
Citation: Ma, W.; Wang, J.; Song, X.;

Qi, J.; Yu, Y.; Hu, D. Data-Driven

Model Space Method for Fault

Diagnosis of High-Speed Train Air

Brake Pipes. Appl. Sci. 2023, 13, 8335.

https://doi.org/10.3390/

app13148335

Academic Editor: Suchao Xie

Received: 22 May 2023

Revised: 3 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Data-Driven Model Space Method for Fault Diagnosis of
High-Speed Train Air Brake Pipes
Weigang Ma *, Jing Wang *, Xin Song, Jiaqi Qi, Yaping Yu and Dengfang Hu

Faculty of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
songxin@xaut.edu.cn (X.S.); 2211221140@stu.xaut.edu.com (J.Q.); 2211221076@stu.xaut.edu.com (Y.Y.);
2211220048@stu.xaut.edu.cn (D.H.)
* Correspondence: mwg_markey@xaut.edu.cn (W.M.); wangjingsgz@163.com (J.W.);

Tel.: +86-15991728902 (W.M.); +86-19834405728 (J.M.)

Abstract: A data-driven fault diagnosis method is proposed in this study to address the challenge of
handling a large volume of pressure data in the air brake pipe of high-speed trains. The suggested
method utilizes a BP (back propagation) neural network to transform the time series pressure data
into model elements in the model space, ensuring simplicity and stability. Various fitting functions,
including Fourier basis, Gaussian basis, polynomial basis, sine basis, and others, are employed to
accurately fit the pressure curve of the air brake pipe. The fault diagnosis process involves two steps:
classifying the fault based on an optimal approximation equation and diagnosing it by analyzing the
topological relationship of the model elements in the model space. The proposed method achieves
an average fault diagnosis accuracy of 89.8%, with high accuracy rates for different fault states:
98% for normal state, 88% for blockage state, 84% for leakage state, and 96% for compressor fault
state. Compared to the hidden Markov model method, the proposed method improves the average
diagnostic accuracy by 2% for known working conditions and 4.87% for all working conditions,
demonstrating its effectiveness and reliability. The fault diagnosis of the air brake tube in high-speed
trains is of great significance, which aims to realize accurate fault diagnosis and prediction through
sensor data monitoring and signal processing technology, so as to ensure the safe operation of high-
speed trains. These studies provide an important theoretical and practical basis for the improvement
and application of fault diagnosis methods.

Keywords: data driven; model space; BP neural network; fault diagnosis; air brake pipe

1. Introduction

High-speed trains have been rapidly developed and are widely used worldwide due
to their fast, safe, and comfortable features [1]. The air brake system plays an important
role in high-speed trains because of its high safety and reliability. As the operating mileage
increases, components such as air ducts, air cylinders, and compressors in the air brake
system inevitably age and become damaged. If not repaired in time, it can easily cause
failure, which is a huge challenge for the safe operation of high-speed railways. Therefore,
research on the air brake system in high-speed trains has important practical significance.

The self-learning ability of neural networks can summarize the rules from a large
amount of data. Even if the operating mechanism of the neural network is not clear, as
long as the neural network is trained, a better input and output model can be established.
Through self-memory and analysis in the neural network, the data types are classified and
processed accordingly. The unique structure and learning ability of a neural network make
it possible to combine the pressure data of high-speed train air brake pipes and improve
the network according to the measured air pipe pressure data, so as to ensure the accuracy
of the predicted data. At present, there are many prediction-based neural network models,
including the single model and hybrid optimization model.
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The single model includes a radial basis neural network, limited learning neural
network, and a BP neural network. Hebei Railway University used the self-developed
settlement deformation test instrument based on hydraulic differential measurements to
create a real-time acquisition and automatic monitoring system using a wireless sensor
network on the Harbin–Dalian passenger dedicated line and after the completion of the
Beijing–Shanghai high-speed rail track laying.

By eliminating interference noise, Kalman filter extracts realistic and effective informa-
tion, which greatly improves the efficiency in data processing. Kalman filtering is used to
estimate and predict the deformation, which fully reflects the motion state of the deformed
body, provides reliable data for the project, and ensures the safe construction of the project.

The hybrid optimization network overcomes the shortcomings of a single model and
networks learn from each other. Research on various combination models is widely carried
out, such as the grey system and neural network combination model, grey system and
ARMA combination model, wavelet analysis and neural network combination model,
and so on. In recent years, crash prediction models (CPMS) have become a useful tool
for railway planning, mainly for accident prediction; Zhai et al. [2] used the optimized
BP neural network to predict the future track of the ship. The results show that the
prediction accuracy is higher than the traditional prediction model, and the practicability is
strong. In addition, there are high-order neural network (HON-PILE model) and SMT-GP
combination model, BPARX combination model, etc. These provide new impetus and new
reference for the development of the combined model.

At present, scholars at home and abroad have performed a lot of research on the
fault diagnosis method of the EMU braking system and have achieved fruitful results.
Tai et al. [3] introduced the structure and composition of the EMU brake control system
and the network topology of the fault detection and diagnosis module, proposed a fault
detection algorithm, and conducted experiments on a type of EMU brake system in China
to verify the effectiveness of the algorithm. Zhou et al. [4] proposed a fault detection index
with mutual variable variance, completed the feasibility analysis of fault detection, and
proposed a fault isolation method. Finally, experiments were carried out on the EMU
brake test bench at Qingdao Sifang Rolling Stock Research Institute Co., LTD, to verify
the effectiveness of the fault diagnosis method. Sang et al. [5] proposed an EMU brake
cylinder early leakage fault diagnosis method for the brake cylinder in the EMU brake
system and conducted experiments on the brake test bench to verify the effectiveness of the
fault diagnosis method. Huang et al. [6] used a neural network to diagnose sensor faults in
the EMU braking control system. Two different learning methods were used in the neural
network algorithm used in the fault diagnosis process, and the diagnosis results obtained
by the two different learning methods were compared based on the electric locomotive air
brake system, the important modules were modelled, such as air cylinders and air ducts,
and their characteristics were analyzed. In addition to using the simulation model and
intelligent algorithm to explore the train air brake system, Sun et al., based on the analysis
of the characteristic parameters of the control valve and brake cylinder, proposed the air
brake based on the train. The multi-parameter mathematical simplification method of
the feature calculates the train braking characteristics [7]. Wei et al. [8]. developed the
train air brake system combined with longitudinal dynamics to simulate the important
parameters of various trains in the running process. Du et al. proposed a vibration-based
fault detection and isolation algorithm based on the three fault characteristics of the master
cylinder pressure, vehicle longitudinal acceleration, and wheel speed. The frequency
response difference between the braking cycle and the normal driving cycle (non-braking)
is used to improve the robustness of the algorithm. The experimental results show that this
method can better diagnose the thickness change fault in the car body and isolate the fault
to each car body rotation angle. Ji et al. [9] proposed a fault detection method combining
the four-stage division idea with the new combined statistics for fault detection in the
high-speed train air brake system and compared it with the traditional IVV method to
prove the superiority of the proposed method. Sang et al. conducted a linear transformation
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of the data from the actual characteristics for three early faults in the air brake system:
sensor deviation fault, leakage fault, and brake cylinder assembly. After obtaining the
approximate stationary property, the multimodal data is mapped to a tight domain, and the
fault signal ratio (FSR) is used to reflect the sensitivity of the proposed detection statistic
to the fault. Finally, experiments were carried out on the braking test platform to verify
the effectiveness of the proposed strategy [10]. Huang et al. [11] proposed an improved
fully integrated empirical mode decomposition based on adaptive noise (ICEEMDAN) and
one-dimensional convolutional neural network (1-D CNN) fault diagnosis method, which
can simultaneously identify the fault state in high-speed train bogies and the location of
fault components. Wang et al. [12] proposed a mixed dual discriminator GAN (M-D2GAN),
which uses different methods to generate different types of variables. The GAN model
was appropriately modified to add a normal class discriminator. Liu et al. [13] effectively
integrated the weighted feature strategy and cost-sensitive learning into the multi-kernel
support vector machine model, which solved the problems caused by class imbalance and
signal heterogeneity.

The above research has achieved great results in the modeling and simulation of
high-speed train air brake systems, air cylinders, ducts, and other important air brake
components, but the results from research on the fault diagnosis are limited. Since the
high-speed train air brake system is a complex engineering system, this will have a negative
impact on the method of relying on traditional mathematical models for fault diagnosis,
which will affect the diagnostic effect. In many traditional fault diagnosis methods, only a
small number of known fault types are assumed, and no new fault types are mentioned.
This argument is flawed [14]. Due to factors such as technological progress, new working
environment, and different usage methods, there may be various unexpected failures in the
air brake pipeline in high-speed trains in reality. If it only depends on the known fault type,
the traditional fault diagnosis method cannot accurately determine the cause of the fault in
the face of new fault types, resulting in inaccurate diagnosis results or even an ineffective
diagnosis. Therefore, in order to improve the accuracy and reliability of fault diagnosis, a
more flexible and adaptive method is needed to identify the known fault types, and new
fault types can be found and diagnosed to improve the comprehensiveness and accuracy in
fault diagnosis.

Aiming at the above problems, this paper proposes a model space based high-speed
train air duct fault diagnosis method based on the existing research. Through data learning,
function approximation, and other methods, the measured wind pipe pressure data in the
time series space is transformed into the model elements in the continuous functional space,
the element neighborhood is calculated, and then the topological relationship between the
elements is used to diagnose the fault. At the same time, this paper defines three known
fault types based on the existing experimental results and builds fault libraries based on
these [15]. When an unrecognizable fault occurs, it is added to the fault pool according to
the cause of the fault.

Fault diagnosis has a wide range of different research applications, such as the fol-
lowing scenarios. Automotive industry: Fault diagnosis is widely used in the automotive
industry, including engine, transmission system, brake system, suspension system, and
other fault diagnosis. Possible faults are diagnosed and fixes are recommended by the
monitoring vehicle sensor data and system status. Energy field: In the process of energy
production and supply, fault diagnosis can be used for fault monitoring and prediction
of energy systems, such as power plants, wind farms, and solar farms. It can help detect
faults in advance and take corresponding maintenance measures to ensure the reliable
operation of the energy system. Manufacturing: In the manufacturing industry, fault
diagnosis can be used for the fault detection and diagnosis of equipment and machines.
Through the analysis of sensor data and signals during the production process, equipment
status can be monitored in real time and potential failures can be detected in time, thereby
reducing downtime and maintenance costs. Aerospace industry: In the aerospace sector,
fault diagnosis is critical to ensuring flight safety. It can be used for fault detection and
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prediction in aircraft systems, including engines, hydraulic systems, electrical systems, etc.
By monitoring aircraft sensor data and system status in real time, faults can be accurately
diagnosed, and necessary measures can be taken to ensure the safe flight of the aircraft.
Medical field: In medical devices and medical systems, fault diagnosis can be used to detect
and diagnose equipment failures and ensure the safety and reliability of medical processes.
For example, in medical imaging equipment, fault diagnosis can be used to detect image
quality problems or equipment failures and provide recommendations for repair. Internet
of Things (IoT): With the development of the Internet of Things technology, a large number
of sensors and devices are connected to the network; fault diagnosis plays an important
role in the Internet of Things system. It can be used to monitor and diagnose failures in
various IoT devices, including smart home devices, smart city infrastructure, and more.

2. Model Space

Traditional fault diagnosis methods are mainly based on mathematical models. Specif-
ically, by comparing the model with the actual calculation results [11], the time series data
can better explain the fault diagnosis based on real-world scenarios. Therefore, in most
traditional fault diagnosis methods, the establishment of mathematical models mainly
depends on the processed time series data. However, due to the traditional fault diagnosis
method using time series mathematical model to characterize the fault characteristics, if
the time series data samples are not rich and the characteristics are not obvious, the model
fitting effect is not ideal and the generalization performance is poor [12,13].

The model space is to transform a model layer above the time series data, transform
the time series data into model elements in the model space, and replace the time series
data with the model elements. The subsequent learning strategies are also directly applied
to the model space instead of the time series space [12,13]. Replacing time-series data with
model elements can make the data description more streamlined and stable, and the model
space is a function space composed of all time series data involved in transforming model
elements, so the model elements become point sets in the model space [12,13]. This idea
can ensure that the learning strategy has a higher approximation accuracy in dynamic and
uncertain environments [12,13]. The current thinking of the model space has also received
extensive attention. Chen et al. used this method to solve various fault diagnosis problems
in different fields, such as the Van der Boer oscillator and Barcelona water supply network
system. Chen et al. uses the sliding window to convert all time series data into multiple
model elements in the model space and uses the classification method to diagnose faults.
In contrast, this paper converts the duct pressure data of the same working condition into
data through data learning and function approximation. A model element in the model
space calculates the neighborhood of the element and solves the problem in fault diagnosis
through the neighborhood relationship. The model space frame is shown in Figure 1.
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In this paper, the duct pressure data used for conversion to model elements is obtained
through BP neural network learning. The BP neural network is a “black box” for the user,
and the learning results cannot be directly used for fault diagnosis. Therefore, you need to
choose the appropriate method to describe the learning results.

First, in the continuous functional space, find a suitable set of basis and coefficients to
express BP neural network learning results as function expressions. In this paper, four base
(Fourier basis, Gaussian, polynomial basis, sinusoidal) design experiments are selected for the
characteristics of duct pressure data, and the multi-order function approximation equation is
calculated based on each basis. Finally, the optimality is selected by the fit K with the base and
equation coefficients. The formula for calculating the fit K is as shown in Formula (1):

K = SSE + RMSE + (1− R_SQUARE) + (1−ADJUSTED_R_SQUARE) (1)

where SSE represents the variance and RMSE represents the root mean square error, R-
square represents the determined coefficient, and the adjusted R-square represents the
corrected determined coefficient. The condition for selecting the best approximation equa-
tion using the fit K is that the order of the approximation equation is as small as possible,
and K is suitable for selecting the basis and coefficient of the equation when it is suitable
for the order of diagnosis.

After determining the optimal basis and coefficient, the function’s best approximation
equation is obtained. For the two model elements F1 and F2 in the model space, the norm
between them is defined as shown in Formula (2):

L(F1, F2) = ‖F1·F2‖ (2)

When the fault data to be tested is brought in, first calculate the norm between the
fault data to be tested and the known fault model elements (air duct normal, air leakage
fault, blocking fault, compressor fault) according to Formula (2), and then pass the known
fault. The topological relationship of the model elements determines the type of fault. If
the norm falls within the neighborhood of a known fault model element, it is considered
that the fault type represented by the fault data to be tested belongs to the known fault
type; if the norm does not fall within the neighborhood of all known fault model elements,
it may be determined. The fault type represented by the data to be tested is an unknown
fault, that is, the fault type indicated by the fault data to be tested belongs to a new fault.

The neighborhood definition of the model elements in the model space is shown
in Equation (3), where R is the neighborhood of a known fault model element, and n is
the number of measured duct pressure cycle data participating in the BP neural network
learning of the model element. The number of measured duct pressure cycle data sets
participating in the BP neural network learning of the model element, G(x), is the best
approximation equation for the model element, and f (x) is the best approximation of
the number of different measured duct pressures participating in the BP neural network
learning of the model element. In the formula, f1(x) represents the best approximation
equation for the first set of measured duct pressure cycle data, and f2(x) represents the
best approximation equation for the second set of measured duct pressure data, and so on.

R =
1
n

n

∑
i=1

L(G(x), fi(x)) (3)

The fault diagnosis in the model space is shown in Formula (4), where Class(j) repre-
sents the fault diagnosis result and j represents the number of known fault model elements.
Gj(x) represents the best approximation equation for the jth known fault model element,
and U(x) is the best approximation equation for the fault model element to be tested.

Class(j) =

{
1, L

(
Gj(x), U(x)

)
≤ Rj

0, L
(
Gj(x), U(x)

)
> Rj

(4)
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When Class(j) is 1, it indicates that the fault type represented by the data to be tested
belongs to the known fault j. When Class(j) is 0, it indicates that the fault type represented by
the data to be tested does not belong to the known fault j, only when there is L > for all j’s. R
indicates that the type of fault indicated by the data to be tested belongs to an unknown fault.

3. Steps in Fault Diagnosis for Air Brake Pipes

In the fault diagnosis for the duct, since the entire diagnostic process requires two
spaces (sequence space, model space), the diagnosis process is divided into two steps: data
conversion in the time series space and fault diagnosis in the model space. The steps in
high-speed train air brake pipe fault diagnosis is shown in Figure 2.
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Data conversion in time series space includes data learning and function approxima-
tion. Data learning is divided into data preprocessing, air duct work cycle data extraction,
and BP neural network learning. In actual operation, because the air duct pressure data has
the characteristics of high redundancy and vacancy data, data preprocessing is required to
obtain better diagnosis results. The type of duct failure is hidden in practice. No data can
directly reflect the fault in the duct, but the duct pressure data shows periodic changes with
the air charge and exhaust in the duct. The change corresponds to the type of duct failure.
Unfortunately, the duct pressure data for the same fault type is different in terms of cycle
and pressure values. This makes it impossible to mathematically establish separate models
for different faults. Because the BP neural network has a strong nonlinear mapping ability
and proves its effectiveness in fault diagnosis problems in various fields, BP neural network
learning can learn different duct pressure data from the same fault as a duct pressure curve
through which this type of fault is represented [13–17]. This is also the necessity of data
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extraction in the duct work cycle and BP neural network simulation. There are also other deep
learning methods that play a guiding role in the fault diagnosis in high-speed trains [17–28].

Function approximation is to transform the learning results in the BP neural network into
model elements in model space through a set of optimal bases and coefficients, and calculate
the neighborhood of the model elements. This is because the learning result in the BP neural
network is still a scatter value, and the inter-model norm cannot be calculated. Only by finding
an appropriate set of bases and coefficients to represent the scatter value as an approximation
equation can the fault diagnosis be performed by the norm. Model elements obtained by
computing known fault function approximations can be saved as a fault library.

Fault diagnosis in the model space is achieved by the topological relationship between
the model elements. Through data learning and function approximation in the known fault
model, the normal model element P1, P2, P3, and P4 in the duct, and the neighborhood R1,
R2, R3, and R4 in the model element are obtained.

When the fault data to be tested is input, data learning of the fault data to be tested is
first performed, the data to be measured is preprocessed, the vacancy data is filled by the
interpolation method, the data redundancy is reduced by using the smoothing function,
and the air duct with the completion period is extracted. Regarding pressure data, the BP
neural network is used to learn the duct pressure data.

Then, the function of the fault data to be tested is approximated by the function
approximation to approximate the optimal equation U(x).

Finally, data transformation and fault diagnosis in the model elements are carried out,
and the model element P to be tested in the model space is calculated. The norm L1, L2, L3,
and L4 between the model element P to be tested and the known fault model element P1,
P2, P3, and P4 is calculated by Formula (2). If the norm falls within the neighborhood of a
known fault model element, the fault type represented by the data to be tested belongs to
the known fault, and if the norm does not fall in all known within the neighborhood of the
fault model element, the fault type represented by the data to be tested is added to the fault
pool as a new fault.

4. Implementing Fault Diagnosis for Air Brake Pipes

In this chapter, the model space method proposed in this paper is used to simulate the
fault diagnosis data and function approximation of the high-speed train air brake pipe, and
the experimental results are visually displayed to verify the effectiveness and efficiency of
the method.

4.1. Data Simulation

Considering the complexity of the high-speed train air brake system, according to the
characteristics of the duct pressure data, a four-layer BP neural network is designed, which
includes an input layer, two hidden layers, and one output layer. The network topology is
shown in Figure 3. Among them, the input layer is the first layer of the neural network,
which receives raw data or preprocessed feature vectors as inputs. The parameters of
the input layer mainly include the input node and input feature vector, and each input
feature corresponds to an input node, which is used to receive input data. The original
data or features are converted into a numerical vector representation as the value of the
input node, that is, the input feature vector. The hidden layer is a collection of one or
more layers of neurons located between the input layer and the output layer. It is used to
process input data and extract key feature representations. The parameters of the hidden
layer mainly include a hidden node, weight, bias, and activation function, wherein each
hidden node receives the output of the previous layer, calculates the weighted sum, and
then obtains the output value through the activation function. The weight represents the
strength of the connection between the input node and the hidden node and is used to
calculate the weighted sum. Bias is a constant term for each hidden node and is used to
adjust the activation threshold of the hidden node. The hidden layer usually uses nonlinear
activation functions (such as Sigmoid, ReLU, etc.) for weighting and nonlinear mapping to
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increase the expressability of the network. The output layer is the last layer of the neural
network, which produces the output of the network. The parameters of the output layer
mainly include an output node, weight, bias, and activation function. Each output node
corresponds to an output result, which is used to represent the prediction or classification
result of the network. The weight represents the strength of the connection between the
hidden node and the output node and is used to calculate the weighted sum. Bias is a
constant term for each output node and is used to adjust the activation threshold of the
output node. The activation function of the output layer is usually selected based on the
specific problem, such as the Sigmoid function for binary classification problems and the
Softmax function for multi-classification problems. In the training process of the BP neural
network, the data set is usually divided into three parts: training set, verification set, and test
set. This study uses cross-validation techniques to more accurately evaluate the performance
of different network structures and parameter settings. By dividing the data set into multiple
training/validation subsets and performing training and validation on different subsets, more
reliable performance evaluation results are obtained. In this study, the training set accounted
for 60%, the verification set accounted for 10%, and the test set accounted for 30%. Since the
number of neurons directly affects the network training time, it is verified that the number of
neurons in the hidden layer 1 is 20, and the number of neurons in the hidden layer 2 is 40.
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The optimal parameters for the number of layers and the number of neurons in a BP
neural network is an iterative process that requires constant trial and evaluation. This study
uses a larger data set, which is more suitable for deep networks because deep networks have
greater expressiveness and learning ability and are able to learn more complex patterns
and features. The number of neurons in the input layer should match the dimension of the
input feature, that is, one input neuron for each input feature. The number of neurons in
the hidden layer is usually determined by experiment and validation. Generally speaking,
increasing the number of hidden layer neurons can improve the expression ability of the
network, but it also easily leads to overfitting. This study selected the optimal number by
gradually increasing the number of neurons and observing performance changes on the
validation set. The number of neurons in the output layer depends on the type of problem.
For the multi-classification problems involved in this study, the number of neurons in the
output layer should be equal to the number of classes.

The same type is selected (normal duct, air duct leakage, duct obstruction, compressor
failure), and the data on the duct pressure with the complete working period under different
working conditions in different working conditions is learned. In order to speed up the
convergence in the training network, the original data is normalized using a normalization
function. At the same time, in order to obtain better learning results, the learning accuracy



Appl. Sci. 2023, 13, 8335 9 of 18

is limited, and the best learning results are found in 1000 data learning. The BP neural
network learning effect is shown in Figure 4.
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Figure 4 shows the effect of the BP neural network on the normal data learning of the
duct. The horizontal axis represents the timing-based data collection point, and the vertical
axis represents the duct pressure. The green curve in the figure represents the raw data for
the duct pressure, and the blue curve represents the neural network learning data. It can
be seen from the figure that the BP neural network is more effective for air duct learning,
and the learning curve is more suitable for the original data curve. The BP neural network
learning error check table for known faults is shown in Table 1.

Table 1. Learning error checks in the BP neural network.

Type Quantity Average Relative Error Maximum Absolute Error

Normal State 0.7820 0.0021 0.0583
Air Brake Pipe Leakage Fault State 0.9605 0.0028 0.0028
Air Brake Pipe Blocking Fault State 0.7868 0.0027 0.0920

Compressor Fault State 1.2889 0.0037 0.0996
Average Error 0.9546 0.0028 0.0919

It can be seen from the error checklist that the BP neural network has a better learning
effect on the duct pressure data and a higher degree of fitting. The average root mean square
error is 0.9546, the average relative error is 0.28%, and the average maximum absolute error
is 9.19%. However, the air duct obstruction fault and the compressor fault are larger than
other state errors in the maximum absolute error and the root mean square error test. This
is because there is a certain time in the several sets of training data that the duct pressure
data points are higher than in the other groups of duct pressure data at that moment.

4.2. Function Approximation

Discrete learning data can be obtained by the BP neural network for duct pressure
learning, but such data cannot directly calculate the norm, so it is necessary to select
appropriate bases and coefficients to express such data.

According to the characteristics of the pipeline pressure data, Fourier basis, Gaussian
basis, polynomial basis, and sine basis are used for the experimental design in the contin-
uous function space. On the basis of each basis, the multi-order function approximation
equation is calculated, and the optimality is selected by fitting the K basis coefficient and
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the equation coefficient, so that the learning result in the BP neural network is expressed as
a function expression. The BP neural network is used to learn the pipeline pressure data.
Through a set of optimal bases and coefficients, the learning results are transformed into
model elements in the model space by function approximation, and the optimal equation is
obtained, so as to prepare for the next fault diagnosis.

Taking the normal learning data of the duct as an example, the Fourier base, Gaus-
sian, polynomial basis, and sine base are selected to perform the first to eighth order
approximation in the BP neural network learning data, and the fit K is calculated.

The calculation results of the four-based function approximation error test table and
the fit degree K are shown in Tables 2–5. The experimental results of the four-base 1 to 8
order function approximation are shown in Figures 5–8.

Table 2. Error checks and fit degree of the Fourier basis function.

Fourier Basis SSE R-Square Adjusted R_Square RMSE K

1-order 4.197 0.8765 0.8745 0.1502 4.5962
2-order 0.428 0.9874 0.9871 0.04823 0.50173
3-order 0.198 0.9942 0.9939 0.03299 0.24289
4-order 0.1968 0.9942 0.9939 0.03307 0.24177
5-order 0.1896 0.9944 0.9941 0.03264 0.23374
6-order 0.1479 0.9956 0.9953 0.02898 0.18598
7-order 0.09264 0.9973 0.997 0.02307 0.12141
8-order 0.07201 0.9979 0.9977 0.02046 0.09687

Table 3. Error checks and fit degree of the Gaussian basis function.

Gaussian Basis SSE R-Square Adjusted R_Square RMSE K

1-order 9.86 0.7098 0.7067 0.2296 10.6731
2-order 1.304 0.9616 0.9606 0.0842 1.466
3-order 0.8978 0.9736 0.9724 0.07043 1.02223
4-order 0.1958 0.9942 0.9939 0.03316 0.24086
5-order 0.1667 0.9951 0.9947 0.03087 0.20777
6-order 0.1623 0.9952 0.9948 0.03072 0.20302
7-order 0.1612 0.9953 0.9947 0.03088 0.20208
8-order 0.1622 0.9952 0.9946 0.03126 0.20366

Table 4. Error checks and fit degree of the polynomial basis function.

Polynomial Basis SSE R-Square Adjusted R_Square RMSE K

1-order 26.13 0.2312 0.2271 0.3728 28.0445
2-order 10.26 0.698 0.6948 0.2343 11.1015
3-order 1.995 0.9413 0.9403 0.1036 2.217
4-order 1.781 0.9476 0.9464 0.09813 1.98513
5-order 1.244 0.9634 0.9624 0.08224 1.40044
6-order 0.4044 0.9881 0.9877 0.04701 0.47561
7-order 0.3481 0.9898 0.9894 0.04373 0.41263
8-order 0.2498 0.9926 0.9923 0.03715 0.30205

Table 5. Error checks and fit degree of the sinusoidal basis function.

Sinusoidal Basis SSE R-Square Adjusted R_Square RMSE K

1-order 10.13 0.7018 0.6986 0.2328 10.9624
2-order 1.132 0.9667 0.9658 0.07845 1.27795
3-order 1.298 0.9618 0.9601 0.08467 1.46077
4-order 0.2164 0.9936 0.9932 0.03487 0.26447
5-order 0.3102 0.9909 0.9901 0.0421 0.3713
6-order 0.2541 0.9925 0.9918 0.03844 0.30824
7-order 0.2134 0.9937 0.9930 0.03553 0.26223
8-order 0.2721 0.9920 0.9909 0.04048 0.32968
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Figure 5. Function approximation curves of the first to eighth order of the Fourier basis function.
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Figure 6. Function approximation curves of the first to eighth order of Gaussian basis function.
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Figure 7. Function approximation curves of the first to eighth order of the polynomial basis function.
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Figure 8. Function approximation curves of the first to eighth order of the sinusoidal basis function.
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The solution is the optimal solution only if the fit K satisfies the diagnostic require-
ments and the approximation equation order is as small as possible. It is verified by
experiments where the function approximation effect can meet the fault diagnosis re-
quirements when K is approximately 0.2. Therefore, the optimal function approximation
equations for the four duct states are shown in Table 6.

Table 6. Optimal equations in function approximation.

Type
Function Approximation

Approximation Method Approximation Method

Normal State 3rd Order Fourier
U(x) = 9.172− 0.3338× cos(x× 0.0305) + 0.4737× sin(x× 0.0305)−
0.2006× cos(2× x× 0.0305)− 0.013× sin(2× x× 0.0305)−
0.0122× cos(3× x× 0.0305)− 0.0718× sin(3× x× 0.0305)

Air Brake Pipe Leakage Fault State 1st Order Fourier U(x) = 9.149− 0.5561× cos(x× 0.0359) + 0.3462× sin(x× 0.0359)

Air Brake Blocking Fault State 3rd Order Fourier
U(x) = 9.2− 0.6427× cos(x× 0.0439) + 0.0169× sin(x× 0.0439)
+0.0368× cos(2× x× 0.0439) + 0.0275× sin(2× x× 0.0439)
−0.0204× cos(3× x× 0.0439)− 0.0701× sin(3× x× 0.0439)

Compressor Fault State 2ndOrder Fourier U(x) = 9.17− 0.5635× cos(x× 0.0318) + 0.18× sin(x× 0.0318)−
0.0791× cos(2× x× 0.0318)− 0.1252× sin(2× x× 0.0318)

4.3. Fault Diagnosis

For the high-speed train duct failure, 25 sets of measured duct pressure data are taken
as an example for diagnosis. Test1 to Test5 are the normal test data of the air duct, Test6 to
Test10 are the air duct blocking fault test data, Test11 to Test15 are the compressor fault test
data, Test16 to Test20 are the air duct leakage fault test data, and Test21 to Test25 are the
unknown fault test. The data and the diagnosis results are shown in Table 7.

Table 7. Results of the air brake pipe fault diagnosis.

Test Data
Distance between Test Data and Different Fault State

Diagnostic Type Diagnostic
ResultNormal

State
Leakage Fault

State
Blocking Fault

State
Compressor Fault

State

Test1 37.2358 1919.9133 2177.4830 721.9825 Normal State True
Test2 42.9296 1947.0545 2207.1937 685.5478 Normal State True
Test3 56.7879 1891.1919 2152.4350 709.6894 Normal State True
Test4 32.5843 1919.9875 2181.7044 700.9639 Normal State True
Test5 46.3860 1906.5605 2171.6021 706.2858 Normal State True
Test6 1957.1840 42.2385 421.4379 2554.5663 Leakage Fault State True
Test7 1907.3857 67.8710 401.3378 2505.9051 Leakage Fault State True
Test8 1940.9620 42.7162 421.0550 2533.5172 Leakage Fault State True
Test9 1929.0792 66.0089 466.9328 2523.4337 Leakage Fault State True

Test10 1956.9832 53.3107 381.9810 2558.9373 Leakage Fault State True
Test11 684.1946 2521.5848 2794.3020 34.7988 Compressor Fault State True
Test12 711.0597 2491.3055 2770.4532 57.9325 Compressor Fault State True
Test13 701.0328 2541.9890 2815.0319 16.6492 Compressor Fault State True
Test14 750.1892 2476.9892 2781.6865 82.7843 Compressor Fault State True
Test15 743.5008 2515.6166 2798.7663 53.8872 Compressor Fault State True
Test16 2174.7052 372.6418 44.4142 2785.1763 Blocking Fault State True
Test17 2187.7097 366.8166 50.4448 2793.8970 Blocking Fault State True
Test18 2204.5154 412.9392 25.7749 2813.7515 Blocking Fault State True
Test19 2222.2124 392.3571 39.9392 2837.8202 Blocking Fault State True
Test20 2213.5172 364.3250 49.3329 2827.1702 Blocking Fault State True
Test21 2300.7249 640.2812 304.0638 2982.2402 Unknown Fault State True
Test22 2891.1955 1142.1557 735.9846 3507.3801 Unknown Fault State True
Test23 2895.6145 1134.3446 728.9325 3511.5424 Unknown Fault State True
Test24 2913.3218 1110.7721 728.9557 3532.4020 Unknown Fault State True
Test25 2906.7712 1105.9850 717.0546 3517.6925 Unknown Fault State True

It can be seen from Table 7 that all test data fault diagnosis results are correct, and the
norm of the same fault type is stable and maintained within the same order of magnitude.
The difference between different fault type norms is large, and the data difference is as high
as one to two orders of magnitude compared with the same fault type norm.
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The distance between the unknown fault model element and the known fault model
element is far from the same, and the empirical distance difference is also maintained at
one to two orders of magnitude. In addition, the norm between the normal model element
of the duct and the compressor failure model element is smaller than the norm between the
normal model element of the duct and the air duct blocking fault model element and the air
duct leakage fault model element. The compressor fault model element also has this feature.

According to the above known fault data (normal air duct, air duct obstruction, air
duct leakage, compressor fault) and unknown fault data, the fault diagnosis experiment
statistics are performed, and each of the four known faults completes 50 experiments, and the
unknown fault is completed in six experiments. The diagnostic results are shown in Table 8.

Table 8. Statistical results in air brake pipe fault diagnosis.

Type Normal
State

Leakage Fault
State

Blocking Fault
State

Compressor
Fault State

Unknown Fault
State

Diagnostic
Rate

Normal State 49 0 0 1 0 98%
Leakage Fault State 0 44 6 0 0 88%

Compressor Fault State 2 0 0 48 0 96%
Blocking Fault State 0 8 42 0 0 84%

Unknown Fault State 0 0 0 1 5 83%
Average Diagnostic Rate 89.8%

It can be seen from Table 8 that the diagnosis method based on the model space
proposed in this paper has a considerable diagnostic effect. The average diagnostic hit rate
is 89.8%. In addition, the statistical results again prove the experimental results in Table 7.
The diagnosis of the normal model type of the air duct and the fault type of the compressor
are mutually causal, and the diagnosis of the fault type of the air duct blockage and the
fault type of the air duct leakage are mutually causal.

The hidden Markov model is a probabilistic model of time series, which is used to
describe the process of randomly generating an unobservable state random sequence from
a hidden Markov chain, and then generating an observation from each state to generate an
observation random sequence. HMM is determined by the initial probability distribution,
state transition probability distribution, and observation probability distribution. Since the
hidden Markov model is a parametric model, when HMM is applied to the field of fault
diagnosis, if the basic parameters of the model are determined, the observed data can be
used to describe the transfer process of the internal operating state of the air brake tube or
to identify the operating state. Compared with the literature [21], the condition of using the
hidden Markov model to diagnose the fault in the air duct is that the model is reliable, but
the engineering system is often more complex in the production environment, resulting in
the model may be inaccurate, which affects the diagnosis effect.

Therefore, a hit rate comparison experiment of two fault diagnosis methods is designed
for the same set of data. The traditional hidden Markov method is compared with the fault
diagnosis method of a high-speed train air brake tube based on the model space proposed
in this paper. The results are shown in Table 9.

Table 9. Comparative results in fault diagnosis based on the model space and the HMM.

Type Model Space Method HMM Method

Existing Fault Type

Normal 98% 98%
Blocking Fault 88% 84%

Compressor Fault 96% 96%
Leakage Fault 84% 80%

Average Diagnostic Rate 91.5% 89.5%
Unknown Fault 83% 66.67%

Average Diagnostic Rate 89.8% 84.93%

Through the comparison table of diagnostic results, it can be seen that the diagnostic
hit rate in the known methods is above 89%, but the hit rate in the new fault in the hidden
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Markov model is lower, and the overall fault diagnosis in the model space diagnosis
method has a slightly higher hit rate than the hidden Markov model. Compared with the
fault diagnosis method based on the model, the model space method can improve the fault
diagnosis rate to a certain extent and has the characteristics of identifying new faults.

5. Conclusions

This paper proposes a fault diagnosis method for high-speed train ducts based on
the model space, establishes a BP neural network learning model for train ducts, and
proposes a method for transforming measured air pressure data in the model space and
model elements in the model space. High-speed train air duct fault diagnosis and new fault
capture is based on the model element topological relationship. Through the proposed
data-driven model space method, accurate fault diagnosis and prediction are further realized,
so as to ensure the safe operation of high-speed trains. These studies provide an important
theoretical and practical basis for the improvement and application of fault diagnosis methods.

In this study, according to the characteristics of the duct pressure data, the Fourier basis,
Gaussian basis, polynomial basis, and sine basis are used to design the experiment in the
continuous function space. Based on each basis, the multi-order function approximation
equation is calculated, and the optimality is selected by fitting the K basis co-efficient and
the equation coefficient, so that the learning result in the BP neural network is expressed
as a function expression. The diagnosis process is divided into data learning and function
approximation in the time series space. The BP neural network is used to learn the duct
pressure data, and function approximation is used to transform the learning results into model
elements in the model space through a set of optimal bases and coefficients to obtain the optimal
equation. Finally, the topological relationship in the model space is used for fault diagnosis. The
fault diagnosis results of the measured duct pressure data in high-speed trains show that the
diagnostic accuracy in the model space method is higher than 84% in the diagnosis of normal
duct, duct blockage fault, duct leakage fault, and compressor fault. The hit rate in fault diagnosis
is 83%, and the average hit rate in overall fault diagnosis is 89.8%. Compared with the hidden
fault diagnosis method based on the hidden Markov model, the average diagnostic hit rate in
four known faults is increased by 2%, and the overall fault diagnosis rate is increased by 4.87%,
which shows the effectiveness and reliability of the diagnosis method.

Aiming at the problem of diagnostic accuracy, generalization, and robustness of high-
speed train duct fault diagnosis methods, this paper uses the model space idea based on the
model element field to study the fault diagnosis method. Although more effective results
have been achieved, there are still some shortcomings to be further improved. However,
only the problem of disjoint neighborhoods of the model elements is considered in the fault
diagnosis, and the intersection problem is not considered. Therefore, the next step will be to
study this aspect. In addition, when establishing the fault model, the method does not take into
account the mode conversion between fault types and needs to be further improved.
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