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Abstract: Airborne electromechanical actuators (EMAs) play a key role in the flight control system,
and their health condition has a considerable impact on the flight status and safety of aircraft.
Considering the multi-scale feature of fault signals and the fault diagnosis reliability for EMAs
under complex working conditions, a novel fault diagnosis method of multi-scale feature fusion
convolutional neural network (MSFFCNN) is proposed. Leveraging the multiple different scales’
learning structure and attention mechanism-based feature fusion, the fault-related information
can be effectively captured and learned, thereby improving the recognition ability and diagnostic
performance of the network. The proposed method was evaluated by experiments and compared
with the other three fault-diagnosis algorithms. The results show that the proposed MSFFCNN
approach has a better diagnostic performance compared with the state-of-the-art fault diagnosis
methods, which demonstrates the effectiveness and superiority of the proposed method.

Keywords: fault diagnosis; multi scale; feature fusion; convolutional neural network; deep learning;
electromechanical actuator

1. Introduction

Due to the rapid development of semiconductor integrated circuits and digital control
technology as well as the many problems existing in traditional airborne actuation systems,
more electric aircraft (MEA) technology has become the main trend of modern aviation
development. It emphasizes the usage of electric power instead of hydraulic power,
pneumatic power, etc.; consequently, it has the advantages of light weight, high power
density and efficiency, low cost, simple testing and maintenance, etc. [1]. At present, the
most representative MEA of civil aircraft are Airbus A380 and Boeing 787 aircraft, and
that of military aircraft is the F-35 fighter. Airbus A380 and F-35 fighter have already used
electro-hydrostatic actuators to drive the primary flight control surface. Boeing 787 aircraft,
on the other hand, applies electromechanical actuators (EMAs) to the secondary flight
controls, like slat actuators and spoiler actuators [2]. With the advancement of power-by-
wire technology, EMA, which completely abandons the hydraulic system, is bound to have
better application prospects. EMA can be divided into two forms according to different
driving methods: ball screw EMA with gear reduction mechanism and direct-drive ball
screw EMA. The direct-drive EMA, which directly integrates the ball screw pair with
the motor in its structure, eliminates the need for a gear reduction mechanism, so it has
the advantages of high reliability, high efficiency, and high integration. However, as an
emerging technology, achieving the same level of reliability as hydraulic servo systems is
challenging for direct-drive EMA, thus limiting its large-scale application [3]. In order to
ensure the safe operation and economic maintenance of aircraft, it is of great significance to
accurately and timely diagnose and predict the real-time status of direct-drive EMA.
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In recent years, data-driven intelligent fault diagnosis are widely used in the field of
fault diagnosis. In most of the existing data-based EMA fault-diagnosis methods, feature
extraction and classification are designed and perform separately rather than as a single
entirety, so both cannot be optimized simultaneously. For example, dynamic response indi-
cators derived from vibration and current signals of EMA can be utilized as classification
features [4,5]. Mode decomposition [6] and information entropy [7] are also used to constitute
the feature vector of EMA. Additionally, principal component analysis (PCA) is often used
for the selection and fusion of EMA fault features [8,9]. After selecting the appropriate
features, these features are fed into a classifier, such as BP neural network, support vector
machine, and random forest, for fault classification [10,11]. The features of the aforemen-
tioned traditional data-based methods usually rely on manual design, requiring certain signal
processing technology and diagnostic expertise, which can be unreliable and time-consuming.
Moreover, they are mostly used in specific fields and cannot be updated online with changes
in application equipment or fields. To address the defects of traditional fault-diagnosis
approaches, deep learning methods such as stacked denoising autoencoder, deep belief
network, and convolutional neural network (CNN) [12,13] have demonstrated great vitality
in these years. Unlike traditional methods, deep learning can directly learn the effective
fault features adaptively from monitoring signals and perform the fault classification at the
same time, thereby achieving end-to-end fault diagnosis. Particularly, the CNN has achieved
superior performance in various fault-diagnosis tasks [14–16] due to its features of weight
sharing, local connection, and multiple convolution kernels. The superior performance of
one-dimensional CNN (1DCNN) in the EMA fault-diagnosis problem compared to tradi-
tional data-based methods has been demonstrated in prior work [17]. Therefore, this paper
aims to develop a CNN-based intelligent fault-diagnosis model for EMA.

Due to the interaction between the subsystems of fault-identification objects, the fault
signals usually appear in multi-scale form. Therefore, conventional CNN methods, which
only contain single-scale convolution kernels, may ignore the fault-related information.
To address the challenge, several multi-scale network structures have been proposed
and have achieved impressive performance. Introducing multi-scale transformation into
conventional CNN can enable the network to acquire features of different receptive fields
at the same level and improve the diversity and complementarity of fault-related features.
For example, Jiang et al. [18] proposed a multi-scale convolutional neural network structure
that can effectively extract multi-scale high-level features. The method was verified on a
WT gearbox. Liu et al. [19] proposed a multiscale kernel CNN to capture the patterns of
motor faults. Peng et al. [20] used a similar multi-branch structure in the feature learning
process.

Despite the good performance, those multi-scale CNNs mentioned above simply
combine the captured multi-scale features without taking into account differences in the
importance of different branches. Therefore, the information related to the fault may not be
used effectively, especially in the case of noise interference and load variation. In this paper,
the fault-diagnosis object EMA often needs to operate under complex working conditions,
such as the complexity and variability of work tasks, the non-linearity and non-stationarity
of the signal caused by changes in speed and load, as well as strong environmental noise.
To reduce the influence of the above factors, it is required that the intelligent diagnosis
algorithm has better adaptability and can reduce the sensitivity to various uncertainty
sources. In recent years, attention mechanisms have been widely utilized to achieve
efficient resource allocation and information-capture capability of models for intelligent
fault diagnosis [21], natural language processing, machine vision, and the broader fields of
deep learning [22,23]. Li et al. [24] demonstrated the effectiveness of attention mechanisms
in bearing intelligent fault diagnosis by locating input data segments and visualizing
network-learned diagnosis knowledge. Ding et al. [25] proposed a wind turbine blade
intelligent anomaly-detection method based on attention mechanism, which solves the
memory occupancy problem of the input sequence and improves the accuracy of anomaly
detection. Kong et al. [26] proposed an attentional recursive autoencoder hybrid model
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classification algorithm for the early fault diagnosis of rotating machinery. The network is
able to extract the most valuable features from the input signal.

In order to make the network fully capture the fault-related features at different scales
and levels and reduce sensitivity to various sources of uncertainty, a multi-scale feature
fusion CNN (MSFFCNN) is herein proposed to diagnose EMA faults. The multi-scale
network structure is applied to EMA fault diagnosis for the first time. Moreover, unlike the
aforementioned multi-scale methods, an attention mechanism module is used. Firstly, the
attention module enables effective recalibration of feature channels, enhancing essential
features and suppressing invalid ones. This improves the model’s ability to focus on
the most relevant information. Secondly, it further recalibrates features learned by each
branch and multiscale fusion features, aiming to aggregate the optimal multiscale features.
This results in improved feature representation and better model performance. To verify
the performance of the proposed algorithm, an EMA system experimental platform was
built, and the fault injection experiment was carried out for several common faults. The
collected data were used to train and test the proposed method compared with the state-
of-the-art algorithms, especially under variable load and noise conditions. This paper
is organized as follows. Section 2 describes the structure of the direct-drive EMA and
introduces its common faults. Section 3 details the proposed MSFFCNN for EMA fault
diagnosis. Section 4 details different experiments to verify the effectiveness and superiority
of the MSFFCNN. Section 5 summarizes this paper.

2. Structure and Faults Analysis of the Direct-Drive EMA
2.1. Structure of the Direct-Drive EMA

The actuator is essentially a position servo control system, which drives the load by
controlling the operation of the motor to achieve the target position control. The difference
between EMA and other actuators is that there is only one type of energy transmission in
the electromechanical actuation system, and mechanical transmission is used instead of
hydraulic transmission. The structure of the direct-drive EMA is shown in Figure 1. It is
mainly composed of a controller, power conversion circuit, motor, ball screw, and load and
feedback components (current sensor, resolver, and LVDT linear displacement sensor).
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Among them, the motor adopts a switched reluctance motor (SRM) with a certain
fault tolerance and is matched with a direct-drive structure that cancels the gearbox, which
greatly improves the reliability of EMA. When the EMA works, the controller controls the
power converter by processing the flight commands as well as the feedback sensor signals,
and the switching signals generated by the power converter control the motor rotation.
The ball screw then converts the rotational motion of the rotor into a straight-line motion,
which drives the swing of the aircraft control surface. In the whole process, the real-time
measured position, velocity, and current information are fed back to the controller by the
current sensor, i.e., the rotary transformer and the linear variable differential transformer
(LVDT) so as to realize the closed-loop control.

This study built an dSPACE-based EMA system experimental platform, as shown in
the Figure 2. The experimental platform is composed of PC, dSPACE, auxiliary power
supply, IGBT drive circuit, rotary decoding circuit, power supply, EMA, load rudder,
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sensors, and oscilloscope. The dSPACE hardware platform is mainly used to provide a
real-time control platform for semi-real objects. In this experiment, DS1103PPC was used
to output 8 PWM motor control signals through the digital I/O port of the main processor
to control the opening and closing of IGBT. The SRM current analog signal output by the
Hall sensor and the LVDT position signal output by the decoder board are collected by the
ADC module. In addition, through the incremental encoder interface, the rotary signal of
the motor can be directly input to the DS1103PPC through the rotary decoding board so as
to be used for the measurement of the motor position and speed.
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2.2. Fault Categories and Data Processing

From the perspective of the composition of EMA, there are four types of failures
that may occur during operation: motor failure, electrical failure, mechanical failure, and
sensor failure. Due to the harshness of the actual application conditions of EMA, such
as overload, harsh environment, lubrication problems, and manufacturing defects, it is
prone to mechanical failures. Furthermore, as a key component of the drive servo actuation
system, the motor usually runs at a higher speed, accompanied by temperature rise in the
housing and obvious mechanical stress, so the motor is prone to a winding short circuit
and rotor-shaft eccentricity. Electrical faults mainly refer to faults in EMA’s power supply
and controller and sensor faults.

This paper comprehensively considers the three factors of EMA fault-occurrence
frequency, degree of influence, and similarity of fault performance. The four faults of motor
winding turn-to-turn short circuit, ball screw wear and jam, IGBT open circuit, and sensor
deviation were selected for research. The specific experimental data and status labels are
shown in Table 1. Among them, after the faults have been determined, the IGBT open
circuit and the winding turns short circuit can be specific to the fault of a certain phase or a
few phases according to the value of each phase’s current sensor.
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Table 1. Composition of experimental samples.

Label Status Length Sample Type Sample Size

C1 Normal

4096
C2 Winding turn-to-turn short circuit Training 800
C3 IGBT open circuit Validation 200
C4 Ball screw wear and jam Test 24
C5 Sensor deviation

Taking the IGBT fault as an example, the open-circuit fault of IGBT is simulated by
setting the driving signal of the IGBT to low at a certain time. Figure 3 shows the current
and position signals of EMA before and after the fault. It can be seen that the fault-phase
current of IGBT fault increases rapidly, and the position response is slightly deviated from
that before the fault, which affects the performance of the EMA system.
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Figure 3. Experiment waveform of IGBT fault: (a) current waveform of IGBT open circuit; (b) position
response of IGBT open circuit.

Under different fault conditions of EMA, the four-phase current signal output of EMA
is collected at the sampling frequency of 10 kHz, and then, the sum of the four-phase
current constitutes a signal. Figure 4 shows an example of the combined signals in five
states, all of which have been normalized.

In order to facilitate the training of the convolutional neural network and reduce the
interference of different working conditions on the model, each segment of the signal x
is normalized. The size of the data is an important factor of the success of deep learn-
ing. Generally speaking, the more training samples of a network model, the better its
generalization performance. Therefore, in the process of deep learning model training,
data augmentation technology is often used; that is, without a substantial increase in data,
limited data can generate value equivalent to more data. Taking into account that the
output of the electromechanical actuator is a one-dimensional sequence signal, this paper
adopts the overlapping sampling method to achieve the purpose of data amplification. The
sampling method is shown in Figure 5.
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Figure 5. The data augmentation method.

The above combined signals are segmented with a certain overlap ratio so that the
training set, verification set, and test set are obtained. The specific methods are as follows:{

m =
⌊

L − l
l× λ

⌋
x′i = x′[((i− 1)× l × (1− λ)) : ((i− 1)× l × (1− λ) + l)]

, (1)

where m is the maximum number of divisible samples of each signal segment; L is the
length of each signal; l is the set sample length; λ is the overlap rate; xi

′ is the i-th data
sample after segmentation, i ∈ [1, m]; x′ is the normalized signal.

In this study, the sample length l = 4096 and the signal with L = 180,000 were di-
vided with overlap rate λ = 1/3 to achieve sample-set amplification, resulting in a set of
6144 samples. From this set, 800 samples were randomly selected for each state as the
training set, while 200 samples were reserved for validation, and 24 samples were used
for test. The validation set can be utilized to monitor the occurrence of overfitting during
model training. Typically, when the validation set’s performance stabilizes, further training
will cause the training set’s performance to continue to improve, while the validation set’s
performance will plateau or even decline, indicating overfitting. All model accuracy tests
were conducted solely on the test set to evaluate its generalization ability and ensure the
reliability of the final results.
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3. Proposed MSFFCNN-Based Fault-Diagnosis Method

The MSFFCNN is designed for fault diagnosis of EMA, which consists of four se-
quential stages: multi-scale transformation, feature learning, feature fusion, and fault
classification. The overall process of the fault-diagnosis system is shown in the Figure 6.
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3.1. Multiscale Transformation

The so-called multi-scale is actually the sampling of different granularities of the signal.
Typically, different features can be observed at different scales to complete different tasks.
The multi-scale transformation stage in this paper adopts a parallel multi-branch topology.
For a given 1-D signal x (x ∈ RN×1), multiple consecutive signals {y(k)} with different gran-
ularities are constructed by a simple process of down-sampling. The representation method
of multi-scale down-sampling is shown in Figure 7, and its mathematical description is as
follows:

y(k)j =
1
k

jk

∑
i = (j−1)k+1

xi, 1 ≤ j ≤ N
k

, (2)

where k is the length of the non-overlapping window in down-sampling (also called the
scale factor), and multiple filtered signals with different scales, respectively (i.e., scale1,
scale2, and scale3) can be obtained. Typically, the size of k is related to the details and
trends of feature learning later.

Following Figure 7, the original signal was sampled on three different scales to feed
into the trunk and branch module (TBM) in the multi-scale feature learning stage.
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3.2. Multiscale Transformation

After obtaining three granular signals with different scales, each granular signal {y(k)}
(k = 1, 2, 4) will be fed into the TBM separately to learn useful and advanced features. As
shown in Figure 8, each TBM consists of three sets of alternately stacked convolution layers
and max-pooling layers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17 
 

k = 1

k = 2

k = 4

Scale1

Scale2

Scale3

x2 x3 x4x1 x6 x7 x8x5 xi+1xi xi+2 xi+3

y (2)
2

y (2)
1

y (2)
3

y (2)
4 y (2)

j
y (2)

j+1

y (4)
1

y (4)
2

y (4)
k

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500

−0.5

0

0.5

−1

 

Figure 7. The representation method of multi-scale down-sampling. 

3.2. Multiscale Transformation 

After obtaining three granular signals with different scales, each granular signal {y(k)} 

(k = 1, 2, 4) will be fed into the TBM separately to learn useful and advanced features. As 

shown in Figure 8, each TBM consists of three sets of alternately stacked convolution lay-

ers and max-pooling layers. 

C
o

n
v+

R
eL

U

C
o

n
v

C
o

n
v+

R
eL

U

C
o

n
v+

R
eL

U

F
C

G
A

P

C
o

n
v

G
A

P

C
o

n
v

G
A

P

M
a

xp
o

o
l

M
a

xp
o

o
l

M
a

xp
o

o
l

 

Figure 8. The trunk and branch module. 

The signals pass through three pairs of stacked convolutional layers in parallel (C1(k), 

C2(k), and C3(k)) and pooling layers (P1(k), P2(k), and P3(k)), learning in an advanced and ef-

fective way from multiple granular signals of different time scales’ fault characteristics. 

Specifically, each granular signal uses filters (convolution kernels) of different sizes so that 

each parallel convolutional layer at the same level can obtain the characteristics of differ-

ent receptive fields and enhance its capture range of high- and low-frequency features 

taking into account the overall details of the input signal, thereby improving the diagnos-

tic performance of the model. 

The first convolutional layers (C1(1), C1(2), and C1(4)) have signal lengths of N, N/2, and 

N/4, respectively. For each first convolution, the size m of the corresponding convolution 

kernel decreases as the value of k increases, which is beneficial to better extracting useful 

features. Taking the i-th element ai of the j-th output feature map aj of the first convolu-

tional layer ((C1(k)) as an example, the following is obtained: 
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The signals pass through three pairs of stacked convolutional layers in parallel (C1(k),
C2(k), and C3(k)) and pooling layers (P1(k), P2(k), and P3(k)), learning in an advanced and
effective way from multiple granular signals of different time scales’ fault characteristics.
Specifically, each granular signal uses filters (convolution kernels) of different sizes so
that each parallel convolutional layer at the same level can obtain the characteristics of
different receptive fields and enhance its capture range of high- and low-frequency features
taking into account the overall details of the input signal, thereby improving the diagnostic
performance of the model.

The first convolutional layers (C1(1), C1(2), and C1(4)) have signal lengths of N, N/2, and
N/4, respectively. For each first convolution, the size m of the corresponding convolution
kernel decreases as the value of k increases, which is beneficial to better extracting useful
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features. Taking the i-th element ai of the j-th output feature map aj of the first convolutional
layer ((C1(k)) as an example, the following is obtained:

ai = σ
(

wTyi:i+m−1 + b
)

, (3)

aj =
[

a1, a2, · · · , ai, · · · , a(L−m)/s+1

]
. (4)

Among them, w is the weight vector of the j-th convolution kernel; b is the bias term;
yi:i+m−1 is the m-length sub-signal of the input signal y starting from the i-th time step; σ(·)
is a nonlinear activation function, namely the rectified linear unit (ReLU); s is the moving
stride of the j-th convolution kernel on the signal y.

In order to increase the sparsity of the model and improve the speed of network
training, maximum pooling is used to perform nonlinear down-sampling of the input
feature map. Its advantage is that position-independent features can be obtained. Suppose
that one input feature map is traversed with the pooling step size w, and one can be
calculated for each sliding step w. For the corresponding local maximum pj, there will
be (L-m)/ws + 1 local maximum at the end of the traversal and will finally constitute the
feature map pt output by the maximum pooling layer (P1(k)). The specific mathematical
formulas are as follows:

pj = max
(j−1)w+1 ≤ i ≤ jw

{ai}, (5)

pt =
[

p1, p2, · · · , pj, · · · , p(L−m)/ws+1

]
. (6)

For each granular signal {y(k)} after C1(k) and P1(k), a certain number of new feature
maps are generated. Then, these feature maps are used as the input of C2(k), and the same
operations in Equations (3)–(6) are repeated, outputting a new feature map. Similarly,
assuming that K convolution kernels are used in C3(k), the output of the max-pooling layer
(P3(k)) is K new feature maps, and take q(k) as the concatenation result of the correspond-
ing feature maps obtained after each granularity signal {y(k)} through the above process,
formalized as follows:

q(k)= [p1, p2, · · · , pK]. (7)

Finally, the feature representation q(k) output after each granularity signal {y(k)} un-
dergoes continuous feature learning is flattened into a one-dimensional feature vector q.
Since the scale factor k = 1, 2, 4 is selected in this paper, vector q can be represented by the
following:

q= [q(1), q(2), q(4)]. (8)

It can be seen from (8) that the final feature representation q has three different scales.
Therefore, compared with the traditional single-scale representation, multi-scale feature
learning has a larger feature-capture range, which is conducive to extracting rich and
complementary features. The characteristics of the system provide a better distinguishing
effect for the next step of fault classification.

3.3. Feature Fusion

Multi-scale feature learning realizes simple concatenations of different scale features.
However, it cannot represent the difference in the importance of features. Therefore, an
effective feature fusion mechanism is needed.

In this paper, an attention mechanism module is used after the feature fusion layer
to distribute the weight of multi-scale feature channels. The network can selectively
strengthen the useful features for fault identification and suppress invalid or even wrong
information. The structure of the efficient channel attention module is shown in Figure 9.
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Assume that the input feature graph of the attention module is Y = [y1, y2, · · · , yc](
yi ∈ RW×1), where W and C are size and channel dimension of the feature graph. By

using global average pooling FAvg to compress information of the feature graph Y, the
channel statistical vector z is obtained:

zi = FAvg(yi) =
1

1×W

W

∑
j=1

yi(j). (9)

After that, two fast one-dimensional convolutions are used to self-adaptively encode
the channel correlation. The importance of different channels is quantified by activating
function σ, thus generating the weight vector z′ of channels. The mathematical description
of this process is shown as follows:

z′ = σ
(

F′conv(δ(Fconv(z)))
)
, (10)

where Fconv is the convolution operation using the convolution kernel of 1 × k and channel
vector z; F′conv is the convolution operation using the convolution kernel of 1× k and vector
after Fconv; δ and σ are the ReLU function and Sigmoid function, respectively.

By multiplying the input feature graph Y and the weight vector z′ of the channel, the
calibrated feature graph Y′ of the channel can be obtained:

Y′ = Y · z′ = [y1z′1, y2z′2, . . .yCz′C], (11)

where zi
′ represents the importance of the corresponding channel.

In order to prevent network degradation and improve its generalization performance,
a residual connection is added after channel calibration; thus, the output of the attention
mechanism module is Y′′ = Y + Y′.

3.4. Fault Classification

A combination of a fully connected hidden layer and a softmax layer is used to perform
classification. The specific method is to first use dropout on the one-dimensional feature
vector q obtained in the previous stage and use it as the input of the fully connected layer.
The hidden layer uses ReLU as the activation function, and the softmax function is used
in the output layer. In this paper, Y represents the category label of EMA’s health status.
Suppose it has n categories; that is, given an input sample x, the probability that sample x
belongs to category c is given:

p(Y = c | x; Θ) = softmax(θT
c x) =

exp(θT
c x)

∑ n
j = 1 exp(θT

j x
) , (12)
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where Θ = [θ1, θ2, · · · , θn] is the parameter that needs to be learned in the model;
1/∑n

j=1 exp(θT
j x) is the normalized function, and ∑n

j=1 Pj = 1 is the normalized function.
For any given input sample, MSFFCNN will predict a result, but it is hoped that the

predicted value of the model is as consistent as possible with the true value. In order to
achieve this goal, it is necessary to minimize the distance between the predicted value and
the true value, which is the role of the loss function:

L(θ) = − 1
m
[∑ m

i=1 ∑ K
k=1 I{yi = k}log

exp(θT
k x)

∑ K
j exp(θT

j x)
], (13)

where m is the number of samples or the input batch size; I{·} is the index function, and
when the I{·} value is true, the index function value is 1; otherwise, the index function value
is 0.

In order to minimize the loss function value of the model, it is necessary to optimize
and adjust the weight of the neural network, and the optimizer uses the back-propagation
algorithm to complete it:

θ∗ = arg min
θ

L( f (x; θ),y), (14)

where θ* is the optimal parameter of the model; L (·) is the loss function; f (·) and y are the
output value and target value of the model, respectively.

3.5. Visualization Analysis of MSFFCNN

In order to show the classification process of the MSFFCNN, the t-SNE technology is
used to visualize half of the samples in the test set. Due to the large number of network
layers, only the two-dimensional distribution under one branch is shown here, as shown
in Figure 10.
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Figure 10. Two-dimensional visualization of the MSFFCNN: (a) original signal; (b) granular signal;
(c–f) convolution layers; (g) feature fusion layer; (h) softmax layer.

As can be seen from Figure 10, samples of various categories of the original signal are
jumbled together and completely indistinguishable. With the increase of the convolutional
layers, all categories of originally linearly indivisible samples can be almost distinguished
in the feature fusion layer and completely distinguishable in the softmax layer, which
indicates that the nonlinear representation ability of the MSFFCNN is gradually enhanced.
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In the softmax layer, all samples are kept very far apart from each other to avoid the
occurrence of wrong classification, which indicates that the model has good robustness.

4. Discussion of the Fault-Diagnosis Results

In this section, the proposed MSFFCNN method is compared with conventional 1DCNN,
CNN with wide first-layer kernels (WDCNN) [27], and multi-scale CNN(MSCNN) [18]. The
WDCNN uses the wide kernels in the first convolutional layer to suppress high-frequency
noise, but the multi-scale structure is not deployed; the MSCNN uses multi-scale transfor-
mation to combine the captured multi-scale features without taking into account differences
in the importance of different branches. Therefore, comparison with the above algorithms
can effectively reflect the superiority of multi-scale structure and the proposed attention
mechanism-based feature fusion.

4.1. Validation Setup

The training parameters of the model are as follows: batch size is 64, training rounds
are 100, the optimization algorithm is Adam, the initial learning rate is 0.001, and learning
rate attenuation is set. In addition, the initialization of network weight follows the Glorot
normal distribution initialization method.

The value of loss function and accuracy obtained by single training is shown in
Figure 11. As can be seen, no matter the training set or the verification set, the MSFFCNN
algorithm converges at about 20 epochs. In this case, the accuracy of the training set is
stable at 99.9%, while the accuracy of the test set can reach about 99.8%.
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Figure 11. Training and validation of the MSFFCNN: (a) loss on training and test data; (b) accuracy
on training and test data.

The constructed models were trained offline and then used for online fault diagnosis.
Table 2 shows the comparison of the predicted time of a single sample between MSFFCNN
and 1DCNN under five tests. As can be seen, MSFFCNN takes longer to test a single sample
than 1DCNN. This makes sense because the MSFFCNN model has a deeper network
structure and more parameters than 1DCNN, so it inevitably consumes more time when
processing the test data. However, in practical engineering applications, a single forecast
cost of 0.5 ms is totally acceptable for real-time diagnosis.

Table 2. Time of 1DCNN and MSFFCNN for single sample.

Model
Test Time of Single Sample (ms)

1st 2nd 3rd 4th 5th

1DCNN 0.314 0.305 0.282 0.306 0.294
MSFFCNN 0.524 0.513 0.508 0.516 0.522
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4.2. Performance under Noise Environment

In order to comprehensively investigate the performance of the model, three commonly
used indicators, namely accuracy, precision, and recall, are used in this section to measure
the fault-classification performance of the MSFFCNN model, and the stability of the model
is further evaluated through repeated tests. The definition of accuracy, precision, and recall
are shown in Equations (15)–(17):

PAcc =
TP + TN

TP + FN + FP + TN
, (15)

PPre =
TP

TP + FP
, (16)

PRec =
TP

TP + FN
, (17)

where TP, FP, TN, and FN represent the number of true cases, false-positive cases, true-
negative cases, and false-negative cases, respectively; PAcc, PPre, and PRec represent accuracy,
precision, and recall, ranging from 0 to 1; the higher the value, the better the model
performance.

In practice, signals collected by EMA sensors are easily contaminated by ambient noise.
Therefore, in this section, Gaussian white noise of different signal-to-noise ratios (SNR) is
added to the original signal to simulate noise interference in the aviation environment. The
definition of SNR is as follows:

SNR = 10log10

(Psignal

Pnoise

)
(18)

where Psignal and Pnoise represent the energy of signal and noise, respectively. The more
noise contained in the signal, the smaller the SNR value.

In order to verify the anti-noise performance of the proposed MSFFCNN, the model
was tested in five noise environments with SNR of −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB,
respectively. The fault diagnosis results are shown in Figure 12. In the environment of
SNR = 5 dB with weak noise, the accuracy, precision, and recall of MSFFCNN can reach
more than 98%; in the environment of SNR = −10 with strong noise, the three performance
indicators can also maintain at about 77%.

Figure 12. Performance comparison under noise environment: (a) performance of MSFFCNN under
different SNR; (b) comparison with other methods under different SNR.

Furthermore, the performance difference between MSFFCNN and 1DCNN as well
as the current representative MSCNN and WDCNN under the three noise environments
of SNR = −5, SNR = 0, and SNR = 5 were compared. The results are shown in Figure 12.
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As can be seen, the accuracy, precision, and recall of MSFFCNN are significantly higher
than those of other reference methods under three different noise environments. MSCNN
has the second-best anti-noise performance, and its three indexes can reach more than 90%
when SNR = 0. WDCNN and 1DCNN can achieve a similar level of diagnostic performance,
with slightly worse anti-noise performance than MSCNN.

In addition, although the diagnostic performance of all algorithms decreases to vary-
ing degrees with the increase of noise, MSFFCNN still shows excellent anti-noise ability,
which means that MSFFCNN has better fault feature learning ability and recognition ability.
In summary, MSFFCNN has good robustness to noise and can meet the diagnostic re-
quirements in the actual industrial environment of environmental noise and measurement
interference.

4.3. Performance under Variable Load

When the aircraft is in flight, the EMA’s workload changes according to the work tasks.
Accordingly, the current and angle of the motor and the position response of the EMA will
change, so will the signal measured by the sensor. Figure 13 shows the normalized status
signals of the EMA under different loads.
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Figure 13. Normalized signals of the EMA under different loads.

As can be seen from Figure 13, there are certain differences in signal waveform and
amplitude under different loads, and the greater the load changes are, the more obvious the
differences will be, which will make the classifier unable to correctly classify the extracted
features, thus reducing the accuracy of the intelligent diagnosis system. Therefore, it is of
great practical significance to use the data under a single load to train the model and then
use the trained model to fault diagnose the signal when the load changes.

In this section, the MSFFCNN is trained with data under loads of 0.3 N·m, 0.5 N·m,
and 0.7 N·m, respectively, and then, the signals under the other two loads are used as the
test set. Data acquired under 0.3 N·m, 0.5 N·m, and 0.7 N·m loads are defined as datasets A,
B, and C respectively. After combination, there are six test conditions, namely A→B, A→C,
B→A, B→C, C→A, and C→B. Moreover, in order to verify the reliability of the results,
MSCNN, WDCNN, and 1DCNN are compared as the benchmark models. The variable
load test results are shown in Figure 14.
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Figure 14. Performance comparison under variable load.

As shown in Figure 14, it was found that the diagnostic performance of 1DCNN and
WDCNN are comparable under six variable load conditions, with an average diagnostic
accuracy of about 85%. In contrast, the average diagnostic accuracy of the MSCNN model
is nearly 5% higher than the previous two models, indicating that multi-scale feature
learning has strong adaptability to variable load. The average diagnostic accuracy of
the MSFFCNN proposed in this paper is about 95% under six variable load conditions,
which is 10% higher than that of 1DCNN and WDCNN. To summarize, it can be shown
that MSFFCNN has strong self-adaptive ability of variable load and can adapt to variable
working environments.

5. Discussion

This paper proposes the MSFFCNN and introduces the muti-scale and feature fusion
mechanism into the traditional CNN for EMA fault diagnosis.

Compared with the traditional CNN, the method in this paper utilizes a muti-scale
structure to effectively and adaptively extract multi-scale, high-level features at different
time scales. Moreover, the proposed attention mechanism can enhance the multi-scale
features related to faults, thereby achieving a high diagnostic accuracy rate in the case of
strong noise and variable loads. In order to evaluate the superiority of the proposed method
in real-world industrial environment, this paper establishes a fault-diagnosis platform of
the EMA system and conducts fault-injection experiments for several typical faults. The
experimental results demonstrate that the proposed method has better performance than
several state-of-the-art methods in scenarios with strong noise and variable loads.
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