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Abstract: The pressurized capsule structure provides the pressure environment for astronauts or
payloads in space, which is thus considered as the most crucial structural component for manned
spacecraft. The manned deep space exploration mission (MDSEM) brings new challenges to the
pressurized capsule structure: extremely low structural weight, long service life, reusability and
adaptability to the harsh deep space environment. The conventional welded panel pressurized cap-
sule structure (WPPCS) is not able to meet these new requirements. To address the above challenges,
this paper comprehensively expounds why the current WPPCS cannot meet the requirements of
MDSEMs based on the analysis of the vibration environment and structural characteristics of the
pressurized capsule structure. Furthermore, a new type of integrated panel pressurized capsule
structure (IPPCS) is proposed, showing the lightweight advantage compared with WPPCS. Finally,
the technical details and research results of the strength criterion, design method, material upgrading
and structural integrity manufacturing process of the IPPCS are fully introduced. The conclusions
drawn in this paper will provide useful and meaningful references for the future development of
large-size, lightweight pressurized capsule structures.

Keywords: manned pressurized capsule; pressurized capsule; lightweight design; welded panel;
integrated; manned deep space exploration mission

1. Introduction

With the accumulation of achievements in human manned spaceflight and unmanned
lunar exploration, initiating a manned deep space exploration mission starting from
manned lunar exploration is an inevitable development direction [1]. Lightweight de-
sign is an essential requirement for deep space exploration systems where payload weight
determines the scale of exploration. The pressurized capsule structure, due to its advan-
tages of high specific stiffness and high specific strength, is widely used as the primary
load-bearing structure in spacecraft. The structural weight proportion is extremely high
in this application. Therefore, conducting research on the lightweight design of the pres-
surized capsule structure is one of the crucial technological challenges and bottleneck
problems that need to be addressed in manned deep space exploration missions.

The lightweight technology of structures is not only an interdisciplinary engineer-
ing science but also a comprehensive system engineering approach. Achieving a high
lightweight level in structures requires consideration of various factors, such as rational
design criteria, efficient design and optimization methods, high-performance structural
materials and advanced manufacturing processes. To significantly reduce the weight of
the pressurized capsule structure, it is necessary and feasible to comprehensively apply
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the lightweight technology. Pressurized capsule structures have distinct characteristics
compared to general spacecraft structures and impose higher requirements in terms of
functional performance, mechanical performance, sealing requirements, safety reliability,
fatigue life and fracture control. These structures are subject to multiple constraints and
exhibit complex mechanical responses. Therefore, conducting lightweight design for pres-
surized capsule structures under these multiple constraint conditions presents significant
challenges. Conducting targeted research on all aspects of pressurized capsule structure
design and thoroughly exploring each element to reduce structural weight is an important
approach for improving the lightweight level of these structures.

Currently, a widely used structural component for manned pressurized capsule struc-
tures in space station missions is the welded panel pressurized capsule structure [2–5].
In comparison to near-Earth spacecraft, manned deep space exploration spacecraft have
higher requirements for structural weight, service life, reusability and adaptability to space
environments [6,7]. The inherent limitations of WPPCS hinder its direct application in
manned deep space exploration missions. Based on current trends in structural design
development, it is understood that higher structural integration leads to a lower number
of components and structural connectors, thus guiding efforts toward reducing structural
weight. Expanding upon the foundation of WPPCS, an IPPCS has gradually become the
prevailing structural component for manned deep space exploration compartments, driven
by the concept of enhancing structural integration. To comprehensively summarize the
development trends of panel pressurized capsule structures, research and analysis will be
conducted from two perspectives in this paper: the advancement of pressurized capsule
structure technology and the requirements of the MDSEM. This approach will not only
capture the patterns of technological upgrades in pressurized capsule structures but also
provide valuable insights for forecasting future development trends.

The remainder of this paper is organized as follows. Firstly, the function, type, and
flight environment of the pressurized capsule structure are analyzed, the characteristics
of the design load conditions are summarized, and the design constraint system of the
pressurized capsule structure is constructed. Then, the higher requirements and new
demands of the MDSEM for the pressurized capsule structure are analyzed, and the
development direction of the pressurized capsule structure technology is defined. Next,
it is analyzed that the current WPPCS cannot meet the requirements of the MDSEM, and
a new structure of IPPCS is proposed to meet the new requirements. Subsequently, the key
technology analysis of the IPPCS is carried out, and four key technologies such as strength
criterion, design method, material upgrading, and manufacturing process are identified.
The progress of each key technology is investigated and analyzed in detail. These advances
show that the technology of the IPPCS has made a comprehensive breakthrough and has
the engineering application conditions, which makes a good structural technical reserve
for the MDSEM.

2. Overview of Pressurized Capsule Structure
2.1. Pressurized Capsule

The pressurized capsule, also known as a capsule, is a component of a spacecraft that
requires a specific internal pressure to meet the needs of astronauts or equipment such as
payloads during operation. It is a special section of the spacecraft that must withstand and
transmit both the aerodynamic loads generated by the launch rocket and a certain internal
pressure load. The pressurized capsule can create a living environment close to the ground
atmosphere for astronauts in space. Therefore, the pressurized capsule is an indispensable
core module for manned spacecraft.

Manned spacecraft mainly include three types: space station (orbital experiment mod-
ule) [3], manned spaceship and space shuttle. According to whether the pressurized capsule
returns to the ground completely, the pressurized capsule of manned spacecraft can be
divided into the returnable type and the non-returnable type. Among them, the pressurized
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capsule of the space station (orbital experiment module) is the non-returnable type, and
the pressurized capsule of the manned spaceship and space shuttle is the returnable type.

There are many famous manned spacecraft pressurized capsules. In China, these
include the reentry capsule and orbital capsule of the Shenzhou manned spacecraft (as
shown in Figure 1a), the experimental module of the Tiangong-1 space laboratory (as shown
in Figure 1b), and the large column capsule, small column capsule, and node capsule of
the Tianhe core module (as shown in Figure 1c); other countries’ include Russia’s Soyuz
manned spacecraft reentry capsule and orbital capsule (as shown in Figure 1d), the United
States’ Apollo crewed capsule (as shown in Figure 1e) and lunar module, the International
Space Station Japanese Experiment Module (JEM) (as shown in Figure 1f), the Columbus
experimental module [3] and so on.
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2.2. Typical Flight Environment

The non-returnable pressurized capsule mainly experiences flight environments such
as ground stage, launch stage, space orbit stage and so on. The mechanical loads such as
vibration, impact, and acceleration experienced during the launch process and the internal
pressure load of capsule in space are the main design load conditions of the non-returnable
pressurized capsule structure [8].

In addition to the flight environment of the non-returnable pressurized capsule, the
returnable pressurized capsule experiences entry, deceleration and landing (EDL: A set of
procedures required for a vehicle in space to safely land on the earth surface) from the space
orbit, as shown in Figure 2. The aerodynamic thermal load, deceleration and acceleration
load, and landing impact load of the EDL process are the main design loads of the third
part of the structural design of the returnable pressurized capsule [8].
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2.3. Pressurized Capsule Structure

The pressurized capsule structure is the main component of the pressurized capsule,
which maintains the sealed state of the pressurized capsule and bears the load of the
pressurized capsule. Compared with the general spacecraft structure, the pressurized
capsule structure not only has the basic functions of providing configuration, bearing
(generally excluding internal pressure load) and equipment installation but also has the
most important function of bearing internal pressure load and ensuring the sealing function
of the capsule structure. Therefore, the manned pressurized capsule structure is a special
pressure vessel.

Generally, the ratio of the wall shell thickness t (generally 1–5 mm) of the manned
pressurized capsule structure to the minimum curvature radius R (generally more than
1000 mm) of the middle surface is far less than 1, so it can be regarded as the thin-walled
shell structure of the pressure vessel. In the pressure vessel design specification, the stress
caused by internal pressure load on the thin-walled shell can be divided into primary stress
P (divided into primary overall film stress Pm, primary local film stress PL), secondary stress
Q and peak stress F. Figure 3 is the stress classification of a typical pressure vessel shell under
internal pressure. It can be seen that the stress in the spherical region A is composed of the
primary overall film stress Pm, the secondary stress Q and the peak stress F. The stress in the
shell connection regions B and C with different shapes is composed of the primary overall
film stress PL, the secondary stress Q and the peak stress F. According to the different effects
of various stresses on the failure of the pressure vessel structure, the specified allowable
stress limit value is calculated and checked according to the corresponding strength theory.
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If the pressurized capsule structure is only subjected to internal pressure load, it can
be designed as a thin-walled shell like a pressure vessel, that is, a smooth shell structure. In
fact, as a part of the spacecraft, the pressurized capsule has to bear the inertial load during
the launch phase. Therefore, there are very few pressurized capsules with smooth shell
structures in practice. In addition to the internal pressure load, the pressurized capsule
structure generally bears various loads such as axial pressure, axial tension, transverse shear
force, bending moment and local concentrated force. These external loads produce complex
stress on the pressurized capsule structure. On the other hand, the pressurized capsule
structure needs to undergo different load conditions in different flight profiles, and the load
composition and load history of each load condition are very complex. In summary, the
pressurized capsule structure is a special structure that meets the requirements of both the
unmanned spacecraft structure and the pressure vessel structure. Its stress state is complex,
and it is very difficult to carry out stress analysis and stress classification. Therefore, the
lightweight design of the pressurized capsule structure is a huge challenge.

For the pressurized capsules, the internal pressure load is often one of the main loads.
In order to withstand internal pressure loads, the outer surface of the pressurized capsule
structure is generally designed as spherical, cylindrical, conical and other rotary shapes.
According to the different connection forms of the reinforcement parts and the wall shell,
the pressurized capsule structure generally adopts the smooth shell structure, the semi-
monocoque shell structure (Figure 4a) and the panel structure (as shown in Figure 4b).
The reinforcement parts of two kinds of pressurized capsule structure are the partition
frame/truss of the semi-monocoque shell structure of Figure 4a and the panel stiffener of
the welded panel structure of Figure 4b [2–6,9–13]. Among them, the reinforcement parts
and the wall shell of the semi-monocoque shell structure are independent parts, which
are connected into a whole by riveting, welding and so on. The Multi-Purpose Logistics
Module (MPLM) capsule structure strengthens the reinforcement parts and the wall shell
as a whole, and there is no need for riveting, screwing, welding and other connections
between the two parts.
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2.4. The Development Course of Pressurized Capsule Structure

The development of the pressurized capsule structure has gone through three stages:
monocoque shell structure, semi-monocoque shell structure and the panel structure. The
monocoque shell structure has no reinforcement parts, and the overall structure stiffness is
low, so it is not suitable to bear large concentrated load and compression load. The semi-
monocoque shell structure has longitudinal and transverse reinforcing members, which
can withstand large axial and bending loads, and has large stiffness. For example, the
Shenzhou spacecraft reentry module (as shown in Figure 5a), the Russian ‘Soyuz’ spacecraft
orbit capsule and the Russian ‘Salyut’ space station pressurized capsule structure are all
semi-monocoque pressurized capsule structures (s-MPCSs).



Appl. Sci. 2023, 13, 8635 6 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22 
 

spacecraft orbit capsule and the Russian ‘Salyut’ space station pressurized capsule 

structure are all semi-monocoque pressurized capsule structures (s-MPCSs). 

 

Figure 5. Semi-monocoque shell and panel pressurized capsule structure. 

Table 1 summarizes the structure forms of common manned spacecraft pressurized 

capsules in the world. It can be seen from the table that the panel pressurized capsule 

structure gradually replaces the s-MPCS and becomes the mainstream form of the 

pressurized capsules. 

Table 1. Summary of manned spacecraft pressurized capsule structures. 

Serial 

Number 
Type Spacecraft 

Nation/Instit

ution 
Module Name 

First 

Launch 

Date 

Structure 

Form 

1 
manned 

spacecraft 
Vostok Russia 

pressurized 

capsule 
April 196 s-MPCS 

2 
manned 

spacecraft 
Mercury USA 

pressurized 

capsule 

February 

1962 
s-MPCS 

3 
manned 

spacecraft 
Voskhod Russia 

pressurized 

capsule 

October 

1964 
s-MPCS 

4 
manned 

spacecraft 
Gemini USA 

pressurized 

capsule 

March 

1965 
s-MPCS 

5 
manned 

spacecraft 
Soyuz Russia 

reentry capsule 

orbital capsule 
April 1967 s-MPCS 

6 
manned 

spacecraft 
Shenzhou China 

reentry capsule 

orbital capsule 

Novembe

r 1999 
s-MPCS 

7 
manned 

spacecraft 
Apollo USA 

command 

capsule 
July 1969 s-MPCS 

8 
cargo 

spacecraft 
Progress Russia 

cargo 

pressurized 

module 

January 

1978 
WPPCS 

Figure 5. Semi-monocoque shell and panel pressurized capsule structure.

Table 1 summarizes the structure forms of common manned spacecraft pressurized cap-
sules in the world. It can be seen from the table that the panel pressurized capsule structure
gradually replaces the s-MPCS and becomes the mainstream form of the pressurized capsules.

Table 1. Summary of manned spacecraft pressurized capsule structures.

Serial
Number Type Spacecraft Nation/Institution Module Name First

Launch Date
Structure

Form

1 manned spacecraft Vostok Russia pressurized capsule April 196 s-MPCS
2 manned spacecraft Mercury USA pressurized capsule February 1962 s-MPCS
3 manned spacecraft Voskhod Russia pressurized capsule October 1964 s-MPCS
4 manned spacecraft Gemini USA pressurized capsule March 1965 s-MPCS

5 manned spacecraft Soyuz Russia reentry capsule
orbital capsule April 1967 s-MPCS

6 manned spacecraft Shenzhou China reentry capsule
orbital capsule November 1999 s-MPCS

7 manned spacecraft Apollo USA command capsule July 1969 s-MPCS
8 cargo spacecraft Progress Russia cargo pressurized module January 1978 WPPCS
9 cargo spacecraft Automatic transfer

of aircraft
European Space

Agency cargo pressurized module March 2008 WPPCS
10 cargo spacecraft Tianzhou China cargo pressurized module April 2017 WPPCS

11 space laboratory Salyut Russia docking module
orbital module April 1971 WPPCS

12 space laboratory Skylab USA orbital module May 1973 WPPCS

13 space laboratory Tiangong-1
space laboratory China experiment module September 2011 WPPCS

14 space station

Mir

Russia core module February 1986 WPPCS
15 space station Russia Quantum-I/1 module April 1987 WPPCS
16 space station Russia Crystal module May 1990 WPPCS
17 space station Russia Spectrum module May 1995 WPPCS
18 space station Russia Priroda module April 1996 WPPCS
19 space station

International
Space Station

Russia Zarya cargo module November 1998 WPPCS
20 space station USA Unity node module December 1998 WPPCS
21 space station Russia Zvezda service module July 2000 WPPCS

22 space station USA Destiny
experiment module February 2001 WPPCS

23 space station USA Quest airlock module July 2001 WPPCS

24 space station Russia Mooring
compartment module September 2001 WPPCS

25 space station USA Harmony node module October 2007 WPPCS
26 space station European

Space Agency
Columbus

experiment module February 2008 WPPCS

27 space station Japanese Japanese
experiment module March 2008 WPPCS
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Table 1. Cont.

Serial
Number Type Spacecraft Nation/Institution Module Name First

Launch Date
Structure

Form

28
space station China Space Station

China Tianhe core module April 2021 WPPCS
29 China Wentian lab module July 2022 WPPCS
30 China Mengtian lab module October 2022 WPPCS

The panel pressurized capsule structure includes the development of the semi-monocoque
shell structure. The integrity of the structural components greatly improves the structural
efficiency and reliability, and effectively reduces the structural quality. Compared with the
traditional semi-monocoque shell structure relying on riveting and other connection methods,
the panel structure has the advantages of less parts, small assembly workload, short process
cycle, large overall strength and stiffness, and superior sealing performance and anti-fatigue
performance. High reliability and high structural efficiency make the panel structure the best
choice for the pressurized capsule structure of long-term service manned spacecraft represented
by the space station. Russia and the United States have developed the welded panel pressurized
capsule structure on the ‘Mir’ space station and the International Space Station. China, the
United States, Russia and other countries have designed and developed a number of WPPCS,
such as the MPLM capsule structure of International Space Station with WPPCS (as shown in
Figure 4b), experimental capsule structure of Tiangong-1 with WPPCS (as shown in Figure 5b),
Orion manned spacecraft crew capsule structure with WPPCS (as shown in Figure 5c) and
pressurized capsule structure of Tianhe core module with WPPCS (as shown in Figure 5d).

3. Structural Requirements of Manned Deep Space Exploration Pressurized Capsule

Manned deep space exploration missions refer to extraterrestrial missions targeting the
Moon, asteroids, Mars and its satellites, in which human astronauts are directly involved
in the exploration. According to the different target celestial bodies for landing, manned
deep space exploration can be divided into missions such as manned lunar exploration,
manned Mars exploration and so on. Manned lunar exploration is the starting point and
foundation of manned deep space exploration, and is a hot spot of international manned deep
space exploration [6,7]. For example, since 2004, the United States has launched the Project
Constellation, Artemis and so on to develop spacecraft such as Orion, as shown in Figure 6.
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The main structure of manned lunar exploration aircraft, whether manned spacecraft
or lunar module, is the pressurized capsule structure, which requires higher require-
ments [14,15]. These requirements include
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(1) Lower structural weight [16]

The launch cost of manned lunar exploration is several times or even dozens of times
higher than that of near-earth orbit, which requires lower weight and higher efficiency of
spacecraft structures. At present, the structural weight/launch weight ratio of manned space-
craft in China is about 25–35%, which is far from meeting the structural weight requirements
of manned lunar exploration missions. Therefore, structural weight reduction requirements
are extremely urgent to achieve the goal of reducing this ratio to less than 20%.

(2) Longer structural life requirements

In order to realize the in situ detection and resource development of lunar resources,
the working life of manned lunar exploration aircraft in orbit will be longer than 15 years,
such as for the lunar orbit residence platform, lunar base, etc. This requires that the
pressurized capsule structure have a lifespan of more than 15 years under complex load
environments [14].

(3) Reusable function

In order to reduce the mission cost and improve the economy, the manned spacecraft
sealing cabins such as the space-to-ground round-trip transportation system and the space-
to-moon round-trip transportation system for manned lunar exploration should have
reusable functions [6,7].

(4) More complex load conditions [7]

During the reentry of manned spacecraft in deep space exploration, the reentry velocity
increases by more than 40% as it enters the Earth, reaching the second cosmic velocity of
11.2 km/s, and the reentry overload condition becomes larger. New emergency rescue
systems, such as self-escape, result in the aerodynamic load of the ascending segment acting
directly on the spacecraft. Large-scale impact loads during landing, parachute opening and
landing/water landing directly affect the pressurized capsule structure. Therefore, the load
environment experienced by the pressurized capsule structure is extremely complex [8].

(5) Higher spatial environmental adaptability

The manned spacecraft extends from the near-Earth orbit manned spacecraft and
space station to the manned lunar landing spacecraft, the lunar orbit station platform
and the lunar base. The pressurized capsule structure of these spacecraft is subjected to
complex load conditions and more demanding environmental factors, including high and
low temperatures, as well as radiation. Consequently, the pressurized capsule structure
needs to possess enhanced environmental adaptability and be capable of providing long-
term and reliable service in extreme temperature, radiation, lunar dust and other harsh
environments [8].

4. Technical Analysis of MDSEM
4.1. Problems Existing in WPPCS

The panel structure includes the development of the semi-monocoque shell structure.
The strengthening components and the shell of the panel do not need to be riveted, screwed,
welded or connected by other methods but are manufactured as a whole, semifinished
product. Compared with the semi-monocoque shell structure, the panel structure greatly
improves the load-bearing efficiency, fatigue resistance and reliability, effectively reduces
the structural quality, and has the advantages of less parts, short process cycle, high strength
and stiffness [2–4].

Figure 7 is a typical schematic diagram of welded panel parts. The welded panel parts
can be divided into stiffener zone and weld zone. The structural feature of the stiffener
zone is composed of stiffeners and shells, which are integral. The structural feature of the
weld zone is only composed of thickened shells. Obviously, the stiffeners in the stiffener
zone cannot extend to the weld seam.
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Figure 7. Schema of typical welded panel parts [4].

The WPPCS is a whole structure welded by several frames and several panels on the
basis of precise control of the dimension of the welding interface. Figure 8 is a typical
WPPCS; the typical local structure in the Figure 8 consists of four parts, which are panel
1, panel 2, panel 4 and frame 3. The four parts are connected into a whole structure by
welding. The stiffeners of each panel are discontinuous in the weld zone [2].
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Obviously, due to the limitations of structural characteristics and process constraints,
the WPPCS has no stiffeners at the weld zone, and the discontinuous stiffeners between the
panels lead to the non-direct continuity of the force transmission path, which is an insur-
mountable unreasonable structural design [2,14,16,17]. On the other hand, the weight of
the frame of the WPPCS accounts for more than 50% and cannot be significantly reduced.
The above two shortcomings make it impossible to further improve the lightweight level of
the WPPCS, which hinders the application of the panel structure in the MDSEM.

4.2. The Emergence of IPPCS

With the increasing maturity of the overall manufacturing process technology such as
spinning of large-size parts, the IPPCS becomes possible. The integrated panel pressurized
capsule is an integral part without connections (such as welding on the welded panel
pressurized capsule, etc.), and the panel features are directly processed on the whole
semifinished products with the final capsule shape. Since the design domain does not have
the segmentation of the weld zone, the design space of the panel is extended to the global
capsule, and a better design can be obtained through structural optimization [17–22]. The
IPPCS not only realizes the global stiffeners’ continuity of the capsule, but also the weight
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is reduced by replacing the frame with a local panel structure (as shown in Figure 9), which
overcomes the shortcomings of the WPPCS and significantly improves the lightweight
level of the pressurized capsule structure.
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Compared to the WPPCS, the IPPCS eliminates welding influences, further reducing
structural defects and weak points. It allows for a wider range of structural materials
and significantly enhances the reliability of the pressurized capsule structure, improving
its level of lightweight design [23]. Therefore, the integrated panel pressurized capsule
represents a new development direction for panel-based sealed compartments.

5. Research Progress on Key Technologies of IPPCS

The lightweight level of spacecraft structure depends on structural design criteria,
structural design and optimization methods, structural material properties and manufac-
turing process capabilities. The key technologies that need to be broken through to realize
the lightweight of the IPPCS include

(1) The strength criterion of the pressurized capsule structure based on shakedown:
the shakedown limit of the structure is taken as the ultimate bearing capacity of
the internal pressure load of the pressurized capsule structure, which improves the
bearing capacity of the structure (the post-yield performance of the material is applied)
and the safety of the bearing capacity of the structure whose local material is in the
plastic stage.

(2) The design method of the IPPCS: a design process and optimization method for the
IPPCS is proposed, which can guide the design of both local and overall structures.

(3) Upgrading of pressurized capsule structure material: through the application research,
the promotion of material upgrades for the pressurized capsule structure to materials
such as 5B70 aluminum alloy.

(4) The overall manufacturing process of pressurized capsule structure: master the spin-
ning process of large-size parts and lay the foundation for the overall manufacturing
of the pressurized capsule.

5.1. The Strength Criterion of the Pressurized Capsule Structure Based on Shakedown
5.1.1. Problems of Conventional Strength Criterion

The pressurized capsule configuration is generally composed of a cylinder, a cone and
a sphere. Under the action of internal pressure load, the local area of the shape change (shape
transition zone) will produce a large stress concentration, as shown in Figure 10. When the
internal pressure load reaches a critical value, the stress of these stress concentration areas will
quickly approach the yield limit strength of the material. Completely eliminating these stress
concentration areas through structural strengthening will cost a lot of weight, which is not
conducive to reducing the weight of the structure [23,24].
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Figure 10. Local stress concentration in transition zone under internal pressure load [24].

In practice, such as the internal pressure overload test of the pressurized capsule, it is
found that the pressurized capsule structure can still bear stable internal pressure load after
local plastic deformation, but it is not known what is the limit of stable internal pressure
load after plastic deformation of the pressurized capsule structure, and it is also not known
whether the stable load is safe and reliable.

5.1.2. Application of Shakedown Theory on Pressurized Capsule Structure

In structural shakedown, the ideal elastic-plastic structure produces a favorable resid-
ual stress field after a certain amount of plastic deformation under cyclic loading, which
improves the elastic limit load of the structure. Moreover, the accumulated plastic deforma-
tion is stable, which does not affect its initial design function and the failure mode.

From the definition, it can be seen that shakedown theory can analyze and evaluate
the ultimate load that a structure with plastic deformation can withstand. Therefore,
based on the shakedown theory, conducting structural shakedown analysis can evaluate
the feasibility and load-bearing safety of the pressurized capsule structure allowing local
plastic deformation [23–29,29–36].

(1) Shakedown analysis of pressurized capsule structure [23–29,29–36]

The finite element solid model of the large pressurized capsule structure is large in
scale, and the shakedown analysis is difficult to be carried out directly in the solid model
because the number of independent variables and constraints is above one million levels
and the solution time is long and the calculation amount is huge. Since the structure of the
pressurized capsule and the load are symmetrical, the axisymmetric model can be used
for the shakedown analysis. Compared with the solid model, the axisymmetric model
is smaller, the solution time is shorter, and it is more convenient to combine with the
parametric modeling method. By comparing the analysis results of the shakedown analysis
of the pressurized capsule with the solid model and the axisymmetric model, it is shown
that the three-dimensional solid model and the two-dimensional axisymmetric model
have similar characteristics in the shakedown numerical analysis, and it is reasonable to
transform the solid model into the axisymmetric model. The shakedown analysis model
is reduced to a two-dimensional axisymmetric model, which reduces the operation scale
and calculation amount, and lays the foundation for the design and optimization of the
pressurized capsule structure through shakedown analysis.

Through the shakedown analysis, the shakedown load of the pressurized capsule
structure is calculated (under this load, the structure is in a shakedown state, and the local
stress is higher than the yield strength of the material). The maximum shakedown load is
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the elastic shakedown limit of the pressurized capsule structure. The elastic shakedown
limit of the pressurized capsule structure is greater than the elastic limit load (the structure
is globally in elastic deformation, and the maximum stress is equal to the yield strength of
the material).

(2) Experimental verification of shakedown limit analysis of pressurized capsule structure

In order to verify the validity of the shakedown numerical analysis method and
whether the shakedown limit exists, it is necessary to carry out experimental verification
research. To study the shakedown behavior of the structure by experiment, the key is
to investigate if residual strain and displacement at all critical locations identified by
simulation would stop developing after several load cycles. The design ultimate limit
load for the internal pressure is 0.15 MPa, while the calculated stable ultimate limit load
is 0.2765 MPa. Therefore, experimental testing will be conducted at the calculated load of
0.2765 MPa. In the study of [36], the research object was a pressurized capsule of reduced
size. Firstly, the plastic dissipation of the structure gradually converged after 10 times of
shakedown limit cyclic loading through the shakedown analysis (as shown in Figure 11a).
Secondly, the strain and displacement changes at locations of interest were observed by
cyclic internal pressure loading experiments (as shown in Figure 11b). Finally, the numerical
analysis was compared with the experimental results. The experimental results show that
the structure has attained a shakedown state from the time profile of displacement and
strains measured in critical regions.

Figure 11. (a) Evolution of the plastic dissipation and (b) experimental testing of the shakedown
behavior.

5.2. Research on the Design Method of IPPCS

Since the design space of the IPPCS is the global space of the capsule, the structural
optimization method plays a more significant role in the design. However, due to the high
coupling degree of structural characteristics of the IPPCS, it is not easy or even impossible
to carry out global optimization directly for all structural parameters. In order to reduce
the difficulty of optimization, following the principle of bottom-up, according to the type
of key structural features, the IPPCS design procedure is deconstructed into four steps of
shell cross-section, basic stiffener configuration, transition zone stiffener configuration and
local structure, and optimized design is carried out at each step.

Based on the above ideas, the design process of the IPPCS is proposed, as shown in
Figure 12.

(1) Design of shell cross-section [19,21]

Based on the outline shape of the pressurized capsule, the two-dimensional axisymmet-
ric shape cross-section is taken firstly. Then, the preliminary design of the shell cross-section
is carried out. Finally, the section parameters optimization under internal pressure load is
carried out, and the shell cross-section of the pressurized capsule structure is determined.
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Figure 12. The optimization design process of the IPPCS.

(2) Design of basic stiffener configuration of pressurized capsule [17,18,21,22,37–40]

According to the two-dimensional results obtained in the previous step, a three-
dimensional finite element model of the pressurized capsule shell structure is established.
On this basis, the optimization design of the basic configuration is carried out, and the
design scheme of the stiffened configuration is optimized. However, the pressurized
capsule structure has the characteristics of non-straight generatrix and variable curvature
section, which leads to the difficulty of parametric modeling of stiffeners. At the same time,
there are too many stiffener parameters in the pressurized capsule, and the single analysis
takes a long time, resulting in insufficient efficiency of structural optimization design.
Aiming at the difficulty of parametric modeling, Tian et al. [38] proposed a data-driven
complex surface modeling method. By training the mapping relationship between the
simple plane and the complex surface solid domain, the simple plane stiffened shell mesh
is mapped to generate a complex curved stiffened shell. Compared with the traditional
modeling method, the modeling accuracy and efficiency are greatly improved. On this basis,
Li et al. [18] combined the Nonuniform Rational B-Splines (NURBS) method to establish
a variable thickness integral stiffened shell modeling method, which can consider the
variable thickness modeling and optimization of ribs and skins, and fully tap the potential
of lightweight structure. Compared with the traditional curve design, NURBS [39,41] is
the best representative form for the curve and surface. Since the forming curve is smooth
and the curvature can be kept continuous after local modification, the NURBS curve can
fit a variety of complex shapes. The method is verified by the example of the pressurized
capsule in the project. Aiming at the problem of insufficient optimization ability of the
pressurized capsule structure, an analysis method based on Bloch wave acceleration is
proposed [42]. This method performs buckling analysis on a part of the rotating body
structure and simulates the overall buckling analysis results of the structure by setting
boundary conditions. Compared with the overall structure’s analysis, the analysis efficiency
is greatly improved. At the same time, many data-driven methods have been proposed
to apply to structural optimization design so as to improve its optimization ability and
efficiency. Among them, Li et al. [40] optimized the parameters of the pressurized capsule
structure based on the multi-objective Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) method. CMA-ES [43] is a stochastic-derivative-free numerical optimization
algorithm for complex (non-convex, pathological, multimodal, rugged, noisy) optimization
problems in continuous search spaces, and is considered to be one of the most successful
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continuous black-box optimization algorithms. Compared with the traditional method, the
optimization ability is stronger.

(3) Design of transition zone stiffener configuration [18]

Based on the stiffener configuration of the pressurized capsule structure, the stiffened
configuration of the transition zone is considered as a separate design, in which the lightweight
optimization is carried out with the goal of the strength and stiffness under axial tensile or
compressive load. Then, the stiffened configuration of the transition zone is determined.

(4) Design of local structure [37,44]

Aiming at the local structure’s design, such as local concentrated load diffusion and
opening flange of the pressurized capsule, the local structure’s optimization is carried out,
and the local structure’s design for the pressurized capsule structure is determined.

For the local opening flange problem, the traditional method usually first carries
out the global reinforcement optimization, and then optimizes the local opening position
on the basis of the global reinforcement optimization. In order to meet the mechanical
performance of the structure, the structure is often seriously overweight. Therefore, in
order to solve this problem, local structural design problems are combined with overall
design, and collaborative optimization is carried out. Collaborative optimization design
has lighter weight and better mechanical performance.

5.3. Material Upgrading of the Pressurized Capsule Structure
5.3.1. Application Analysis of Al-Mg-Sc Alloy in Pressurized Capsule Structure

Figure 13 shows the optional aluminum alloy materials for the pressurized capsule
structure in China. The 2219 aluminum alloy is a heat-treatment strengthening material.
The size of the pressurized capsule structure is huge, and the heat treatment of the whole
capsule cannot be carried out in China, which greatly reduces the allowable performance
of structural materials. The 2195 aluminum alloy in China is not stable, and the supply
specifications are limited. Therefore, it cannot be applied to the pressurized capsule struc-
ture at present. 5A06 aluminum alloy is the most mature weldable and corrosion-resistant
aluminum alloy material used in China’s pressurized capsule structure. Compared with
5A06 aluminum alloy, the yield strength and tensile strength of 5B70 aluminum alloy
are increased by more than 70% and 20%, respectively, and the specific yield strength is
significantly improved [45]. By comprehensive comparison, the performance characteris-
tics of 5B70 are medium strength, weldable and corrosion-resistant. The comprehensive
performance of 5B70 is excellent, which meets the material selection requirements of the
pressurized cabin structure, and has great potential to replace 5A06 in the pressurized
capsule structure.
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5.3.2. Analysis of Application Potential of Al-Mg-Sc Alloy in Deep Space Exploration
Pressurized Capsule Structure

The application potential analysis of 5B70 was carried out to meet the requirements of
fatigue characteristics, fracture characteristics and large-scale material preparation of the
pressurized capsule structure in deep space exploration.

(1) Fatigue limit

The change of fatigue characteristics was studied by comparing the high-cycle fatigue
tests of 5B70 and 5A06. The high-cycle fatigue tests of the two materials were conducted
under the same conditions, with both materials in the H32 state with a thickness of 6 mm.
The test conditions were set at Kt = 1 and R = 0.1. Under a given life of N = 107 cycles, the
median fatigue strength of 5B70 is σ50 = 272 MPa, while the median fatigue strength of
5A06 is σ50 = 160 MPa, as shown in Figure 14. The test data indicate that the fatigue limit
of 5B70 has been significantly improved.
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(2) Fracture toughness

The difference in fracture characteristics between 5B70 and 5A06 was studied through
a comparison of fracture toughness tests. Both materials, 5B70 and 5A06, were in the H32
state with a thickness of 5mm. The specimen orientations included along the L direction
(rolling direction) and along the T direction (perpendicular to the rolling direction). The
fracture toughness test results for both L and T directions are presented in Table 2. In
both directions, the fracture toughness of 5B70 was found to be superior to that of 5A06,
indicating that 5B70 material has better fracture resistance.

Table 2. Fracture toughness of 5A06 and 5B70.

Preset Crack Orientation 5A06 KR(MPa·m1/2) 5B70KR(MPa·m1/2)

Direction L 105.6 115.018
Direction T 110.2 120.237

(3) Large size and ultra-large thickness plate supply

With breakthroughs in key technological processes such as the stabilized control
technology for ultra-thick plates, China has acquired the capability to mass-produce large-
size, ultra-thick plates of 5B70 with widths exceeding 3500 mm and thicknesses exceeding
50 mm. As the engineering application of 5B70 material is being promoted, the usage of
5B70 material is gradually increasing and surpassing the minimum supply threshold. The
increased usage beyond the threshold helps to ensure continuous production and stable
quality of the raw materials and can significantly reduce the raw material prices.
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It can be seen from the microstructure picture of the sampling of the plate after rolling
in Figure 15 that the deformation band structure is evenly distributed along the rolling
direction. In the deformed matrix, a large number of dislocations are entangled at the grain
boundaries and within the grains to form a large number of dislocation wall interfaces. The
dislocation wall within the grains divides the grains into smaller dislocation cell blocks, and
the dislocations are rearranged around the cell blocks to form a large number of small-angle
subgrain boundaries. This indicates that the deformation matrix of 5B70 mainly undergoes
dynamic recovery during the whole rolling process, and no dynamic recrystallization and
grain growth occur. The rolling process does not adversely affect the material properties.
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Figure 15. Large-size ultra-thickness plate.

5.4. Research Progress on Manufacturing Technology of Pressurized Capsule Structure
5.4.1. Analysis of the Spinning Process

Spinning forming is an advanced plastic forming process with less or no cutting
(process principle is shown in Figure 16). This process has been widely used in aerospace
and aviation fields because of its advantages of good metal deformation conditions, high
material utilization rate and improving product performance [46,47].

Figure 16. Spinning process schematic diagram [46,47].

The majority of large-sized spin-formed components are thin-walled parts with thick-
nesses ranging from 10 mm to 20 mm. The contour dimensions are predominantly in the
range of 1000 mm to 2000 mm in diameter. However, there is a lack of literature discussing
the spin forming of large-sized (diameter exceeding 3000 mm) and ultra-thick (thickness
greater than 50 mm) aluminum alloy components.

5.4.2. Research on Spinning Process of 5B70

The deformation property of 5B70 under high temperature is the basis of the spin-
ning forming process. The key to achieving the spinning manufacturing of large-sized
(diameter over 3000 mm) and ultra-thick (thickness over 50 mm) 5B70 aluminum alloy
sheets lies in understanding and obtaining the high-temperature deformation properties of
5B70 aluminum alloy.

The high temperature deformation properties of 5B70 under different strain states
were studied by forming experiments. The basic mechanical properties and thermal defor-
mation evaluation indexes at different temperatures were obtained, including strain rate
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sensitivity, temperature sensitivity, elongation and other material performance parameters.
The influencing factors and influencing rules of deformation properties were revealed,
which provided support for obtaining the optimal process parameters of high temperature
deformation [47]. Figure 17 is the stress–strain curve of 5B70 at different strain rates at
different temperatures. From the figure, the strength of the material decreases with the
increase of temperature and increases with the increase of strain rate.
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After fully obtaining the high temperature thermal deformation law of 5B70, the pro-
cess simulation of the spinning process was carried out. Through the strain analysis, stress
analysis, roller force analysis, wall thickness analysis and defect analysis of the spinning
process, the whole field strain distribution, stress distribution, force value of roller force,
wall thickness and defect-sensitive parts (as shown in Figure 18) of the spinning process
were mastered, which provided the basis for optimizing and determining the spinning
times and process parameters. According to the law of spinning process simulation, the
spinning process parameters of 5B70 structural parts with 70 mm thickness and large size
were formulated, and 5B70 spinning parts with 70 mm thickness and Φ3500 mm diameter
were successfully prepared (as shown in Figure 19).
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6. Concluding Remarks

The lightweight technology of the pressurized capsule structure is a critical technology
and bottleneck in the MDSEM. In this study, research was conducted from two perspectives:
the development of pressurized capsule structure technology and the demand-driven
traction of the MDSEM. The analysis led to the following conclusions:

(1) As an essential section of the manned spacecraft, the pressurized capsule structure is
the key to realize the functions of bearing and sealing. With the stiffer requirements
of the life and reliability of the pressurized capsule structure, the panel pressurized
capsule structure represented by the WPPCS instead of the semi-monocoque shell
type is the current mainstream pressurized capsule structure.

(2) The MDSEM requires the pressurized capsule structure to have extremely low struc-
tural weight, long space service life of more than 15 years, reusability and adaptability
to the harsh deep space environment. The conventional WPPCS has inherent short-
comings such as low bearing efficiency, large structural weight and conservative
strength criterion, which makes it unable to be widely used in MDSEMs. As a method
to meet the new requirements, the new structure of the IPPCS replaces the frame by
the local panel structure, eliminates the segmentation of the weld zone, realizes the
global stiffener continuity of the capsule, overcomes the shortcomings of the WPPCS
and significantly improves the lightweight level of the pressurized capsule structure.

(3) The key technology research progress of the IPPCS is rapid and has the engineering
application conditions. The technical progress is organized as follows: Firstly, through
the internal pressure cyclic loading experiment, the validity of the numerical analy-
sis technology of the internal pressure shakedown limit of the pressurized capsule
structure is verified. The bearing safety of the pressurized capsule structure with local
plastic deformation can be evaluated by the shakedown analysis. A strength criterion
of the pressurized capsule structure is added, that is, the allowable stress level of
the local area of the pressurized capsule structure in the shakedown state should be
higher than the yield strength of the material. Secondly, the IPPCS design method is
proposed including four steps of shell cross-section, basic stiffener configuration, tran-
sition zone stiffener configuration and local structure, which guides the full realization
of the optimization-based structural design in engineering applications and provides
a tool guarantee for the structural design of the IPPCS. Thirdly, the 5B70 has excellent
comprehensive performance, with the advantages of medium strength, weldability
and corrosion resistance. It also meets the material selection requirements of the
pressurized capsule structure, and can be widely used in the pressurized capsule
structure instead of 5A06. Fourthly, the spinning process of large-size ultra-thick
plates can realize the structural integrity manufacturing of the pressurized capsule
structure, which provides a process guarantee for the development of the IPPCS.

The progress of the IPPCS technology has initially reserved the structural technology
for MDSEMs. In view of the long-term service requirements of the pressurized capsule
structure in the harsh deep space environment in the future, it is recommended to further
strengthen basic research as follows:

(1) The quantitative prediction method of internal pressure shakedown limit load of
the pressurized capsule structure will be studied: The calculation time of numerical
methods for the shakedown limit load is long, and sometimes it does not meet the
need of rapid evaluation of bearing capacity. The establishment of approximate
prediction formulas can quickly calculate the shakedown limit prediction load.

(2) The structural technology of lightweight pressurized capsule structures with large
temperature gaps will be studied: Extreme high and low temperature alternation is
one of the challenges of MDSEMs. Providing suitable temperature conditions for the
pressurized capsule structure through an independent thermal control subsystem is
not conducive to reducing the weight of the spaceflight. The structural technology of
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the pressurized capsule adapted to the boundary of large temperature differences is
the key to optimize the system scheme and cancel the thermal control subsystem.

(3) The reuse design and verification technology of the IPPCS will be studied: Reuse
can reduce the service cost of the high pressurized capsule structure. How to carry
out the reuse design and verification of the pressurized capsule structure is the key
technology that needs to be overcome in the future.
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