
Citation: Wang, Y.; Liu, Z.; Zheng, W.;

Wang, J.; Shi, H.; Gu, M. A Combined

Multi-Classification Network

Intrusion Detection System Based on

Feature Selection and Neural

Network Improvement. Appl. Sci.

2023, 13, 8307. https://doi.org/

10.3390/app13148307

Academic Editor: Christos Bouras

Received: 12 June 2023

Revised: 4 July 2023

Accepted: 14 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Combined Multi-Classification Network Intrusion
Detection System Based on Feature Selection and Neural
Network Improvement
Yunhui Wang 1,2,†, Zifei Liu 3,†, Weichu Zheng 3, Jinyan Wang 1,2, Hongjian Shi 3,* and Mingyu Gu 4

1 National Key Laboratory of Science and Technology on Avionics System Integration, Shanghai 200233, China;
wang.yh@outlook.com (Y.W.); wangjy121@avic.com (J.W.)

2 China National Aeronautical Radio Electronics Research Institute, Shanghai 200233, China
3 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China; liuzifei@sjtu.edu.cn (Z.L.); sjtu_zwc0518@sjtu.edu.cn (W.Z.)
4 Sino-European School of Technology, Shanghai University, Shanghai 200244, China; 22124558@shu.edu.cn
* Correspondence: shhjwu5@sjtu.edu.cn; Tel.: +86-137-1795-9365
† These authors contributed equally to this work.
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Abstract: Feature loss in IoT scenarios is a common problem. This situation poses a greater challenge
in terms of real-time and accuracy for the security of intelligent edge computing systems, which
also includes network security intrusion detection systems (NIDS). Losing some packet information
can easily confuse NIDS and cause an oversight of security systems. We propose a novel network
intrusion detection framework based on an improved neural network. The new framework uses
23 subframes and a mixer for multi-classification work, which improves the parallelism of NIDS
and is more adaptable to edge networks. We also incorporate the K-Nearest Neighbors (KNN)
algorithm and Genetic Algorithm (GA) for feature selection, reducing parameters, communication,
and memory overhead. We named the above system as Combinatorial Multi-Classification-NIDS
(CM-NIDS). Experiments demonstrate that our framework can be more flexible in terms of the
parameters of binary classification, has a fairly high accuracy in multi-classification, and is less
affected by feature loss.

Keywords: feature loss; network intrusion detection systems; multi-classification; attack-type
identification

1. Introduction

Smart edge computing systems are distributed computing architectures that bring
computing and data processing power closer to the network edge from traditional cen-
tralized cloud computing environments [1]. The design goal of smart edge computing
systems is to place computing resources as close as possible to the data generation source
or data usage endpoint to provide a lower latency, reduce network bandwidth pressure,
and enhance user experience.

Smart edge computing systems face important challenges. Security and privacy have
become more complex and critical in distributed environments [2,3]. Protecting systems
from the threat of cyber attacks, data breaches, and malicious behavior is critical. At the
same time, ensuring the security and privacy of data during transmission and storage, as
well as effective authentication, access control, and vulnerability patching mechanisms, are
key measures to ensure the security and privacy of smart edge computing systems.

One security measure in smart edge computing systems is NIDS (network intrusion
detection system), which is used to monitor and detect potential intrusions in network
traffic. NIDS detects intrusion attacks before they cause harm to the system and uses the
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alarm and protection system to expel them [4]. After the attack, information about the
intrusion attack can be collected and added to the knowledge base as a prevention system,
thus enhancing prevention capability [5]. NIDS should provide a better picture of the
system and facilitate establishing a system security system.

A large proportion of NIDS is based on machine learning for algorithm design. Ma-
chine learning methods have been used to try to improve IDSs to detect malicious com-
munications [6]. In addition, benchmark datasets on malware and cyber attacks have been
published to provide IDS research [7–9]. Deep neural networks [10,11] can learn complex
causal relationships by training large amounts of data; after training is complete, detection
can be performed quickly, regardless of the amount of training data [12].

NIDS consists of several stages: data collection, pre-processing, FS (feature selection),
and classification. Recently, attention has been focused on FS and optimization techniques to
select basic features. Feature selection has proven to be an effective method to prepare large
amounts of dimensional data for machine learning and data mining [13]. The FS phase is
critical because NIDS must process large amounts of data, and the direct use of raw feature
sets leads to a significant decrease in efficiency [14]. At the same time, edge computing
systems in IoT environments may not be able to provide the full functionality and features
of certain devices due to the diversity of devices, network connectivity, and resource
constraints. By performing feature selection, features that are irrelevant or unimportant for
the data analysis task in a particular scenario can be eliminated. This reduces the feature
dimensionality and reduces the computational complexity of model training and inference,
while also reducing sensitivity to feature incompleteness.

However, the detection rate of NIDS also decreases due to the loss of some features
caused by FS. This is unacceptable for IoT environments with high traffic [15]. Also, current
NIDSs mainly support binary classification; they only determine whether a packet is anoma-
lous or not. For multi-ecological network systems, the large number of data values leads to
systems that often have multiple security measures. Binary classification is challenging in
informing and guiding other security deployments, which is very detrimental to systems
in the IoT.

In this paper, we propose a new network intrusion detection framework named CM-
NIDS, which is divided into two main parts: pre-processing and multi-classification. In the
pre-processing part, we filter the dataset and select features based on genetic algorithms
(GA) to obtain the feature set. In the multi-classification part, we use K-Nearest Neighbor
(KNN) to determine the type of packets and an innovative combinatorial architecture based
on a neural network to determine the particular type of data packet.

The main contributions of this work are as follows:

(1) Introduction of CM-NIDS: This work presents a new network intrusion detection
framework called Combined Multi-Classification-NIDS (CM-NIDS). This framework
is based on an improved neural network and supports other security systems by
accurately matching the attack type of the packets. The introduction of CM-NIDS
addresses the need for effective network intrusion detection and enhances overall
system security and parallelism.

(2) KNN-GA-Based Feature Selection: This work proposes a feature selection approach
using a combination of the K-Nearest Neighbors (KNN) algorithm and Genetic Algo-
rithm (GA). This approach significantly reduces the number of parameters the neural
network uses, leading to reduced communication and memory overhead. Addition-
ally, it helps mitigate the impact of feature incompleteness, thereby improving the
model’s robustness and performance. Introducing this feature selection technique
contributes to more efficient and effective network intrusion detection.

(3) Data Pre-Processing and Feature Selection: This work emphasizes the importance of
data pre-processing methods and specifically highlights the significance of feature
selection. The authors provide detailed insights into the pre-processing techniques
employed, which contribute to improving the quality and relevance of the input data.
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(4) Comparative Evaluation: This work evaluates the proposed CM-NIDS framework
alongside existing frameworks. The evaluation demonstrates that CM-NIDS achieves
higher attack-type matching rates than other methods.

The remainder of this paper is as follows. Section 2 describes the methodology of our
proposed CM-NIDS approach. Section 3 illustrates the results and discussion. Section 4
concludes this research work.

2. Related Works

The Internet of Things (IoT) is a transformative technology that connects everyday
objects to the internet, enabling them to send and receive data. It involves a vast network of
interconnected devices, ranging from simple sensors and actuators to complex machinery,
vehicles, and even smart homes and cities. In recent years, as networks have grown, the
data traffic from IoT has created challenges for security maintenance. Waseem et al. [16]
discuss the current scale and security challenges facing the IoT, provide a detailed analysis
of the attacks emerging at each layer of the IoT, and argue for the need for a comprehensive
security framework. Ramalingam et al. [17] think that the rapidly expanding volume of
computerized matter poses many research challenges for efficiently storing, processing,
and viewing large quantities.

A network intrusion detection system (NIDS) detects behavior that compromises the
security of a computer system by collecting information. Its ultimate aim is to identify
potential attacks from the flow of messages on the network. Ennaji et al. [18] propose five
collaborative learning models for the IDS problem, aiming at classifying network traffic
and achieving optimal results. This is based on a stacked integrated learning technique
considering some essential machine learning algorithms. However, they only consider
10 features that do not meet the needs of real situations.

Over the past decade, researchers have proposed various ML- [19] and DL-based
techniques to improve the efficacy of NIDS in identifying malicious threats. Nevertheless,
the significant increase in network traffic and associated attack vectors has created chal-
lenges for NIDS systems to identify malicious intrusions. Tosin et al. [19] applied four
machine learning models in parallel, K-Nearest Neighbor (K-NN), Parsimonious Bayes
(NB), Logistic Regression (LR), and Artificial Neural Network (ANN) with multilevel fea-
ture selection methods, and compared multiple metrics to determine which model has the
best detection capability in terms of accuracy. Desale et al. [20] used the Genetic Algorithm
(GA) to optimize a feature analysis, reducing the number of features selected and the cost
of feature maintenance.

The IoT environment is prone to feature loss problems due to network transmission
problems, energy limitations, sensor failures, and data collection and storage problems,
which can be solved with feature selection. Recent research on NIDS has partly focused on
FS (feature selection) techniques and optimization techniques to select the most important
features. Jyoti et al. [21] provide an overview of feature selection methods used in NIDS,
describe existing feature selection frameworks and classifications for NIDS, and argue that
there is an urgent need for new FS to meet the demands of big data. Su et al. [22] consider
the feature redundancy of FS and propose a learning automata approach to select optimal
and salient features for network traffic intrusion detection. Heather et al. [23] pre-process
feature detection, and features were pre-screened based on an existing and admittedly
more comprehensive dataset to improve the efficiency of machine learning.

3. Materials and Methods
3.1. Framework

Our work is divided into two main modules, pre-processing and multi-classification.
The main purpose of pre-processing is to perform feature selection to reduce the impact
of feature loss on NIDS and reduce the workload of NIDS, improve efficiency, and reduce
memory usage. Multi-classification is based on neural networks to improve the parallelism
and accuracy of NIDS. Their organizational structure is shown in Figure 1.
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Figure 1. The overall framework of our model. The yellow parts are the two important components
of our model, data pre-processing and multi-classification, respectively. The two components of data
pre-processing are shown in blue, the process of multi-classification is shown in green boxes, and the
arrows indicate the data flow direction.

Pre-processing includes two parts: data pre-processing and feature selection. The
output of pre-processing is the filtered dataset and the selected feature set. The work of
multi-classification is taking the previous dataset and determining the specific type of
attack; its final output is the type of attack for all abnormal packets.

3.2. Pre-Processing

We used the representative KDDCup99 dataset [24], which is a stream-based dataset
with additional information from packet-based data or host-based log files. These data are
available in a total dataset volume and 10% data volume. They have 41 features with five
distinct attack classes. The specific types of attacks they include are shown in Table 1.

Table 1. Specific attack types in KDDCup99, corresponding to five attack classes.

Attack Categories Specific Attack Types

DoS Back, land, Neptune, pod, smurf, teardrop
Probe Ipsweep, nmap, portsweep, satan

R2L ftp_write, guess_passwd, imap, multihop, phf,
spy, warezclient, warezmaster

U2R buffer overflow, loadmodule, perl, rootkit

For data pre-processing, our input is the initial dataset, and we obtained numerical
datasets that can be used directly for FS through pre-processing. The pre-processing of
the dataset consists of two steps: the conversion of character-based features to numeric
features (the next part we will refer to as the conversion), and numerical normalization.
In the conversion part, we performed the following: convert all feature types (including
normal) into numeric identifiers.
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In the numerical normalization part, we first calculated the mean and mean absolute
error for each attribute using the following formula:

xk =
1
n

n

∑
i=1

xik (1)

Sk =

√
1
n

n

∑
i=1

(xik − x)2 (2)

where xk denotes the mean value of the kth attribute, Sk denotes the mean absolute error of
the kth attribute, and xk denotes the kth attribute of the i-th record.

Then, we apply the normalization metric to each data record:

Zik =
xik − xk

Sk
(3)

where Zik denotes the kth attribute value of the i-th data record after normalization.
We then normalize each value to the interval [0, 1] as follows:

x∗ =
x−xmin

xmax − xmin
(4)

where xmax is the maximum value of the sample data, xmin is the minimum value of the
sample data, and x is the previously obtained data. In this way, the data pre-processing
gives us a numerical, normalized dataset suitable for FS use.

For feature selection, we used feature selection to obtain the feature set that can be
used for classification. FS is the method of selecting unique features based on specific
criteria in machine learning. For a dataset, three components do not contribute to feature
selection, which we call noise. These noises are irrelevant, redundant, and noisy. We
distinguish between these three types of noise by using Table 2 as follows.

Table 2. Different feature components during feature selection.

Feature Type Description Accuracy Training Time

Strongly Relevant It is necessary for an optimal feature subset. High Low
Irrelevant It cannot help discriminate between supervised or unsupervised data. Low High

Redundant It can be completely replaced with a set of other features. Low High
Noisy It is not relevant to the learning or mining task. Low High

In feature selection, feature subsets are selected from the original feature set based
on feature redundancy and relevance [25]. We considered GA-KNN as our algorithm. In
machine learning, one of the uses of Genetic Algorithms is to obtain the correct number of
variables to create predictive models. The use of GA for FS has been more widely discussed
and researched [26,27]. Feature selection techniques are used to accurately identify relevant
subsets of features, reducing the number of dimensions to improve overall efficiency.
Feature selection helps reduce the possibility of overfitting while reducing the effect of
feature loss by focusing on certain features.

In this process, the addition of KNN improves the efficiency of GA. This is because it
can artificially enhance the composition of the population by selecting new members that
are closer to quality individuals as much as possible.

The pseudocode of GA is as Algorithm 1.
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Algorithm 1. GA for feature selection

1 Initialize population P from the dataset randomly
2 for each iteration do
3 Randomly select a subset of the population P as Psub
4 Crossing operation:
5 for each pair of individual(Pi,Pi+1) in Psub do
6 Generate a random probability p
7 if Pc > p then
8 randomly choose position Pa.
9 Exchange the genes
10 Pi = [ . . . , Pa

i+1, Pa+1
i+1, Pa+2

i+1, . . . ]
11 Pi+1 = [ . . . , Pa

i, Pa+1
i, Pa+2

i, . . . ]
12 end if
13 end for
14 Mutation operation:
15 for each individual Pi in Psub do
16 Generate a random probability p
17 if Pm > p then
18 Random change a gene in Pi with a random device
19 end if
20 end for
21 Reverse operation:
22 for each individual Pi in Psub do
23 Randomly choose two positions Pa and Pb where Pa < Pb
24 Reverse the genes between Pa and Pb to get Pi′

25 if f (Pi′ ) > f (Pi) then
26 Pi = Pi′

27 end if
28 end for
29 Add Psub into population P.
30 Calculate the fitness values f (Pi) = 1/L[Pi] for all individuals in P
31 Sorted P by descending order of fitness value.
32 Keep the first several individuals in P according to population size
33 end for
34 return The best feature set Sbest = P0

GA simulates natural selection and inheritance. Continuous random selection, crossover,
and mutation operations generate individuals better suited to the environment, converging
into the fittest individuals. This approach yields quality solutions to problems. The 41
chromosome features are converted into binary code for machine learning algorithms. Each
individual’s genotype consists of 41 genes. In GA chromosome coding, binary strings (1 s
and 0 s) represent selected and non-selected feature subsets. Random binary bit assignment
ensures population diversity.

For functional selection, the proposed enhancement of GA in feature selection starts
with the training data as the input and then generates the feature chromosomes. Each
chromosome will be evaluated. The chromosome with the highest classification accuracy
will be selected and considered as the optimized feature chromosome. The next step is to
use the optimized feature chromosomes from the training data to train the KNN (K-Nearest
Neighbor). The KNN algorithm is a basic classification and regression algorithm—a method
in supervised learning. Given a training set M and a test object n, where the object is a vector
with an attribute value and unknown category label. The distance (typically Euclidean
distance) or similarity (typically cosine similarity) between object m and each object in the
training set is calculated. The nearest neighbors are identified, and the top K categories
with the highest frequency among them are assigned to the test object z. This classifier helps
identify network activity classes as normal or abnormal using the calculated accuracy.
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On the other hand, test data are used to evaluate the performance of the classifier to
check whether the trained algorithm is able to generalize new information based on the
evaluation results encountered from the training data. This process will improve the new
generation of chromosomes without sacrificing population diversity.

The selection operation ensures that the best chromosomes representing the best
solution will be selected as parents to produce better-performing offspring for the next
generation. This study used tournament selection. After selecting the best-performing
chromosomes, crossover operations were applied to produce new progeny, resulting in
better chromosomes. This is performed by mixing the parents’ genes using crossover
probabilities (Pc). This study applied a single-point crossover. The mutation is performed
with random bit-flip mutations in individual chromosomes, where substrings are randomly
selected and flipped using the mutation probability (Pm). Specifically, we randomly
selected and reversed a contiguous segment of a selected individual’s genes. Here, we
used 30 iterations, a crossover rate (Pc) of 0.7, and a variation rate (Pm) of 1/41, i.e., 0.02.
The algorithm described above was designed to efficiently select features with the highest
accuracy scores in the training data.

3.3. Multi-Classification

For multi-classification, we already obtained the dataset and the feature set. For this
section, we obtained the specific type of attack on the set of anomalies. For the sake of
description, we consider the normal packet as a particular case of the abnormal packet.

We did not use a neural network directly for the classification of the anomaly dataset.
Instead, it was deformed and simplified to some extent. On the one hand, the penalty
of error detection is too small for the neural network to provide a good training effect.
On the other hand, we simplified the multi-classification step as much as possible; the
direct deployment of neural networks is unrealistic due to the parameters and complexity
of deploying neural networks at a particular scale [28]. Edge devices usually have a
limited computational power and storage resources. Neural networks usually require
many computational resources to perform training and inference tasks, especially when
the models are large and the number of parameters is large. The computational power of
edge devices may need to be improved to meet the high requirements of complex neural
networks. Parallel computing can accelerate the training and inference process of neural
networks by simultaneously utilizing multiple computing devices or processing units,
thus improving overall performance and efficiency. We improved the architecture of the
multi-classifier by splitting it into 23 binary classifiers, resulting in the attack set. The
framework is shown in Figure 2.

As shown in Figure 2, using neural networks alone for multi-classification means that
the packets need to be matched directly for 23 cases, which is demanding regarding the data
volume and computing power. We improved the above algorithm by delivering the packets
to each of the 23 binary-classification neural networks simultaneously. Each neural network
was responsible for determining whether the packet was of one of its corresponding types.
We set up a mixer after the 23 neural networks, which aggregated and decided the type
of packets.

The results of the sub-models were integrated through the classifier layer. Specifically,
each sub-model output a two-dimensional vector representing the probabilities of the
corresponding sample belonging to two different classes. These output vectors were
processed through the classifier layer, which consisted of a linear layer that mapped the
input dimension from 23 to 23.
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The pseudocode of CM-NIDS is as Algorithm 2.
The final output vector can be viewed as a prediction for multi-class classification,

where each dimension corresponds to a class, and the values indicate the model’s confidence
or probability for that class.

The integration process is not performed directly within the sub-models but rather
through the model’s overall structure. The outputs of the sub-models are passed as inputs
to the classifier layer, which linearly maps these outputs to generate the final prediction.
Through the forward propagation process of the entire network, the input features undergo
processing with the feature layer, multiple sub-models, and the classifier layer to obtain the
predicted class for the input sample.

Overall, our model leverages multiple sub-models to learn diverse and specialized
feature representations, integrates their outputs through a classifier layer for ensemble
benefits, allows flexibility in adapting to different tasks and datasets, increases model depth
for enhanced expressive capacity, and provides interpretability through a clear delineation
of sub-model functionality. These characteristics contribute to an improved performance,
broader representation capabilities, and a better understanding and interpretability of the
model, advancing the application of neural network models in scientific research.

We obtained specific types of abnormal attacks to facilitate a detailed and reliable
reference for other network security systems. Our model can be better adapted to edge
networks. First, since the model is split into multiple sub-models, these can be deployed
on different nodes or devices of the distributed system, thus enabling parallel computation
and processing. Such parallelism can accelerate the inference process of the model and
improve the overall computational efficiency and throughput. Second, for edge networks,
the structure split into multiple sub-models may be better adapted to the characteristics
of the edge environment. Edge networks usually have limited computational resources
and bandwidth and must make real-time decisions and reasoning locally. By splitting the
model into multiple sub-models, the computation can be distributed to the edge devices,
reducing the reliance on the central server and communication overhead. This distributed
deployment can improve the real-time responsiveness and reliability of the edge network.
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Algorithm 2. NIDS based on neural network with 23 sub-structures

Input: Training set D = {(x(n), y(n))}Nn = 1, Validation set V, Learning rate α, Regularization factor
λ, Number of network layers L, Number of neurons Ml.

1 Initialize D, V
2 repeat
3 Random reordering of the samples in the training set D
4 for n = 1 . . . N do
5 Select sample (x(n), y(n)) from the training set D
6 Feedforward calculation of net input z(l) and activation value α(l) for

each layer, up to the last layer
// Feedforward through feature extraction layers

7 for l = 1 to L − 1 do
8 z(l) = W(l)* α(l−1) + b(l)

9 α(l) = σ(z(l))
10 end for

// Feedforward through the 23 sub-structures

11 for i = 1 to 23 do
12 z(L,i) = W(L,i)* α(L−1) + b(L,i)

13 α(L,i) = σ(z(L,i))
14 end for
15 Backpropagation calculates the error δ(l) for each layer
16 for i = 1 to 23 do

δ(L,i) = ∂L(y(n), y(n))/∂z(L,i)

17 end for
18 for l = L − 1 to 1 do

δ(l) = (∂L(y(n), y(n)))/∂z(l)) * (W(l+1)T * δ(l+1))

19 end for
20 for l = 1 to L do

∂L(y(n), y(n))/∂W(l) = δ(l) * α(l−1)T

∂L(y(n), y(n))/∂b(l) = δ(l)

end for

21 Update parameters
22 for l = 1 to L − 1 do
23 W(l) = W(l) − α * ∂L(y(n), y(n))/∂ W(l) − λ * W(l)

24 b(l) = b(l) − α * ∂L(y(n), y(n))/∂ b(l)

25 end for

//Update parameters for the 23 sub-structures

26 for i = 1 to 23 do

W(L,i) = W(L,i) − α * ∂L(y(n), y(n))/∂ W(L,i) − λ * W(L,i)

b(L,i) = b(L,i) − α * ∂L(y(n), y(n))/∂ b(L,i)

end for

27 end for
28 until The accuracy of neural networks no longer decreases on the validation

set V
Output: W, b

4. Results
4.1. Settings

The dataset we used is KDDCup99 (http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, accessed on 2 November 2022), a stream-based dataset enriched with
additional information from packet-based data or host-based log files, so its data is adequate
and representative.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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This experimental section involves three main parts. First, we explain the environment
and settings we used; afterward, we compare our method with others regarding accuracy
and speed. Finally, regarding carrying out other experiments, we analyze them in light of
the above.

We experimented on a seven-device cluster where each device was a GeForce RTX 2080
Ti GPU. The implementation was based on a PyTorch distributed library. In conjunction
with the use of the PyTorch distributed library, we simulated the situation in an edge
network, with distributed training through multiple GPU devices.

In terms of evaluation indicators, we considered two main aspects. Firstly, for NIDS, its
detection and correctness rates for errors are significant. We used TPR, Precision, and Recall
to evaluate this. In statistics, True Positives (TP) are the correctly predicted positive values,
which means that the value of the actual class is yes and the value of the predicted class is
also yes. True Negatives (TN) are the correctly predicted negative values, which means that
the actual class’s value is no and the predicted class’s value is also no. False Positives and
False Negatives occur when the actual class contradicts the predicted class. False Positives
(FP) indicate the situation when the real class is no and the predicted class is yes. False
Negatives (FN) indicate the case when the real class is yes, but the predicted class is no. In
the evaluation index of the binary-classification results, we used the following parameters:

TPR =
TP + TN

TP + TN + FP + FN
(5)

recision =
FP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Furthermore, for multi-classification networks, correctly identifying the type of attack
is fundamental. We call this the type detection rate (TDR):

TDR =
TD

TOTAL
(8)

TD is the number of packets for which the type of attack was correctly identified.
TOTAL is the total number of packets.

It is also essential for NIDS to work efficiently. We compared efficiency as a metric by
using the same dataset and recording the running time of each method.

The backbone of the neural networks we used in our experiments is shown in Figure 3.

4.2. Baseline

We evaluated NIDS primarily in terms of accuracy in dichotomous and multi-
classification. Firstly, we compared the differences between our method and other NIDSs
regarding False Negatives, accuracy, etc. KNN-NIDS [29] uses KNN as the classification
algorithm of the project and uses PCA for dimension reduction. LR-NIDS [30], Bayes-
NIDS [31], DT-NIDS [32], and AB-NIDS [33] use a Logistic Regression, Naive Bayesian
algorithm, Decision Tree algorithm, Ada Boost algorithm, and Random Forest algorithm,
respectively, in the NIDS scenario.
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In order to ensure good training results and evaluate the classifier’s performance, we
combined the above considerations. The F1-Score combines two metrics, Precision and
Recall, to evaluate the overall performance of the model:

F− Sc =
2× rcs× Rcl

Prcs + Rcl
(9)

The higher the value of F-Sc, the better the training effect is proved to be. The results
are as Table 3:

Table 3. Comparison of different algorithms in terms of correct packet detection rate.

Methods TPR Precision Recall F-Sc

CM-NIDS 1.000 1.000 1.000 1.000
KNN-NIDS 0.772 0.157 0.607 0.172
SVM-NIDS 0.788 0.147 0.594 0.153
LR-NIDS 0.619 0.076 0.643 0.135

Bayes-NIDS 0.283 0.588 0.624 0.605
DT-NIDS 0.566 0.082 0.699 0.147
AB-NIDS 0.610 0.076 0.652 0.137

For NIDS, its primary task is to identify whether the packets are anomalous or not, so
it has very demanding requirements for the accuracy of binary classification. Our approach
(CM-NIDS) has a clear advantage in binary classification. On the TPR metric, CM-NIDS
outperforms the optimal algorithm by 21 percentage points, and has a clear advantage on
the three remaining commonly used measures of binary classification accuracy (especially
on Precision and F-Sc comparisons). This is partly due to our adequate data pre-processing
combined with KNN-based feature selection and partly due to our use of a more accurate
binary-classification method.
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Furthermore, it is fundamental to correctly identify the attack type for multi-classification
networks. At the same time, we examined the difference between the model and some
classical models in terms of the total tensor used. We were able to see that our model uses
a significantly smaller number of tensors. The comparative algorithms we used include
APFL [34], Ditto [35], FedBN [36], FedFomo [37], and PerAvg [38]. They are all among
more emerging algorithms applicable to NIDS. Our comparison of several algorithms is
shown in Table 4.

Table 4. Comparison of different algorithms in terms of TDR and total tensors.

Methods TDR Total Tensors

CM-NIDS 0.910 2,100,391
APFL-NIDS 0.500 5,537,952
Ditto-NIDS 0.471 5,537,952

FedBN-NIDS 0.502 2,900,832
FedFomo-NIDS 0.640 6,856,712
PerAvg-NIDS 0.394 2,900,832

In terms of TDR, we compared our approach with other frameworks. It is clear to
see that we have an outstanding advantage in terms of attack-type classification. The
CM-NIDS algorithm has a TDR value of 0.910, the highest among the provided algorithms.
This indicates that the algorithm can classify different data classes more accurately and
has a higher detection accuracy in network intrusion detection tasks. Also, the CM-NIDS
algorithm uses a total tensor number of 2,100,391, which is less than other algorithms. This
may imply that the CM-NIDS algorithm requires less computational and storage resources
in the computation process and, thus, is more competitive in terms of efficiency. The smaller
number of tensors may imply less memory usage and computational burden and, therefore,
it can run more efficiently in the same hardware environment. This is mainly due to our
improved approach to multi-classification. It is performed through a combination of binary
classification, resulting in a much higher accuracy rate.

4.3. Other Experiments

In terms of parameters and methods, we conducted separate comparative experiments
on some of the more critical methods and parameters to demonstrate that our framework
is the optimal solution. Our comparison of several algorithms is shown in Table 5.

Table 5. Comparison of different algorithms in terms of accuracy and number of selected features.

Methods FN Accuracy

GA + KNN 3 0.991
PCA + KNN 5 0.989
PCA + KNN 10 0.989
PCA + KNN 15 0.990

In the above table, FN refers to the number of selected features, and we compared
GA and PCA, KNN, and NN. In terms of run efficiency, KNN was much faster than NN.
We have yet to list this set of experiments due to NN’s unpredictably long run time. With
an equal number of FNs, GA was slightly more accurate than PCA. As the number of
FNs increased, the accuracy of PCA + KNN remained essentially constant. However,
the FN of GA is the result of the output under the fitness action rather than a pre-set
parameter. Therefore, the GA + KNN approach has a more significant advantage in terms
of feature selection.

In addition, we deliberately evaluated the robustness of our framework. First, given
that the number of parameters is positively correlated with the training effectiveness of the
network, we adjusted and retrained the parameters. The results are as Table 6.
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Table 6. Comparison of accuracy with the different neural networks with different parameters.

Type ACR Type ACR

True-Set 0.977 APFL-NIDS 0.500
NOM-1 0.909 Ditto-NIDS 0.471
NOM-2 0.885 FedBN-NIDS 0.502
NOM-3 0.790 SVM-NIDS 0.406

KNN-NIDS 0.448

NOM refers to the number of model parameters. For NOM-1, NOM-2, and NOM-
3, the situation of the number of our model parameters is that NOM-2 has the largest
number of model parameters, NOM-1 the second largest, and NOM-3 the smallest. It can
be noticed that as the number of parameters decreases, the worst case of the number of
model parameters remains around 80% and is consistently significantly better than the
other frameworks. Even in the case of the NOM-3 dataset, the ACR of our model is about
twice that of the other methods.

In a realistic network environment, the number of normal packets will far exceed the
abnormal ones. Based on the above premise, we adjusted the ratio of normal to abnormal
packets to 10:1, named the True-Set. For the True-Set, binary classification can work more
evenly, resulting in better results for multi-classification than the previous training.

To illustrate the rationality of the parameters we set on the neural network, we per-
formed parameter tuning to prove that our solution is optimal. And we examined the
performance of our model on other datasets. Figure 4 shows the results of our adjust-
ment of the parameters of Dropout. Here, Dropout = 0.01 is the parameter value we used
in experiments.
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As shown above, our parameters are the optimal solutions for all cases. At the
beginning, there is a significant increase in ACR with the rise of the epoch, but it peaks
after the epoch increases to 40. Similarly, the effect of the Dropout parameter on the ACR
in the experiment yields the same trend. The main datasets compared are two other classic
datasets in the NIDS domain, NSL-KDD (https://www.unb.ca/cic/datasets/nsl.html,
accessed on 2 November 2022) and CIC-IDS-2017 (https://www.unb.ca/cic/datasets/ids-
2017.html, accessed on 2 November 2022). Overall, the accuracy of our model is stable
above 96% under the three datasets, and the multi-classification accuracy of the model is
around 97.5% under the optimal parameters, demonstrating the robustness of our model in
the multi-classification task. It can be seen that the ACR trends are the same on the three
datasets, but the model has a relatively better performance on CIC-IDS-2017, which may be
due to the adequate CIC-IDS-2017 dataset.

To illustrate the benefits of using FS, we set up the following experiment and its result
is as Table 7:

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
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Table 7. Comparison of NIDS systems with FS and without FS in terms of metrics.

Method Dataset With FS? ACR Time Feature No.

CM-NIDS NOM YES 0.8144 28.195 3
CM-NIDS True-Set YES 0.9737 27.619 3
CM-NIDS NOM NO 0.8134 27.313 41
CM-NIDS True-Set NO 0.9733 28.766 41

As the time used for the experiments was related to the amount of data, we kept
the overall amount of data constant and adjusted the other parameters. As mentioned
above, the overall time used remained the same under the different datasets, even though
we increased the FS step. At the same time, the number of features was greatly reduced,
allowing us to use some of the features for accurate classification without acquiring all
of them, in line with the objective reality of the IoT environment and reducing the time
required. There was a 92.68% reduction in the number of feature sets after using FS. This
also means a smaller memory footprint.

We also performed a comparison of the KNN as well as the two neural network
algorithms, the results of which are shown in Table 8.

Table 8. Comparison of accuracy of each algorithm in two cases.

Method Accuracy Case

Neural network 100.00% Binary
Neural network—Single 99.18% Binary

KNN 99.70% Binary
Neural network 91.13% Multi

Neural network—Single 99.15% Multi
KNN 68.05% Multi

Neural network—CM refers to the neural network with 23 sub-structures used in
our experiments, and Neural network—Single refers to a single neural network. From
the above results, it can be seen that the neural network is more accurate than KNN
in determining normal/abnormal packets in a multi-classification situation. The binary
classification accuracy and multi-classification accuracy of Neural network—CM are both
higher than those of Neural network—Single, which proves that our structure is effective.

5. Discussion

We compared our method with others in terms of detection accuracy. In particular,
we used a diverse set of accuracy-related metrics. Our binary-classification and multi-
classification matching rates outperform other algorithms, especially multi-classification.
In addition, we compared the parameters of the neural networks used, the different ways
FS is used, the use of FS or not, the different datasets used, and the performance of the
models under different datasets. Our framework is very robust.

6. Conclusions

This paper shows work on pre-processing by applying a pre-trained GA-KNN al-
gorithm. First, we use a GA for feature selection to perform dimensionality reduction
for attack-type detection, after which we use a KNN algorithm for attack-type matching.
This approach can effectively contribute to the attack detection rate of NIDS in terms
of multiple classifications, thus informing security systems. Meanwhile, we propose a
multi-classification model for anomaly detection based on this and an improved neu-
ral network model that provides detailed guidance for other network security systems.
We also offer solutions such as modified objective functions for the inherent drawbacks
of traditional datasets.
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