
Supplementary Material

An Embedded System based on Raspberry Pi for
Effective Electrocardiograph Monitoring

Yusra M Obeidat1, Ali Mohammad Alqudah2

 1Electronic Engineering Department, Yarmouk University, Irbid-Jordan

1Biomedical Engineering Department, Yarmouk University, Irbid-Jordan

 *Corresponding author: yusra.obeidat@yu.edu.jo

S.1: The ECG Signal Generation

The following is the code used to generate the ECG signal.

Byte const

display[]={69,69,71,71,72,72,72,72,72,71,71,71,69,69,69,71,71,72,72,72,74,74,74,74,72,72,72,7

2,71,71,71,71,71,71,69,69,69,71,71,71,72,72,74,74,74,74,72,72,71,71,69,67,67,67,66,66,66,66,6

6,64,64,64,63,61,61,59,59,58,58,59,59,61,63,64,64,64,64,64,64,64,64,66,66,66,66,64,63,61,59,5

6,56,56,56,58,61,63,63,64,64,63,61,59,58,58,59,59,61,64,66,67,69,69,69,71,69,69,69,67,67,66,6

4,64,63,64,66,67,69,72,74,76,77,76,74,72,71,67,66,64,63,63,61,59,56,54,53,53,51,51,53,54,54,5

6,56,56,56,56,54,54,54,53,53,51,51,49,48,46,46,46,46,46,46,46,46,44,44,43,41,39,39,39,39,39,4

1,41,39,38,36,35,35,38,44,58,74,95,122,150,178,204,225,243,253,255,247,232,209,179,146,112,

79,49,26,10,2,0,3,12,20,30,36,41,44,44,43,41,38,38,36,36,36,36,38,38,38,36,36,36,35,35,35,35,3

5,35,36,36,38,39,39,41,41,41,41,41,41,41,41,39,39,39,39,41,41,43,43,44,46,46,46,46,46,46,46,4

6,46,48,49,51,53,54,56,58,58,59,59,61,63,64,66,67,71,72,72,74,74,74,74,74,76,77,79,81,84,87,8

9,92,94,95,95,97,97,97,97,97,99,99,100,102,104,105,107,107,105,104,100,95,92,89,87,86,84,82,

81,77,74,69,64,59,54,51,48,48};

int i;

void setup() {

 // put your setup code here, to run once:

DDRD=255;

PORTD=0;

}

void loop() {

 // put your main code here, to run repeatedly:

for (i=0;i<=339;i++){

PORTD=display[i];

delayMicroseconds(1500);

}

i=0;

}

S.2 The Gain of INA122

INA122 is a precision instrumentation amplifier that is used for accurate, low noise differential

signal acquisition. It is known of its very low input bias current of only 25nA max, very low

voltage noise of only 60nV/sqrt(Hz).

Based on the datasheet of the INA122 instrumentation amplifier:

G=5+200k/RG

If RG=4.7k, then the gain is 47.55

S.3 Filters and Peak Detector

Fig.S.1 The second order HPF. b) The second order LPF. c) The second order BSF.

Fig.S.2 The Peak Detector

S.4 Circuit Connection on Proteus Professional Software

 Fig.S.3 The ECG Circuit Simulation Using Proteus Professional Software.

S.5 The Printed Circuit Board Schematic and Layout on Altium

Fig.S.4 The Printed Circuit Board Schematic.

Fig.S.5 The ECG PCB Layout: a) The Top Layer (2D). b) The Top Layer (3D). c) The Bottom Layer (2D). d) The Bottom layer (3D).

e) printed circuit board after soldering all necessary components

S.6 The Filters Bode Plots

a)

b)

c)

Fig.S.6: The Bode Plots for Filters: a) High Pass Filter. b) Low Pass Filter. c)Band Pass Filter. d) Notch Filter. e) All filters.

d)

e)

 Fig.S.7: An ECG signal from human displayed on a smart phone through VNC viewer.

S.7 The programming code in python

fs=1000

x_len = 186 # Number of points to display

y_range = [-0.25, 1.5] # Range of possible Y values to display

rate = 0

sample=[0] * 100

load model

model = load_model('ECG_CNNLSTM_Model.h5')

Create figure for plotting

fig = plt.figure(figsize=(3.3,1.7))

ECG = fig.add_subplot(1, 1, 1)

xs = list(range(0, 100))

ys = [0] * x_len

ECG.set_ylim(y_range)

Create a blank line. We will update the line in animate

line, = ECG.plot(ys)

Add labels

plt.title(' ECG ')

plt.xlabel(' Time(ms/18.75) ')

plt.ylabel(' Voltage(V) ')

class Pan_Tompkins_QRS():

 def band_pass_filter(self,signal):

 '''

 Band Pass Filter

 :param signal: input signal

 :return: prcoessed signal

 Methodology/Explaination:

 Bandpass filter is used to attenuate the noise in the input signal.

 To acheive a passband of 5-15 Hz, the input signal is first passed

 through a low pass filter having a cutoff frequency of 11 Hz and then

 through a high pass filter with a cutoff frequency of 5 Hz, thus

 achieving the required thresholds.

 The low pass filter has the recursive equation:

 y(nT) = 2y(nT - T) - y(nT - 2T) + x(nT) - 2x(nT - 6T) + x(nT - 12T)

 The high pass filter has the recursive equation:

 y(nT) = 32x(nT - 16T) - y(nT - T) - x(nT) + x(nT - 32T)

 '''

 # Initialize result

 result = None

 # Create a copy of the input signal

 sig = signal.copy()

 # Apply the low pass filter using the equation given

 for index in range(len(signal)):

 sig[index] = signal[index]

 if (index >= 1):

 sig[index] += 2*sig[index-1]

 if (index >= 2):

 sig[index] -= sig[index-2]

 if (index >= 6):

 sig[index] -= 2*signal[index-6]

 if (index >= 12):

 sig[index] += signal[index-12]

 # Copy the result of the low pass filter

 result = sig.copy()

 # Apply the high pass filter using the equation given

 for index in range(len(signal)):

 result[index] = -1*sig[index]

 if (index >= 1):

 result[index] -= result[index-1]

 if (index >= 16):

 result[index] += 32*sig[index-16]

 if (index >= 32):

 result[index] += sig[index-32]

 # Normalize the result from the high pass filter

 max_val = max(max(result),-min(result))

 result = result/max_val

 return result

