swelling in wood
cellular structures. The CNN developed here would be expected to perform even better in
synthetic cellular materials because synthetic materials lack the pits and rays that cause
many of the uncertainties in the CNN segmented wood images.
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