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Abstract: The panel block is a quite important “intermediate product” in the shipbuilding process.
However, the assembly efficiency of the panel block assembly line is not high. Therefore, rational
scheduling optimization is of great significance for improving shipbuilding efficiency. Currently,
the processing sequence of the panel blocks in the panel block assembly line is mainly determined
using heuristic and metaheuristic algorithms. However, these algorithms have limitations, such as
small problem-solving capacity and low computational efficiency. To address these issues, this study
proposes an end-to-end approach based on deep reinforcement learning to solve the scheduling
problem of the ship’s panel block assembly line. First, a Markov decision model is established,
and a disjunctive graph is creatively used to represent the current scheduling status of the panel
block assembly line. Then, a policy function based on a graph isomorphism network is designed to
extract information from the disjunctive graph’s state and train it using Proximal Policy Optimization
algorithms. To validate the effectiveness of our method, tests on both real shipbuilding data and
publicly available benchmark datasets are conducted. We compared our proposed end-to-end
deep reinforcement learning algorithm with heuristic algorithms, metaheuristic algorithms, and
the unimproved reinforcement learning algorithm. The experimental results demonstrate that our
algorithm outperforms other baseline methods in terms of model performance and computation time.
Moreover, our model exhibits strong generalization capabilities for larger instances.

Keywords: panel block assembly line; deep reinforcement learning; disjunctive graph; graph isomor-
phism network

1. Introduction

In recent years, with the continuous maturation of artificial intelligence technology,
machine learning has provided new approaches for solving scheduling problems in com-
plex and uncertain environments. Moreover, integrating machine learning algorithms
with job scheduling problems aligns more closely with the core principles of intelligent
manufacturing. Particularly, with the ongoing development of deep reinforcement learning
(DRL) [1,2], intelligent agents learn optimal scheduling strategies through interaction with
the environment guided by rewards. This approach has been widely applied to solve
workshop scheduling problems. The panel block assembly line in shipbuilding is a spe-
cialized workshop, but its processing process will encounter bottlenecks such as block
congestion [3]. To address these issues, we propose a DRL-based method to tackle the
scheduling problem of the ship’s panel block assembly line.

The structural composition of a vessel primarily consists of various profiles and steel
materials. The hull of a ship is typically streamlined, but near the midship, the shape
tends to become flat [4]. In modern shipbuilding practices, the entire structure of a ship is
generally divided into several small sections, referred to as blocks. These individual blocks
are then combined to form larger sections or ring sections, which are further assembled
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to create the complete structure of the vessel. A block serves as the most fundamental
intermediate unit in ship structure manufacturing [5]. After the hull is divided into blocks,
based on their internal structural characteristics, blocks with complex structures and large
outer panel curvatures are referred to as curved blocks, while those with flat or nearly flat
profiles are known as panel blocks, as depicted in Figure 1 [6]. For conventional vessels like
bulk carriers and tankers, panel blocks can account for more than 60% of the total number
of hull blocks. In some cases, the proportion of panel blocks can even reach around 80% for
large and ultra-large oil tankers [7]. Furthermore, with the development of larger ships,
such as large bulk carriers, oil tankers, and container ships, which commonly present the
characteristics of longer midship, the demand for panel blocks has significantly increased.
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Due to the extensive processing required for a large number of panel blocks in the ship-
building process, the manufacturing and assembly of panel blocks represent the primary
bottleneck in the entire shipbuilding process. Furthermore, shipbuilding is an order-based
industry, where the panel blocks of the ship for each order have different shapes and
volumes, further increasing the complexity of scheduling for the panel block assembly
line [8,9]. As a result, the assembly process of the panel block assembly line possesses a
high degree of variability and system complexity [10].

However, the production efficiency of most panel block assembly lines is not high [11].
This is primarily due to the continued use of traditional on-site scheduling methods, which
make it difficult to obtain optimized scheduling solutions. For instance, some shipyards
directly prioritize the production of simple blocks before complex ones without employing
means of optimized scheduling to reduce labor hours. Consequently, optimizing the
production plan of the panel block assembly line to enhance the overall shipbuilding
process efficiency is of paramount importance [12–15].

In light of these considerations, this paper proposes an end-to-end DRL approach to
address the scheduling problem of panel block assembly lines in shipbuilding. Initially,
we introduce a scheduling model based on the Markov Decision Process (MDP) [16] and
creatively employ a disjunctive graph to represent the scheduling process of panel block
assembly lines, thereby comprehensively and logically capturing the current state. This
representation effectively integrates the dependencies between operations and the status
of each workstation in the panel block assembly line, providing crucial information for
generating optimal scheduling decisions. Subsequently, we utilize a Graph Isomorphism
Network (GIN) to encode and embed the nodes in the disjunctive graph, enabling effi-
cient computation of the policy network. Based on this approach, we design a policy
network capable of handling instances of panel block assembly line scheduling of any
size, effectively facilitating the generalization from model training to model deployment
without the need for retraining. Finally, we employ the Proximal Policy Optimization
(PPO) algorithm [17] to train our policy network. Extensive experiments are conducted
using real shipyard data and publicly available benchmark datasets, demonstrating that
our proposed method outperforms existing heuristic algorithms, metaheuristic algorithms,
and reinforcement learning algorithms in terms of algorithmic performance and computa-
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tion time. Furthermore, our method exhibits remarkable generalization capabilities when
applied to larger-scale instances. The main contributions of this paper are as follows:

(1) We introduce an end-to-end reinforcement learning approach to learn scheduling
rules, overcoming limitations such as poor model generalization. This method can
effectively solve instances of any scale without the need for retraining;

(2) We present an MDP model for the panel block assembly line scheduling problem,
providing a comprehensive definition of states, actions, and rewards within this MDP
framework. The algorithms utilized for model training are also elaborated upon;

(3) We propose a graph embedding method that employs disjunctive graphs to represent
the state information of the panel block assembly line. This approach directly extracts
scheduling features from the disjunctive graph, marking the first instance of combin-
ing DRL with disjunctive graphs to address the scheduling problem in shipbuilding’s
panel block assembly lines.

The remaining sections of the paper are described as follows: Section 2 provides a
comprehensive summary of the current research status in the relevant field. Section 3
presents the mathematical model for the scheduling problem and describes the back-
ground information on the technologies related to our research. Section 4 elucidates our
research methodology, including the establishment of the MDP model, parameterized
policy network, and the training process of the algorithm. Section 5 presents the experi-
mental procedure and discusses the results obtained. Finally, in Section 6, we present the
conclusions and outline future work for our research.

2. Literature Review

The scheduling process among the workstations in the panel block assembly line is
modeled in this paper as a permutation flow shop scheduling problem with the objective
of minimizing the maximum completion time [18]. Sriskandarajah and Hall [19] have
proven the NP-hardness of such problems when the number of processing machines
exceeds two (m > 2). Currently, heuristic algorithms, metaheuristic algorithms [20,21], and
reinforcement learning algorithms are the mainstream research approaches for solving this
type of problem. The following is a summary of the current research for each method.

2.1. Solving Scheduling Problem via Heuristics

Heuristic algorithms offer advantages such as high solution efficiency and fast com-
putation speed. The Johnson algorithm [22] was the first constructed heuristic algorithm,
which can be applied to the two-machine flow shop problem and yield an optimal solution.
The Palmer algorithm [23] and the Gupta algorithm [24] employ the construction of process-
ing time slopes to solve the permutation flow shop problem (PFSP). This approach involves
converting the slopes of the jobs into function values, sorting them based on increasing
or decreasing rules and arranging the job sequence accordingly. The NEH algorithm [25],
considered one of the most efficient heuristic algorithms, follows the fundamental idea of
prioritizing and allocating jobs based on their total processing time. It then achieves a com-
plete schedule through consecutive job insertions. The priorities of the jobs and the insertion
construction method are the two key aspects of the NEH algorithm. Framinan et al. [26]
proposed three stages in the development of heuristic algorithms, namely index devel-
opment, solution construction, and solution improvement. Through experiments, they
concluded that the priority assignment method of the NEH algorithm is most effective for
the permutation flow shop scheduling problem with objectives of maximum completion
time and machine time constraints.

2.2. Solving Scheduling Problem via Metaheuristics

Conventional heuristic methods can only address small-scale permutation flow shop
scheduling problems. To enhance computational performance, numerous scholars have
employed metaheuristic algorithms to tackle various large-scale scheduling problems. Yu
(2015) [27] proposed a block-based evolutionary algorithm for solving PFSP. They designed
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association rules to extract excellent genes, increasing solution diversity and enabling the
generation of various blocks for artificial chromosome combinations, thereby improving
convergence efficiency. Qun et al. (2015) [28] introduced a hybrid backtracking search algo-
rithm to solve PFSP, establishing a mathematical model with the objective of minimizing
the completion time. They devised new crossover and mutation strategies to incorporate
simulated annealing mechanisms into random insertion local search, preventing premature
convergence to local optima. Korhan et al. (2016) [29] presented an improved iterative
greedy algorithm for PFSP, aiming to minimize total tardiness. They combined this al-
gorithm with random search techniques, further enhancing the quality of the solutions.
Suansh Deb et al. (2018) [30] designed a metaheuristic algorithm based on rhinoceros
natural behavior to minimize the makespan in PFSP. They simplified the search operations
and reduced the number of operation parameters required in the mathematical model.
Morais et al. (2022) [31] devised three optimization algorithms based on discrete differen-
tial evolution to solve the makespan minimization problem in PFSP. While metaheuristic
algorithms outperform heuristic algorithms in terms of solution quality, they still suffer
from drawbacks such as excessive computation time for large-scale problem instances.

2.3. Solving Scheduling Problem via Reinforcement Learning

Considering the fixed structure of heuristic algorithms and metaheuristic algorithms,
the search performance is somewhat constrained. Many researchers have attempted to
utilize reinforcement learning algorithms to solve scheduling problems. Liu et al. [32] em-
ployed a parallel-trained Actor–Critic neural network model to address job shop schedul-
ing problems. The Actor network learns actions under different circumstances, while the
Critic assists in evaluating the value of those actions and returns feedback to the Actor
network. This algorithm achieved promising results in job shop scheduling problems.
Waschneck et al. [33] applied the DQN algorithm to production scheduling, utilizing deep
neural networks to train in a reinforcement learning environment with flexible user-defined
objectives to optimize production scheduling problems. Lin et al. [34] proposed an MDQN
algorithm to solve job shop scheduling problems in an intelligent factory based on edge
computing frameworks, and simulation results demonstrated its superior performance
compared to other methods. Park et al. [35] introduced a framework that combines graph
neural networks with reinforcement learning, yielding excellent results in job shop schedul-
ing problems. Yang et al. [36] employed DRL to investigate dynamic PFSP for implementing
intelligent decision-making in dynamic scheduling scenarios, achieving superior results
compared to heuristic algorithms. Moreover, the trained network can generate a scheduling
action within an average of 2.13 ms. Pan et al. [37] presented a DRL model based on hetero-
geneous networks to solve PFSP, and experimental results demonstrated its remarkable
performance in PFSP problem-solving.

2.4. Research Gap

Both heuristic algorithms and metaheuristic algorithms serve as effective means of
obtaining feasible solutions to scheduling problems. However, as the population size
increases, the computational complexity of these algorithms also grows, resulting in sig-
nificantly longer solution times. Additionally, heuristic algorithms and metaheuristic
algorithms require retraining when tackling problems of different scales, leading to re-
duced efficiency. Moreover, even a minor adjustment in a parameter within heuristic
and metaheuristic algorithms can potentially impact the final results, making them more
suitable for small-scale scheduling problems. On the other hand, reinforcement learning
algorithms only require training once to address problems of all scales without the need for
retraining. However, in the application of reinforcement learning algorithms, most rely on
Deep Q-Networks (DQN) to approximate action-value functions, which cannot directly
optimize policies. Furthermore, the representation of environmental states often relies
on mathematical models, which may not fully capture the scheduling state. To address
these issues and minimize the influence of intermediate processes on the computational
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results, we adopt an end-to-end DRL approach to solve the scheduling problem in the
context of shipyard panel block assembly, with the objective of minimizing the maximum
completion time.

3. Preliminaries
3.1. Description of Scheduling Problem
3.1.1. Symbolic Representation

The symbols used to establish the mathematical model for the scheduling problem in
shipyard panel block assembly are presented in Table 1.

Table 1. Nomenclature for various parameters.

Notation Description

n The number of blocks
m The number of workstations
B The set of blocks
S The set of workstations
i The number of blocks in set B
j The process number of block i

Bi The i-th block
Sj The j-th workstation
Oij The operation of block Bi on workstation Sj
pi,j The processing time of block Bi on workstation Sj
π The processing sequence of blocks

Cmax The maximum completion time
C(πi, j) The completion time of block πi on workstation Sj

3.1.2. Problem Description

The research focuses on the scheduling problem in shipbuilding panel block assembly,
where n panel blocks B = {B1, B2, . . . , Bn} undergo m assembly processes {Qi1, Qi2, . . . , Qim}
in a flow production manner across m workstations S = {S1, S2, . . . , Sm}. In this study, the
assembly processes in the shipyard panel block assembly line are designed to consist of
seven sequential stages, as illustrated in Figure 2, resulting in a total of seven workstations
(m = 7) and seven assembly processes per block. All blocks are processed in the same
order at each workstation, with the constraint that each block is processed only once at
each workstation. The processing times required for each block at each workstation are
known, and infinite buffers exist between workstations [38]. The objective is to find an
optimal scheduling scheme with the goal of minimizing the maximum completion time.
It is assumed that the blocks are processed in the order of workstation 1 to m, denoted as
the block processing sequence π = {π1, π2, . . . , πn}. The mathematical formulation of the
problem is described in Equations (1) and (2).

C(π1, 1) = pπ1,1
C(πi, 1) = C(πi−1, 1) + pπ1,1
C(πi, j) = C(π1, j− 1) + pπ1,j

C(πi, j) = max{C(πi−1, j), C(πi, j− 1)}+ pπi ,j

(1)

makespan = Cmax(π) = C(πn, m) (2)

where i = 2, . . . , n; j = 2, . . . , n; makespan is the maximum time to complete.

3.2. Reinforcement Learning

Reinforcement learning [39] comprises essential components such as agents, environ-
ments, states, actions, and rewards. The interaction between the agent and the environment
occurs through states, actions, and rewards. MDP forms the core of reinforcement learning,
consisting of elements (S, A, P, γ, R), as defined in Equation (3). It encompasses actions
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a ∈ A, states s ∈ S, reward function r = R(s, a), state transition probabilities P(s′|s, a),
and discount factor γ. In this paper, the notations at, st, and rt are employed to represent
the action, state, and reward at step t, respectively. The objective of reinforcement learning
is to maximize the expected return by learning an optimal scheduling strategy.

M =< S, A, P, γ, R > (3)
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Figure 2. Ship panel block assembly process.

3.3. Disjunctive Graph

To express the scheduling state more comprehensively and logically, we utilize a dis-
junctive graph [40] to represent the scheduling process of the panel block assembly line. Let
N =

{
Oij
∣∣∀i, j

}
∪ {S, T} denote the set of all operation nodes, where S and T represent the

virtual start and end nodes, respectively. Therefore, the disjunctive graph G = (N, C, D) is
a mixed graph with O as its vertex set. Here, C represents a set of conjunctive arcs (directed
arcs) that depict the adjacent operation relationships determined by the process, usually
denoted by solid lines. On the other hand, D represents a set of disjunctive arcs (undirected
arcs), denoted by dashed lines, representing the disjunctive arcs between operations that
can be processed on the same workstation. By determining the direction of each disjunctive
arc, a solution for the planar segmented assembly line scheduling instance can be obtained,
resulting in a directed acyclic graph (DAG) [41]. Figure 3a,b illustrate an example of a
disjunctive graph and its solution for a panel block assembly line scheduling instance. In
Figure 3a, which represents a scheduling instance with three blocks and three workstations,
the black arrows depict the conjunctive arcs among operations within the same block,
while the dashed lines represent the disjunctive arcs connecting operations that require the
same workstation across different blocks. Figure 3b presents a complete solution to the
scheduling problem, where each disjunctive arc has a direction, and each node is connected
by at most two disjunctive arcs.
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To enhance the reader’s understanding of the scheduling process for the panel block
assembly line, we present an illustrative example in Figure 4. As depicted in the diagram,
when the input instance consists of five blocks and four workstations, the Gantt chart output
reveals that the optimal sequence for block input should follow the order of 4-2-3-1-5.
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4. Methods

In this section, we present the fundamental principles of our approach. Firstly, we
establish the MDP model for the scheduling problem. Subsequently, we devise a policy
network based on GIN to address the task. Finally, we introduce the training algorithm
employed and provide a comprehensive account of the training process.

4.1. MDP Model

The MDP model serves as a bridge between DRL and scheduling problems. Re-
solving the scheduling problem in panel block assembly can be viewed as determining
the orientations of the disjunctive graphs. The underlying MDP model we establish is
as follows:

State: Due to the limitations of existing methods in providing a comprehensive and
rational representation of the current scheduling state in the planar segment assembly line
and considering the inherent characteristics of the scheduling environment, we introduce
the concept of disjunctive graphs for representation. Disjunctive graphs encompass all
the information related to the scheduling environment, including the processing status
of each workstation and the number of segments currently being assembled. The state
consists of the processing status of each workstation and the blocks placed on the panel
block assembly line. To capture the current scheduling state at step t, we utilize the
disjunctive graph G(t) = (N, C(t), D(t)), where C(t) comprises the set of all connecting
arcs up to step t, and D(t) represents the remaining disjunctive arcs in the graph. The
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initial state s0 represents the initial state of the panel block assembly line before scheduling
begins, while the terminal state st corresponds to a feasible solution when scheduling is
complete, at which point D(t) = ∅, indicating that all disjunctive arcs have been assigned
orientations. As the assembly process progresses, the disjunctive graph provides varying
state descriptions of the current scheduling environment, and in turn, the changes in the
environmental state lead to different disjunctive graphs.

Action: The actions of the intelligent agent involve selecting the block to be placed
in the first workstation during the assembly process of the panel block assembly line.
The design of the action space should thoroughly consider minimizing idle time across
workstations and enhancing their utilization rate.

State transition: As the scheduling environment of the panel block assembly line
constantly evolves, the scheduling state progresses from state st to the next state st+1. When
determining the next action at to schedule, our first step is to identify the earliest feasible
time to allocate at on the required workstation. Subsequently, we update the direction
of the disjunctive arcs for the workstations based on the current temporal relationships,
generating a new disjunctive graph as the new state st+1.

Reward: The rational definition of rewards serves as a prerequisite for successful
learning in reinforcement learning. Rewards should be defined in direct relation to the
objective of minimizing makespan. Therefore, we initially compute the difference between
partial solutions at two consecutive steps, denoted as Ut = C(st+1)− C(st), where C(st)
is defined as C(st) = maxij

{
LBt
(
Oij
)}

, representing a lower bound on the makespan. We
assign the negative value of the difference Ut as the immediate reward for each step t,
i.e., R(at, st) = −Ut. In other words, the cumulative reward corresponds to the negative
makespan when all operations are scheduled.

Policy: For state st, the stochastic policy π(at|st) generates a probability distribution
over actions at, with action selection prioritized based on the probability distribution.

Graph embedding: Graph isomorphic network (GIN) [42] is a kind of deep neural
network [43,44] capable of learning representations of graph-structured data, and it is the
latest variant of graph neural network (GNN). The disjunctive graph we have constructed
encompasses all the information regarding the scheduling states, including the processing
times of blocks at each workstation and the order of block processing. To extract all the
embedded states from the disjunctive graph, we parameterize the policy π(at|st) as a
GIN πθ(at|st) with trainable parameters θ. Given a graph G = (V, E), GIN calculates
p-dimensional embeddings for each node v ∈ V by performing k iterations of update steps.

Action selection: The disjunctive graph provides all the information of the scheduling
environment at each decision step t. By transmitting the context information embedded in
the disjunctive graph to a multi-layer perceptron network, the probability distribution of
all actions at this step t is generated.

4.2. Learning Algorithm

In this paper, we employ the PPO algorithm to train our agent. PPO is an Actor–Critic
algorithm. Detailed information about the PPO algorithm is provided in pseudocode in
Algorithm 1. The Actor refers to the policy network πθ described above, while the Critic
and Actor utilize the same GIN.

We present the scheduling process of our proposed reinforcement learning method
in the ship panel block assembly line in Figure 5. This reinforcement learning model
consists of an Agent that determines the input order of panel blocks and an environment
that captures the current state of the assembly line and the processing information of
each station using a disjunctive graph. The environment provides feedback to the agent
regarding the current processing status of the assembly line. Subsequently, the agent selects
a block to input and makes decisions on the next block to input when certain operations on
the block are completed.
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Algorithm 1. PPO Algorithm for training our model

Input: update epoch k; PPO steps M; number of actors to compute reward and perform update N;
actor network πθ ; behavior actor network πθold

; trainable parameters of actor network θ; trainable
parameters of behavior actor network θold; critic network V∅; trainable parameters of critic
network ∅; clipping ratio ε; policy loss coefficient Cp; value function loss coefficient Cv; entropy
loss coefficient Ce;
1 Initialization: initialize parameter sets of πθ , πθold

and V∅;
2 for m = 1, · · · , M, do;
3 Pick N independent scheduling instances from distribution D;
4 for n=1, · · · , N, do;
5 for t=0, 1, 2, · · · , do
6 sample an,t based on πθold (an,t|Sn,t);
7 Receive reward rn,t and next state Sn,t+1;

8 Ân,t = ∑t
0 Ytrn,t −V∅(Sn, t); rn,t(θ)=

πθ(an,t |Sn,t)
πθold (an,t |Sn,t )

9 if Sn,t is terminal then
10 break;
11 end
12 end
13 LCLIP(θ) = ∑t

0 min
(
rn,t(θ)Ân,t, clip(rn,t(θ), 1− ε, 1 + ε)Ân,t

)
14 LE(θ) = ∑t

0 Entropy(πθ(an,t|Sn,t))

15 LVF(∅) = ∑t
0
(
V∅(Sn,t)− Ân,t

)2

16 L(θ, ∅) = CpLCLIP(θ)− CvLVF(∅) + CeLEθ

17 end
18 for k = 1, 2, · · · , K do;
19 update actor and critic parameters θ,∅ by Adam optimizer

20 θ,∅ = argmax
(

∑N
n=1 Ln(θ,∅)

)
21 end
22 θold ← θ (update, θold)
23 end
24 Output: Trained parameter set of θ
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5. Computational Experiment

In this section, we present the computational results of our method on instances of
various scales. We demonstrate the effectiveness of our model through two validation
approaches. Firstly, we conduct tests using real shipyard data, and secondly, we evaluate
our model using the publicly available Taillard benchmark dataset [45]. To assess the per-
formance of the proposed model, we compare it to six baseline methods, considering both
the minimization of the maximum completion time and the training time of each algorithm.

Datasets: In this study, we trained our model using real processing data of ship hull
blocks on a panel block assembly line. The dataset comprises 40 types of blocks, totaling
287, with their respective processing data across seven workstations. As shown in Table 2,
we randomly selected six blocks to illustrate their processing times at each workstation in
the assembly line. We use a random sampling method to select 50 blocks from several panel
blocks to train our model. Subsequently, the trained model was tested on instances with 25,
50, 75, 100, and 125 planar segments, totaling five cases. To evaluate the effectiveness of
our approach, the trained model was also subjected to nine test sets ranging from 20 × 5 to
100 × 20 using the Taillard benchmark.

Table 2. The processing times of randomly selected blocks at each workstation.

Workstation
Block Number

Block1 Block2 Block3 Block4 Block5 Block6

Plate assembling 2.7 h 3.0 h 3.0 h 3.0 h 3.0 h 2.7 h
Bottom plate welding 4.6 h 4.8 h 4.8 h 4.5 h 4.5 h 4.6 h

Longitudinal bone assembly 2.6 h 2.4 h 2.4 h 2.5 h 2.5 h 2.6 h
Longitudinal bone welding 3.3 h 3.0 h 3.0 h 3.4 h 3.4 h 3.3 h

Ribbed longitudinal Truss assembly 3.8 h 3.5 h 3.5 h 3.6 h 3.6 h 3.8 h
Ribbed longitudinal Truss welding 5.8 h 5.4 h 5.4 h 5.8 h 5.8 h 5.8 h

Inspection and shipping out 2.5 h 3.2 h 3.2 h 2.5 h 2.5 h 2.5 h

Baseline methods: In the two test cases, our model is compared to heuristic algorithms
LPT, NEH, and metaheuristic algorithms GA, TS. Additionally, to demonstrate the effec-
tiveness of our introduced disjunctive graph state representation approach, we contrast
it with DDQN and DRL algorithm PPO which employs traditional state representation
methods. Detailed descriptions of the six baseline methods are provided in Appendix A.

Experimental Settings: Our experiments were conducted entirely in Python 3.8, run-
ning on a computer equipped with an AMD Ryzen 7 5800H/3.20Ghz CPU and an NVIDIA
RTX3050Ti GPU. The selection of appropriate parameters plays a crucial role in the success
of our experiments. Table 3 presents the parameters utilized during the training process of
our model.

Table 3. Hyperparameter configuration.

Hyperparameter Value

Batch size 128
Learning rate 10−4

Learning rate decay factor 0.98
Learning rate decay step 3000

Optimizer Adam
The clipping parameter 0.2

The policy loss coefficient 2

Evaluation metrics: We employ the metrics of makespan and the computational time
of the model to assess the performance of our method and the baseline approaches.
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5.1. Computational Results of the Panel Block Assembly Line

Table 4 presents the computational results of six baseline methods and our approach,
in which the time unit of makespan is hours, as shown by the character h in brackets in
the title of the table. We test five groups of instances of different planar segments. By
comparing them, we can conclude that our method yields a smaller makespan than all the
baseline methods in all cases. Compared with the two models of reinforcement learning,
our method can save 1–2% time, and it can save 10% time compared with LPT.

Table 4. Makespan of each algorithm on the panel block assembly line (h).

Number of Blocks
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

25 180.5 162.7 164.6 163.4 160.7 159.3 157.4
50 327.7 299.8 301.3 299.6 295.1 293.4 289.7
75 457.5 419.4 421.7 420.9 414.3 412.2 407.1

100 613.7 564.6 566.5 564.7 561.6 557.6 550.4
125 753.3 696.1 698.4 694.1 689.5 685.2 674.9

To visually demonstrate the differences between our model and the baseline methods,
we showcase the disparities by taking the differences between the baseline methods and
our model’s results in Table 5. Additionally, we depict a line graph in Figure 6 that intu-
itively illustrates how the magnitude of differences varies with the problem scale. From
Table 5 and Figure 6, it can be observed that our model consistently outperforms the other
methods across all problem instances. The metaheuristic algorithm shows superior perfor-
mance compared to the heuristic algorithm, but the NEH algorithm and the metaheuristic
algorithm perform similarly, with the NEH algorithm even slightly outperforming the
metaheuristic algorithm. Overall, the reinforcement learning algorithm surpasses the other
baseline methods. However, when compared to other reinforcement learning algorithms,
such as DDQN and PPO, which do not use disjunctive graph representation for states,
our algorithm achieves lower makespan. For instance, compared with the DDQN method,
our method can save 3.3 h of processing time when the segment count is 15 and 14.6 h
when the segment count is 125. Therefore, in real shipbuilding scenarios, our approach can
significantly enhance the efficiency of panel block assembly.

Table 5. Comparative analysis of the differences in makespan among the algorithms (h).

Number of Blocks
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

25 23.1 5.3 7.2 6 3.3 1.9 0
50 38 10.1 11.6 9.9 5.4 3.7 0
75 50.4 12.3 14.6 13.8 7.2 5.1 0

100 63.3 14.2 16.1 14.3 11.2 7.2 0
125 78.4 21.2 23.5 19.2 14.6 10.3 0

With the increase in problem scale, it is evident that the disparity between other
algorithms and the algorithm proposed in this paper in terms of makespan is also growing.
The advantages of our method are even more pronounced. For instance, compared to
the PPO algorithm that does not incorporate disjunctive graph representation for states,
the time saved by our algorithm has expanded from 1.9 h to 10.3 h. This signifies that in
practical applications, as ship sizes grow and the demand for panel blocks increases, our
algorithm will save even more time.
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To provide a more comprehensive reflection of the model’s performance, we further
compared the computation times of each algorithm, as shown in Table 6, in which the time
unit of computation time is seconds, as shown by the character s in parentheses in the
title of the table. From Table 6, it can be observed that the LPT algorithm in the heuristic
methods almost instantly yields scheduling results. However, compared to our model, the
reinforcement learning algorithm, metaheuristic algorithm, and NEH algorithm require
slightly longer computation times.

Table 6. Computation time of each algorithm on the panel block assembly line (s).

Number of Blocks
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

25 0.00 2.12 4.36 7.51 1.45 1.53 1.21
50 0.00 2.87 6.32 10.12 1.78 1.85 1.54
75 0.00 4.35 7.94 13.10 2.77 3.02 2.32

100 0.00 7.43 10.22 15.62 4.34 4.67 3.83
125 0.00 10.52 12.53 18.33 5.68 6.04 4.99

Based on the results obtained from Tables 4 and 6, our algorithm achieves superior
scheduling solutions with reduced computational time. Taking the case of a panel block size
of 125 as an example, when evaluating the makespan criterion, the ordering of algorithms
based on time, from longest to shortest, is as follows: LPT, GA, NEH, TS, DDQN, PPO, and
our algorithm. On the other hand, when considering the computational time criterion, the
ordering from longest to shortest is as follows: TS, GA, NEH, PPO, DDQN, our algorithm,
and LPT. It is evident that although LPT exhibits the shortest computational time, it results
in the longest makespan. Conversely, our method achieves the shortest makespan while
also maintaining a computational time that is second only to LPT. Therefore, considering
the comprehensive performance, our approach emerges as the optimal choice.

Similarly, we calculated the differences in computation times between the baseline
methods and our model, as presented in Table 7. These differences were then plotted in
a line graph, shown in Figure 7. Based on Table 7 and Figure 7, it is evident that, apart
from the LPT algorithm, all other baseline methods have longer computation times than
our approach, and as the instance scale increases, the gap in computation times widens.
However, although the LPT algorithm can yield instant results, its processing time for
makespan significantly exceeds that of our algorithm. Therefore, considering the overall
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performance, our model surpasses the other baseline methods and offers a more effective
solution to the scheduling problem in ship panel block assembly lines.

Table 7. Comparative analysis of the differences in computation time among the algorithms (s).

Number of Blocks
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

25 −1.21 0.91 3.15 6.30 0.24 0.32 0
50 −1.54 1.33 4.78 8.58 0.24 0.31 0
75 −2.32 2.03 5.62 10.78 0.45 0.70 0
100 −3.83 3.60 6.39 11.79 0.51 0.84 0
125 −4.99 5.53 7.54 13.34 0.69 1.05 0
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5.2. Computational Results of Benchmark Instances

In this section, we compare the performance of LPT, NEH, GA, TS, DDQN, and PPO
without disjunctive graph representation and our approach to the Taillard benchmark
dataset. Table 8 shows the makespan achieved by each algorithm for each problem scale.
To highlight the differences in results, we have bolded the best results in the table. On the
whole, reinforcement learning is better than metaheuristic and heuristic algorithms. But
also, as a reinforcement learning algorithm, our method consistently achieves the smallest
makespan across all problem instances, surpassing the performance of DDQN and PPO
methods. Particularly, when the number of workstations is fixed at five and the number
of blocks is 20, the disparities between different algorithms are minimal. However, as
the number of blocks increases, our algorithm proves more efficient in time-saving. For
instance, compared to the PPO algorithm, our algorithm can save 0 h, 13 h, and 33.5 h,
respectively, when the number of blocks is 20, 50, and 100. With the increasing number of
blocks, the superiority of our algorithm becomes increasingly prominent.

Table 9 presents the computational time of our approach and all the baseline methods.
From Table 9, it can be observed that LPT remains instantaneous in solving instances of
any scale. Although our method is slower than LPT in terms of computation speed, it
outperforms other baseline methods, which is acceptable in practical industrial production.
Furthermore, when the number of workstations is the same, our model demonstrates the
ability to save more computational time compared to the other five methods, excluding the
LPT approach, as the number of blocks increases. For instance, when compared to the PPO
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algorithm, which does not use disjunctive graph representation for states, our algorithm
achieves respective reductions in computational time of 0.07 s, 0.23 s, and 0.54 s when the
number of blocks is 20, 50, and 100. Moreover, the rate of time savings surpasses the rate of
block increase significantly. This observation further underscores our model’s capacity to
economize computational time as the instance size expands.

Table 8. Makespan of each algorithm on the common benchmark (h).

Problem Instance Size
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

Ta010 20 × 5 1213.4 1108 1108 1108 1108 1108 1108
Ta020 20 × 10 1701 1689.7 1693 1691.3 1657.7 1646.3 1640.2
Ta030 20 × 20 2305.2 2286.1 2278.4 2259.8 2263.0 2256.5 2247.4
Ta040 50 × 5 2901.6 2884.5 2881.6 2875 2879.1 2874.8 2861.8
Ta050 50 × 10 3198 3175.4 3171.5 3162.6 3168.3 3159.5 3145.1
Ta060 50 × 20 3971.6 3951.8 3954 3946.5 3931.4 3903.4 3887.4
Ta070 100 × 5 5560 5483.2 5479.1 5451.5 5452.5 5429.7 5396.2
Ta080 100 × 10 6089.7 6004 5996.4 5989.1 5983.0 5971.8 5949
Ta090 100 × 20 6705.9 6670.8 6658.5 6649.4 6652.3 6649.4 6627

Table 9. Computation time of each algorithm on the common benchmark (s).

Problem Instance Size
Heuristic Metaheuristic Reinforcement Learning

Ours
LPT NEH GA TS DDQN PPO

Ta010 20 × 5 0 1.73 3.75 7.14 0.70 0.79 0.72
Ta020 20 × 10 0 2.14 4.26 7.58 1.19 1.35 1.14
Ta030 20 × 20 0 2.47 5.74 9.77 1.39 1.52 1.31
Ta040 50 × 5 0 2.61 6.22 10.26 1.41 1.58 1.35
Ta050 50 × 10 0 4.21 7.69 12.91 2.64 2.95 2.38
Ta060 50 × 20 0 6.72 8.94 14.59 4.62 5.35 3.42
Ta070 100 × 5 0 7.33 9.59 15.14 5.44 6.28 3.74
Ta080 100 × 10 0 10.87 12.94 17.93 7.65 9.32 4.47
Ta090 100 × 20 0 12.95 15.47 19.66 8.60 10.67 6.61

Based on the results presented in Tables 8 and 9, our method consistently exhibits
the shortest computational time and achieves the smallest makespan across all test cases.
Consequently, when considering the comprehensive performance of the model, it can be
confidently concluded that our approach continues to surpass the baseline methods in the
Tarillard benchmark test.

5.3. Discussion

By comparing our proposed model with six baseline methods in two test cases, our
model outperforms other baseline methods in terms of computation results and computa-
tional time. Among them, the LPT algorithm demonstrates near real-time computation but
exhibits a significant disparity in makespan results compared to other algorithms. Therefore,
under specific conditions that prioritize computation time, the LPT algorithm is undoubt-
edly more suitable. However, when considering the overall performance of the model and
computational time, our method holds a distinct advantage.

As our model’s computational instances scale up from 25 to 125, it continues to
exhibit superior performance compared to other algorithms, showcasing its remarkable
generalization capabilities when handling larger-scale instances. With the development
of larger ships, the demand for panel blocks increases significantly. Thanks to the robust
generalization abilities of our model, our approach can effectively tackle this challenge.
Additionally, it is noteworthy that our model outperforms the PPO algorithm, which
does not utilize disjunctive graph representation of states, in both sets of test experiments.
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In essence, the satisfactory performance of our method can be attributed to the end-to-
end model based on DRL efficiently generating feasible scheduling sequences, coupled
with the disjunctive graph-based state representation method, which provides a more
comprehensive and rational depiction of the current scheduling information. Hence,
our model stands as a competitive approach for solving the ship panel block assembly
scheduling problem. In practical shipbuilding processes, our method can provide scientific
and effective scheduling plans for panel block assembly, reducing construction time for
blocks, and facilitating the execution of subsequent work plans, thereby shortening the
shipbuilding cycle and lowering costs. Moreover, the scheduling method for panel block
assembly lines can offer valuable insights for scheduling other product assembly lines,
thereby comprehensively enhancing shipbuilding management and boosting enterprise
competitiveness.

6. Conclusions and Future Work

This study investigates the scheduling problem of ship panel block assembly lines,
aiming to minimize the assembly time of panel blocks by determining the sequence of
incoming blocks. To address this problem, we propose an end-to-end scheduling method
based on DRL. Initially, we establish an MDP model that conforms to the scheduling
environment, creatively employing disjunctive graphs to capture the state of the current
node and designing a reward function. In order to enhance the learning of information
contained in the disjunctive graphs, we introduce a policy function based on GIN and
train it using PPO algorithms. We compare our proposed model with heuristic algorithms
LPT and NEH, metaheuristic algorithms GA and TS, as well as reinforcement learning
algorithms DDQN and PPO without disjunctive graph state representation. Experimental
results demonstrate that our algorithm surpasses other baseline methods in terms of
both model performance and computational time considerations. Moreover, our model
exhibits strong generalization ability when handling larger-scale instances. In the practical
production of panel blocks, our approach enables shipyards to save significant time, and
as the demand for panel blocks increases with the development of large-scale vessels, our
model can effectively respond to these requirements.

However, it should be noted that our proposed DRL method, being an optimization ap-
proach, does not guarantee the discovery of a globally optimal solution. Due to limitations
in available data, we were unable to test our model on larger-scale instances. Additionally,
in order to simplify the problem, we have made simplifications to the actual process of
panel block assembly in the assembly line. However, in real-world scenarios, scheduling
issues can become more complex, and in the future, we aim to further investigate how
to handle unforeseen events that may arise during the actual assembly process, such as
workstation machine failures or the introduction of urgent tasks. To better address the
scheduling problem in the panel block assembly line, we will enhance the robustness of
our model and validate its scalability by testing on larger-scale instances. Furthermore, we
will continue exploring improved heuristic and metaheuristic algorithms while conducting
additional experiments to verify the consistency of our model across different datasets.
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Appendix A

Appendix A.1. LPT

The LPT algorithm involves arranging segments in non-decreasing order based on
their processing duration and selecting the segment with the longest processing time as the
first to be processed. When a workstation enters an idle state, the remaining task with the
longest processing duration is assigned to that vacant workstation until all tasks have been
sequentially dispatched.

Appendix A.2. NEH

The NEH algorithm is a heuristic algorithm. The steps are as follows: (1) Arrange
the segments to be scheduled in non-increasing order of their total processing time. (2)
Start by taking the first element from the sequence, then take the second element from the
sequence and insert it before and after the first element. This creates two sub-sequences.
Choose the sub-sequence with the smallest makespan as the current sub-sequence. (3) Take
the third element from the sequence and insert it at all possible insertion positions within
the current sub-sequence. This creates three sub-sequences. Choose the sub-sequence with
the smallest makespan as the current sub-sequence. Repeat this process until all segments
have been scheduled.

Appendix A.3. Genetic Algorithm (GA)

The Genetic Algorithm (GA) is a stochastic global search optimization method that
emulates phenomena such as replication, crossover, and mutation observed in natural
selection and genetics. It serves as a computational model for searching for optimal solu-
tions, drawing inspiration from natural selection in evolutionary theory and the biological
evolution process in genetics. Starting from any initial population, the algorithm generates
a set of individuals that are better suited to the environment through random selection,
crossover, and mutation operations. This allows the population to evolve towards in-
creasingly favorable regions in the search space, ultimately converging into a group of
individuals that are best adapted to the environment and yielding high-quality solutions to
the problem.

Appendix A.4. Tabu Search Algorithm (TS)

The Tabu Search algorithm (TS) emulates the human memory function by utilizing
a taboo list to block previously explored regions, thus avoiding redundant searches. It
also grants clemency to certain promising states within the taboo region, ensuring search
diversity and ultimately achieving global optimality. The algorithm begins with an initial
feasible solution and enters a cyclic iterative process. In each iteration, the current solution
undergoes a neighborhood search using a neighborhood selection strategy, generating
neighboring solutions. The optimal solution within the neighborhood, selected based on
an evaluation function, becomes the current solution. The algorithm repeats this iterative
process while evaluating if the current solution surpasses the optimal solution, continuing
until the termination condition is met.

Appendix A.5. DDQN

Random samples of scheduling experience are extracted from the scheduling experi-
ence pool and fed into the DDQN deep neural network model trainer. This trainer updates
the network parameters of the deep neural network scheduling model. The implementa-
tion process is illustrated in Figure A1. In the scheduling experience pool, the scheduling
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experience samples take the form of (s, d, s′, r), where s represents the state of the panel
block assembly line, d represents the scheduling plan, s′ represents the new production
state after applying scheduling plan d to the panel block assembly line, and r represents the
reward obtained when applying scheduling plan d under state s. The DDQN consists of
the Current Network, responsible for action retrieval, and the Target Network, responsible
for action value computation. Both networks have identical structures. We treat the various
system states s in the MDP as input values to the neural network. The output of the
neural network is a Q-table for different actions, where each dimension of the Q-table maps
to a specific action. The value stored at a particular index in the Q-table represents the
Q-value of that action. A higher Q-value indicates greater value and rationality for the
corresponding action.
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Appendix A.6. PPO

The PPO algorithm consists of two networks: a value function network and a policy
network. The agent samples actions from the output of the policy network, while the
value function network evaluates the actions. The parameters of both networks are up-
dated alternately using gradient descent. The PPO algorithm employs a clipped surrogate
performance function to address the reward cliff problem, as shown in Equation (A1).

Lclicp(θ′, θ
)
= ∑(st , at)

min
{

rt(θ)Rθmin(st, at)
clip(rt(θ), 1− ε, 1 + ε )Rθold(st, at)

(A1)

where θ′ represents the new policy parameters, θ represents the old policy parameters,
rt(θ) =

π(at |st , θ′)
π(at |st , θ)

denotes the importance sampling ratio that characterizes the similarity
between the old and new policies, and ε is the clipping parameter. PPO utilizes gradient
ascent to update the parameters, as shown in Equation (A2).

θ′ = θ + α∇θ′L
clicp(θ′, θ

)
(A2)
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