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Abstract: The applied mechanical modeling of train and bridge structures is essential in accurately
predicting structural vibrations caused by high-speed trains, particularly for the often design-relevant
structural accelerations. Considering the interaction effects between the train, the superstructure, and
the supporting structure yields more realistic and lower acceleration results compared to simplistic
reference models disregarding interaction dynamics. The research presented in this article focuses
on modeling single-span girder bridges with a ballasted superstructure as coupling beams. In this
approach, the bridge is represented as two vertically coupled beams, with one representing the
track (rails and sleepers) and the other representing the supporting structure. Their connection
incorporates the stiffness and damping properties of the ballasted superstructure, reproducing its
load distribution capacity. A numerical study encompassing a wide range of bridge parameters
is conducted, focusing on the calculation of maximum structural accelerations. The results from
modeling the bridge as a coupling beam model are compared to those from a simply supported
Bernoulli–Euler beam. The excitation is applied as either a moving load or a multi-body model of
an Austrian Railjet to evaluate the interdependencies of interaction effects between the vehicle and
track and between the track and bridge structure. The comprehensive analysis considers varying
bridge span, fundamental bending frequency, mass distribution, structural damping, and coupling
stiffness and damping properties to identify correlations with the achievable acceleration reduction
using the coupling beam model. Compared to the reference model, the coupling beam model can
significantly reduce structural acceleration by up to 80%. Reduction levels primarily depend on the
coupling stiffness and critical train speed relative to the bridge’s fundamental frequency, with higher
fundamental frequency bridges benefiting the most. These findings provide valuable insights for
future structure-specific recommendations for adopting the coupling beam and multi-body train
models.

Keywords: railway bridge dynamics; track–bridge interaction; vehicle–bridge interaction; coupling
beam modeling

1. Introduction

With the growing importance of rail traffic in the existing European railway network
and simultaneously increasing axle loads and train speeds, predicting the dynamic behavior
of railway bridges under high-speed traffic plays an increasingly important role in assessing
bridge structures. The vibrations and subsequent stresses on railway bridges during
resonance events, which become relevant with higher train speeds, can often exceed the
static loads by many times. Excessive vibrations must be ruled out by computational
investigations in existing structures as well as in the design of new infrastructure.

Vertical structural accelerations are normatively limited to 3.5 m/s2 by the Eurocode
1990:2002/A1:2005/AC:2010 Appendix A2 [1]. They often become a decisive criterion for
operational planning, the design of new bridge structures, or scheduling and the extent
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of required retrofitting measures on existing bridges. The occurrence of exceedingly high
vertical accelerations of the supporting bridge structure may not only impair the riding
comfort of passengers by vibrations of the car body that are perceived as unpleasant, but,
under certain circumstances, more severe consequences for riding safety can also occur.
Possible damage to the supporting structure due to material fatigue is conceivable, as are
track failures due to local destabilization of the ballast bed and, as a result, the risk of train
derailments.

The dynamic assessment of the large number of existing bridges in the rail network
for route approvals of new trains demands straightforward calculation models. Due to
the small number of required input parameters, the primarily applied simple models are
very suitable when there is a lack of reliable information about the structures and the trains
passing over them. Furthermore, they can be transferred into mathematical models for
which the equations of motion can be solved computationally with time-step integration
methods very efficiently. Easily applicable models are, for instance, described in [2–7].

However, comparing in situ measured bridge vibrations and those calculated with
straightforward models shows that the mathematically predicted bridge vibrations often
significantly overestimate reality [8,9]. Subsequently, proving compliance with the nor-
matively specified limit values for vertical structural accelerations and displacements in
serviceability checks according to Eurocode EN 1990/A2 [1] may be hindered, especially
in the case of existing structures. Without closer investigation, for example, by measure-
ments, these overly conservative results can lead to substantial operational restrictions
(speed restrictions) or even the need for cost-intensive retrofitting measures, impeding the
establishment of efficient maintenance strategies for rail infrastructure buildings.

The discrepancy between measurement and calculation is highly topical and complex.
It can be traced back to several causes, such as the structural damping or fundamental
frequency of existing bridges, which can often only be estimated with uncertainty without
more precise measurements. Both parameters are influenced by numerous factors that are
still subject to extensive research activities, i.e., the time-dependent and non-linear track
and material behavior [10], the track typology [11], the influence of pre-stressed tendons in
concrete beams [12,13], or the shear stiffness [14,15] and damping capacity of the ballasted
superstructure [16,17].

One essential aspect is the omission of beneficial influences from interaction dynamics
in favor of those straightforward calculation models with insufficient modeling depth,
which require multiple simplifications in the mechanical modeling of the bridge and the
passing train.

1.1. Multi-Body Dynamic Models

The simplest mechanical model assigns all the properties of a bridge structure to
one simply supported bending beam (Bernoulli–Euler beam) and idealizes the dynamic
excitation from a passing high-speed train as a series of constant static axle loads moving
over it (the moving load model). However, this model is highly conservative and often
generates large calculated vibration responses, which, in many cases, significantly exceed
the vibrations measured on real structures (e.g., in [8,9,18]).

More complex models considering the interaction dynamics between the train masses,
superstructure, and supporting structure by implementing multi-body modeling of all
elements allow for a more accurate computational prediction of structural vibrations while
requiring a higher number of structural or train parameters in the modeling. With this,
precise knowledge of coupling properties regarding the train’s suspension stages plays a
central role as they significantly influence the calculated vibrations.

A large part of the current research activities on railway bridge dynamics, for instance,
described in [4,6,18–23], deals with the computational vibration reduction that can be
achieved by modeling the train more accurately as a multi-body system and, therefore,
including interaction dynamics between the vehicle and bridge components. In practice,
however, it is often complicated, if not impossible, to obtain specific information on the
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technical characteristics of, e.g., the trains’ wheelset and bogie suspensions since they
are often kept secret due to economic interests by the vehicle manufacturers. The future
introduction and admission of new high-speed trains into the existing European railway
network will further aggravate this problem.

Deepening the modeling complexity of the considered bridge structures offers an-
other approach to more realistic calculation results, whereby many different modeling
alternatives with different requirements for input parameters are applicable, among others
described in [24–28]. The present contribution focuses on the influence of modeling the
bridge structures as coupling beams, i.e., by considering them as two vertically coupled
beams representing the track (rails and sleepers) and the supporting structure. Both beams
are interconnected vertically by continuously distributed Kelvin–Voigt elements, whose
stiffness and damping properties reflect those of the ballasted superstructure. The equation
of motion of the proposed model (explained in more detail in Equations (A1)–(A34)) is
approximated using trigonometric shape functions and solved by numerical time-step
integration, whereby the system can be dynamically excited by moving load models as
well as multi-body models of the train.

This bridge model has the advantage of requiring only a few additional input pa-
rameters compared to the reference model of the Bernoulli–Euler beam while still being
computationally highly efficient. At the same time, it allows for taking the load-distributing
influence of the ballast bed as well as the energy dissipation mechanisms depending on the
relative vertical movements of the track grid and bridge structure into account.

However, identifying and implementing appropriate and realistic model-related dy-
namic stiffness and damping parameters represents a further problem. According to the
current state of research, no closed and mechanically and physically justifiable unit of
calculation model and related parameters can be given. The literature references that
focus on the effects of track–bridge interaction (e.g., in [24,26–39]) apply various models
with different levels of complexity to idealize the many interconnected elements of the
supporting structure (usually modeled as a Bernoulli–Euler beam) and the components of
the superstructure (rails, sleepers, and ballast bed). The idealized dynamic bridge system
can consist of two layers, as in the numerical investigations described in the present con-
tribution in Section 2, but also three or more; see schematically displayed in Figure 1 and,
for instance, described in [24,26–39]. The more layers and elements that are included, the
more information on the dynamic behavior and interaction of the respective elements is
required, which poses a challenge, particularly regarding the complex subject of dynamic
ballast bed behavior.
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Figure 1. Possible modeling of the ballasted superstructure on any subsoil (bridge structure or
embankment).

The applied coupling properties ki and ci between rails and subsoil (bridge structure)
in the various literature, which represent the interconnection of the two-layered struc-
tural model, show a significant spread by a factor of 24, respectively, and 77 for damping
or stiffness coefficients(the literature data are, for example, compiled in [28]). In addi-
tion, the origin of those specific coefficients is rarely documented comprehensibly in the
corresponding literature, making a plausibility check more difficult.
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1.2. Simplified Model Alternatives

The influence of considering the interaction effects of the track, vehicle, and supporting
structure has been investigated by several research activities in the past [4,6,18–39]. The
impact of taking vehicle–bridge interaction into account by multi-body modeling of the
passing trains has been shown to be dependent on many different characteristics of consid-
ered trains and bridges, mainly the bridge structure’s span, fundamental frequencies, and
mass distribution, in relation to the axle distances, masses, and properties of the suspension
system of the train cars (amongst others described in [18,20,23]). Research indicates that
the vibrations are reduced particularly effectively in the case of resonance excitation of the
bridges due to the regularly spaced train axles.

As well as explicitly modeling the vehicle and bridge structure as multi-body systems,
it is also possible to consider the beneficial effects of the interaction effects by simplified
methods, which is partly specified in the current standards to be applied, namely the
Eurocode EN 1991-2:2003/AC:2010 [40]. The vibration-reducing effects from considering
vehicle–bridge interaction, which primarily takes place in the primary suspension stage (the
coupling of the unsprung wheelset masses and the bogies), can currently be considered by
the additional damping method as described in EN 1991-2 [40] chapter 8.7. An additional
damping ratio representing the vibration-reducing effects of vehicle–bridge interaction in
calculations without explicitly considering those effects (applying the moving load model)
may be assigned to the examined bridge structures. The amount of this additional damping
is defined in the current specification of the EN 1991-2 [40] as only dependent on the bridge
span. However, several recent research activities have revealed considerable discrepancies
between the acceleration results calculated with more sophisticated multi-body models
of different high-speed trains and the alternative application of the additional damping
method [18–21]. In many cases, the latter leads to a substantial underestimation of vehicle–
bridge interaction and, therefore, uneconomical results, while in other cases, the impact is
overestimated, producing unsafe results. These investigations indicate the complexity of
the topic and its dependency on multiple influencing factors regarding bridge and train
properties. As a result, the redesigned EN 1991-2, currently in the drafting process and
available as prEN 1991-2:2021 [41], will no longer contain recommendations for additional
damping. The ÖBB guideline RW 08.01.04, Appendix 1 [42], to be applied for the dynamic
calculation of railway bridges in the Austrian rail network, allows implementing additional
damping for train passages of the Railjet dependent upon the bridge’s fundamental fre-
quencies and distinguished by bridge type (concrete and steel structures). It was derived
in [22] through numerical investigations on a parametric field of bridges.

The load-distributing effect of the ballast bed can be implemented in calculations on
simple beam models of the bridge by distributing the moving axle loads, for example, by
applying the normatively specified distribution pattern of 25%–50%–25% in the distance of
the sleepers according to EN 1991-2 [40]. The standard recommends this distribution for
calculations on bridge structures with small spans below L = 10 m, for which especially
pronounced reductions in resulting accelerations can be expected. However, since the actual
stiffness properties of the ballast bed under dynamic loading are not comprehensively and
experimentally researched, the question of whether alternative distributions might consider
the ballast bed behavior more accurately cannot be resolved at the current state.

Both simplified methods according to EN 1991-2 [40] of considering the interac-
tion effects, namely the additional damping method and the load distribution pattern
of 25%–50%–25%, were based on numerical investigations performed by the European
Rail Research Institute (ERRI) in 1999 [25], which had at the time limited computational
capacities and, therefore, a limited range of investigations and multiple simplifications
regarding the considered train and bridge modeling and parameters.

1.3. Objectives of Numerical Study

The numerical study on a broad range of bridge parameters described in the following
sections aims to extensively investigate the influence of expanding the simplest reference
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modeling of bridge structures and trains utilizing the Bernoulli–Euler beam and the moving
load model by either including track–bridge interaction with a two-layered bridge model
and/or vehicle–bridge interaction with multi-body modeling of the train. Section 2 contains
a more detailed summary of the fundamental mechanical modeling and the variation in
parameters of bridge structures and trains. The evaluation of the results obtained using
different modeling alternatives enables the identification of the structural properties for
which applying a more sophisticated coupling beam model of the bridge structure signifi-
cantly influences the maximum accelerations and quantifying that influence. Additionally,
it is examined to what extent the influence of the coupling beam modeling depends on the
chosen train model.

The analyses demonstrate the potential for obtaining lower acceleration results by
considering the load-distributing impact of the ballasted superstructure in coupling beam
models (facilitating verification of compliance with normative acceleration limits in EN
1990/A2 [1]). They indicate that the influence of multi-body models of the train, which
consider vehicle–bridge interaction, is particularly pronounced for different structures than
that of the coupling beam modeling.

These findings open up the possibility of formulating structure-dependent recommen-
dations concerning the targeted application of more complex modeling of the structure
(coupling beam model) on the one hand and train (multi-body model) on the other. Thus,
they enable a realistic calculational prediction of the structural vibrations independent of
vehicle information for the greatest possible share of structures.

2. Materials and Methods

A computational parameter study is carried out with a locomotive-hauled Railjet over
a wide range of realistic combinations of single-span girder bridge characteristics. The
calculation results regarding maximum vertical structural accelerations at midspan during
a train passage are subsequently compared with the ones of a simple reference beam model.
The applied mechanical idealization of four models with and without vehicle–bridge,
and track–bridge interaction is graphically displayed in Figure 2 and summarized in the
following sections.
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2.1. Mechanical Models of the Bridge Structures

As previously mentioned, the reference model of the bridge used in the following
investigations is a simply supported single-span shear-rigid bending beam, referred to as
the Bernoulli–Euler beam (see Figure 2a at top). It is characterized by only four parameters:
the span L [m], bending stiffness EI [Nm2], mass per unit length µ [kg/m], and Lehr’s
damping ratio ζ [%]. Its fundamental frequency n0, which is varied in the parameter
study described in the following sections, can be recalculated from these four fundamental
parameters (amongst many, given in [43]):

n0 =
π

2 L2

√
EI
µ

. (1)

Only lateral deformations in the vertical direction (bending deformations w(x,t)) are
considered; longitudinal, lateral, and torsional vibrations are omitted.

The equation of motion (see Equation (A1) and further) can be derived using modal
analysis, utilizing the first three modal functions (i = 1, 2, 3) of the form ϕi = sin (iπx/L)
as shape functions for the discretization of the bending deformation, as they are expected
to govern the maximum vibration response, as, for instance, the investigations in [5,44,45]
indicate, and to be sufficient for realistic representation in most cases. The damping
matrix of the system is obtained by applying Rayleigh damping with ζ1 = ζ2 = ζ. Further
information on the derivation of the system of equations of motion can be found, among
others, in [7].

The multi-body modeling of the bridge structure (Figure 2a bottom) consists of two
vertically coupled beams, the lower one representing the supporting structure (with the
properties Ls, EsIs, µs, and ζs) and the upper beam the rails (with the properties Lr, ErIr, µr,
and ζr). Both beams are vertically coupled by Kelvin–Voigt elements assuming linear spring
stiffness kba and viscous damping cba. As mentioned in Section 1, these coupling coefficients
holistically represent the properties of the ballast bed, including the contributions of the
ballast itself, sub-ballast mats, elastic sleeper sole pads, sleeper fasteners, and rail pads.

The beam representing the rails is being prolonged beyond the bearings of the beam
representing the supporting structure into the embankment over a length Lemb = (Lr − Ls)/2.
This embankment area, where the rail beam is coupled to a rigid subsoil, prevents a sudden
impulse excitation of the supporting structure initiated by excessive deformations close to
the rail beam bearings that can occur due to the sudden change in subsoil stiffness.

In order to make calculations with the different bridge models comparable, the prop-
erties of the overall bridge assigned to the Bernoulli–Euler beam have to be allocated to
both beams of the coupling beam model. The mass distribution corresponding to the mass
contribution of the ballast bed is allocated to the supporting structure beam µs, while the
discrete sleeper masses are smeared and allocated to the rail beam µr. The bending stiffness
of the rail beam is derived from the properties of the two rails (assumed 60E1 profiles), and
its damping ratio is assumed to be zero (ζr = 0).

The mathematical discretization of this dynamical model for its numerical solution
can be performed using, for example, finite bar elements with Hermitian shape functions
of the third or fourth order, as described, among others, in [35]. However, this approach
has the disadvantage of requiring a high number of bar elements to simulate the beam
vibrations accurately, especially in cases where the bending stiffness of the rail beams is
substantially lower than that of the supporting structure. The subsequent high number
of degrees of freedom results in high demands for computational capacities. In contrast,
discretizing the system by applying trigonometric shape functions of both beams leads to
calculation results that converge at comparably low degrees of freedom associated with
short computation times. The latter approach is extensively described, for example, in [46].
Since the trigonometric shape functions represent the modal functions in the case of two
uncoupled beams, this approach can be degenerated to represent the Bernoulli–Euler beam
if the input parameters are set accordingly. In the following evaluations, the number of
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shape functions Ns for the supporting structure beam is kept at three (is = 1, 2, 3) as in the
calculations for the uncoupled Bernoulli–Euler beam, while the number of shape functions
for the rail beam ir = 1, 2, . . ., Nr is dependent on the required accuracy of the rail beam
vibrations. Regarding the influence of the number of shape functions Nr on the accuracy
of the predicted vibrations of the supporting structure, previous investigations and the
analyses in [46] concluded that those converge if a minimum natural frequency nr,lim of the
rail beam is considered. This leads to a minimum number of considered shape functions
Nr of the rail beam according to the following limitations in dependency on the uncoupled
rail beam’s fundamental frequency n0,r, as follows:

nNr ,r > nr,lim, (2)

where nNr ,r can be written as follows:

nNr ,r = N2
r

π

2 L2
r

√
Er Ir

µr︸ ︷︷ ︸
n0,r

= N2
r n0,r. (3)

With Equation (2), this leads to the following:

Nr ≥
√

nr,lim

n0,r
= Nr,lim (4)

with nr,lim = 200 Hz (chosen according to preliminary investigations).
The system of equations of motions is subsequently derived by applying the trigono-

metric shape functions to approximation methods according to Ritz and Galerkin (analo-
gously to the approach for the Bernoulli–Euler beam) and including coupling terms in the
stiffness and damping matrices of the system. In order to implement the different beam
lengths into the coupling terms, it is necessary to assume discrete coupling of subsoil and
rail at a limited number of points along the rail’s longitudinal x-axis with a distance of e and
transform the continuous coupling properties kba and cba to kba = kba/e and cba = cba/e. In
the following calculations, a continuous coupling is simulated by adjusting this distance
very shortly to e = 0.01 m. Another possibility would be to use the actual sleeper distance of
e = 0.6 m, which, according to preliminary investigations, has a negligible influence on the
results of medium- to long-span bridges. In very short-span bridges, however, it is possible
to obtain slightly different results depending on the number and location of the sleepers on
the bridge structure if the ratio of bridge span to sleeper distance becomes too small. Thus,
the sleeper distance is set to a minimal value of e = 0.01 m for better comparability.

2.2. Mechanical Models of the High-Speed Train

Both bridge models require the implementation of an external force vector as excitation,
which can be obtained by applying different train models.

The moving load model (MLM) is the first train model utilized in the following
investigations and is the simplest one applicable (see Figure 2b top). It idealizes the train as
a series of static axle loads, Fstat,j, moving with a constant speed v and distances over the
bridge model. It can be easily implemented as a generalized force vector in the equation of
motion of the bridge by performing a modal transformation with the shape functions ϕi of
either the total bridge (Bernoulli–Euler beam i = 1, 2, 3) or the rail (coupling beam i = ir = 1,
2, . . ., Nr) evaluated at the respective contact points of each load.

This train model considers no interaction effects between the train and the subsoil,
respectively, or the bridge structure. In order to evaluate the impact of these interactions, it
is necessary to model the train as a system of coupled masses, for instance, by applying
the detailed interaction model (DIM) consisting of the interconnected rigid masses of the
car bodies, bogies, and wheelsets (see Figure 2b bottom). The coupling properties reflect
the train’s primary and secondary suspensions. Implementing this kind of train model
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into the dynamic equations requires extending the system of equations of motion of the
Bernoulli–Euler beam or the coupled beam by additional degrees of freedom associated
with the train masses, particularly the vertical displacements of car bodies, bogies, and
wheelsets as well as the car bodies and bogies rotation about the transverse horizontal
axis through their center of gravity. The wheelset displacements are equated with bridge
deflection, respectively, the rail, at the point of contact, assuming rigid and continuous
contact of wheels and rails at all times. This forms the coupling condition of the train and
the bridge structure and reduces the vehicle’s degrees of freedom by the displacements of
the wheelsets.

The composition of the system matrices necessary to implement the different mechani-
cal models into dynamic calculation programs is summarized in Equations (A1)–(A36) in
Appendix A, and was derived by modifying the approach described in [35].

The equations of motion can be solved for the rail and bridge structure beam accelera-
tions, velocities, and deflections by applying numerical time step integration methods for a
specific train speed or a range of speeds. All the investigations described in this article were
performed using MATLAB [47] scripts, applying the implemented differential equation
solver for stiff problems (MATLAB ode15s, see [48]) based on the numerical differentiation
formulas (NDFs).

Since the problem is a second-order differential equation problem, it is first traced back
to two first-order differential equation problems concerning the first and second derivatives
of the displacement and rotational degrees of freedom of the beams representing the sup-
porting structure and track and the train components (vector x, see Equations (A2)–(A6))
with respect to time. The initial values of both equations are chosen as x0 = 0 and ẋ0 = 0. The
solver integrated in MATLAB includes an automatic choice of the integration time steps,
with an output of the results in the time step interval dt = 0.1/v≤ 0.01 s. All time-dependent
system matrices—in the case of the MLM, the shape functions and the load vector as a
function of the train’s axle positions, and in the case of the DIM, also the mass, damping,
and stiffness matrix of the system—are determined anew for each time step. The relative
and absolute error tolerance is selected according to the default settings of the solver with
1 × 10−3 and 1 × 10−6.

2.3. Parametric Analysis—Bridge Parameters

In order to draw valid conclusions regarding the effects of considering track–bridge or
vehicle–bridge interactions using the previously described model alternatives on a spec-
trum of single-span bridge structures representative of reality, calculations were conducted
on a broad parameter field of bridges. The varied input parameters were the bridge’s
span L, mass distribution µ, Lehr’s damping ratio ζ, and fundamental frequency n0 ac-
cording to Equation (1). The limits of the parametric field were obtained by analyzing the
characteristics of 275 existing single-span and single-track bridges in the European rail
network. Information on their properties was derived from several catalogs of existing
bridges, primarily located in Austria, and documented during previous research activities.
Additionally, the information on 74 bridges was obtained from the ERRI (European Rail
Research Institute) reports RP3 [49] and RP8 [50], on 35 bridges from Frýba [3], and on
25 bridges from Rauert [51], provided these bridges also meet the conditions of being
constructed as single-span, single-track structures with ballasted beds.

The bridges are distinguished by their construction type, with 101 steel and
7 composite structures being grouped in the same category as they have similar prop-
erties regarding mass distribution and span lengths. The same applies to 99 concrete and
68 filler beam structures. Measured values regarding the fundamental frequencies are
available for 104 steel and composite structures and 114 concrete and filler beam structures.
For the remaining 57 bridges, fundamental frequencies were recalculated by applying
Equation (1) and estimating the bending stiffness EI from the documented cross-sections.
Furthermore, not all bridge structures have reliable information on their mass distribution
available. Consequently, only the 45 steel and composite structures and 136 concrete and
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filler beam structures with recorded mass distributions are taken into account for determin-
ing this parameter bandwidth. The combinations of span, fundamental frequencies, and
mass distribution are graphically represented in Figures 3 and 4.
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Figures 3 and 4 also contain the parameter combinations used in the numerical study
(marked by small grey, blue, and green circles, respectively). They are obtained by applying
regression functions as upper and lower bound limits, which were derived from analyzing
the property combinations of the existing bridges by Glatz et al. in [22,52]. The regression
functions for the upper and lower bound limits of the span-dependent fundamental fre-
quencies n0,ub(L) and n0,lb(L) have been determined in [22] as power functions, as follows:

n0,ub = 113.1 L−0.8312 (5)

n0,lb = 82.43 L−0.9937 (6)
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The combinations of parameters for the numerical study were obtained by evaluating
Equations (5) and (6) for spans L from 4 to 40 m in 1 m increments and choosing five
equidistant fundamental frequencies ranging from n0,ub(L) to n0,lb(L). The linear regression
functions for the span-dependent mass distributions were differentiated according to the
masses of the heavier concrete and filler beam and the lighter steel and composite structures.
Three mass distributions per construction type (concrete and filler beam: µ1 to µ3 steel and
composite: µ4 to µ6) were chosen following Equation (7) and the input parameters a and b
from Table 1. Equation (7) is as follows:

µ = a L + b, (7)

where L is in [m] and µ in [t/m].

Table 1. Input parameters for Equation (7) according to [22].

Concrete and Filler Beam Structures Steel and Composite Structures
µ1 µ2 µ3 µ4 µ5 µ6

a 0.843 0.7002 0.5584 0.1214 0.1214 0.1214
b 10.45 8.539 6.627 9.5174 5.918 2.1691

The Lehr’s damping ratio of the bridges examined was chosen according to the
standard EN 1991-2 [40], which must be currently applied. The given span-dependent
values also differentiate between reinforced concrete and filler beam structures and steel
and composite structures.

Concrete and filler beam structures : L < 20 m : ζ = 1.5 + 0.07 (20− L)
L ≥ 20 m : ζ = 1.5

(8)

Steel and composite structures : L < 20 m : ζ = 0.5 + 0.125 (20− L)
L ≥ 20 m : ζ = 0.5

(9)

These values are designed as lower and conservative limits of the structural damping
and often underestimate the actual damping ratios measured in situ at structures, as, for
instance, observed by Reiterer et al. in [8,9]. It is to be expected that future research on the
complex discrepancy between measured and normatively prescribed damping ratios will
ultimately lead to a revision of the related standards. To investigate whether the influence
of vehicle–bridge and track–bridge interaction is independent of the damping ratio used
in calculations, the numerical study was also conducted with the normatively prescribed
damping value increased by the factors 1.5 and 2 (ζ1 = ζEC; ζ2 = 1.5 ζEC; ζ3 = 2.0 ζEC).

Additionally, applying the coupling beam requires the definition of coupling prop-
erties reflecting the ballast bed under dynamic excitation. The approach to modeling the
coupling in this article is based on combining all the coupling properties of the ballasted
superstructure, i.e., all the individual elements, such as the rail fasteners, intermediate lay-
ers, sleepers, sleeper sole pads, the sub-ballast mats, and the ballast bed itself, into a single
coupling element with linear stiffness and viscous damping characteristics. The literature
references dealing with this modeling show a significant scattering of both coefficients,
namely the ballast bed stiffness kba and damping cba per unit length. The scattering of
the literature values was, among others, documented by Stollwitzer in [28] (see Figure 5),
which also displays the literature values for three- and four-layer models, including the
stiffness and damping properties of the rail fasteners and pads (index rp—rail pads) and/or
of the sub-ballast mat (index sb).
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Since experimentally determined and verified values are scarce, the impact of applying
different stiffness and damping values is investigated by varying these properties as
follows:

• Linear stiffness: kba,1= 50,000 kN/m2, kba,2= 100,000 kN/m2, kba,3= 200,000 kN/m2.
• Viscous damping: cba,1= 30 kNs/m2, cba,2= 60 kNs/m2, cba,3= 100 kNs/m2.

In total, 37 different bridge spans from 4 to 40 m with 5 fundamental frequencies each
were considered in the following study. Therefore, all calculations on the 185 spans and
fundamental frequency combinations were performed for 6 different mass distributions
and 3 different structural damping ratios, leading to 3330 parameter combinations for
the reference modeling alternative (V1-B1, see Section 2.5). The calculations with the
coupling beam model excited by the MLM are performed for a total of five combinations
of kba and cba (kba,1 + cba,2, kba,2 + cba,2, kba,3 + cba,2; kba,2 + cba,1, and kba,2 + cba,3), thus, in
total, 16 650 parameter combinations are investigated. Preliminary results showed only
a marginal influence of varying the ballast damping coefficient cba and the structural
damping ζ on the effects of applying the coupling beam model (which will be confirmed
by the numerical study, see Section 3.2.3). In order to limit the computational expenses for
the most demanding model (coupling beam model and DIM), only the variation in kba is
investigated with this modeling alternative (kba,1, kba,2, and kba,3 in combination with cba,2
and ζ1 = ζEC → 3330 parameter combinations).

Not all combinations of bridge parameters are equally likely to occur in reality. For
instance, steel constructions are usually applied for single-span bridges with higher spans
and are simultaneously characterized by a low mass distribution. In order to draw reliable
conclusions on the practical benefit of the different modeling alternatives, the results on the
parametric field were evaluated while taking the statistical probability of each combination
into account. This probability was determined as a multivariate normal probability density
function, which can be calculated utilizing pre-implemented functions in MATLAB [47]
based on the theoretical description by Kotz et al. in [53]. With this, the documented
properties regarding bridge span L, fundamental frequency n0, and the mass distribution
µ served as input parameters, whereby the reciprocal of the span was used to reflect the
non-linear relation of span and fundamental frequency. Furthermore, the structural types of
concrete and filler beam structures and steel and composite structures were distinguished
by performing two separate analyses with the corresponding bridge catalogs.
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The matrices of mean values m (not to be confused with the mass distribution µ), and
covariance Σ are as follows:

m =

 1
L
µ
n0

, Σ =


σ2

1
L

σ 1
L µ σ 1

L n0

σµ 1
L

σ2
µ σµ n0

σn0
1
L

σn0 µ σ2
n0

 (10)

Concrete and filler beam structures :

m =

0.0939 1
m

17 458 kg
m

10.115 1
s

, Σ =


0.0019

(
1
m

)2
−146.6

(
kg
m2

)
0.209 1

ms

34 274 000
(

kg
m

)2
−18 509 kg

ms

sym. 30.6
(

1
s

)2

 (11)

From the first component in m follows L =10.654 m.

Steel and composite structures :

m =

0.0655 1
m

7 451 kg
m

8.115 1
s

, Σ =


0.00083

(
1
m

)2
−22.4

(
kg
m2

)
0.101 1

ms

19 471 000
(

kg
m

)2
−6 088 kg

ms

sym. 15.3
(

1
s

)2

 (12)

From the first component in m follows L =15.261 m.
This information can be utilized to calculate a probability value for each combination

of span, mass distribution, and fundamental frequency of the parametric field. A graphical
representation of these probabilities is displayed in Figure 6.
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It can be observed in Figure 6 that, based on the information on existing bridges
available to the authors, concrete and filler beam structures tend to have a high or medium
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mass distribution (µ1 or µ2), spans between L = 6 and 25 m, and corresponding fundamental
frequencies of n0 = 4 to 18 Hz. Steel and composite structures usually have a lighter
mass distribution (mainly µ5), longer spans of L = 9 to 40 m, and, subsequently, lower
fundamental frequencies of n0 = 2 to 14 Hz. Hence, the influence of different modeling
alternatives on these most probable combinations of structural parameters will be reviewed
in more detail in the following sections.

2.4. Parametric Analysis—Train Parameters

The investigated train in this paper is a locomotive-hauled Austrian Railjet in the
standard configuration, which consists of seven regular passenger cars (index pc) and one
front locomotive (index loc) with higher axle loads and differing axle distances. In reality,
the individual passenger cars feature slightly different characteristics due to their function
(i.e., the onboard restaurant) and their position in the configuration. These deviations are
considered negligible in the present investigations. Thus, all seven cars are modeled with
the parameters of a standard middle car. The train parameters are taken from [4] and are
summarized in Table 2, using the same abbreviations as at the bottom of Figure 2b.

Table 2. Train parameters of the Railjet [4].

Locomotive (loc) Passenger Car (pc)

Axle load Fstat [kN] 215.6 148.4
Car body mass mc [kg] 51,500 47,316
Car body moment of inertia Ic [kgm] 882 × 103 307 × 104

Bogie mass mb [kg] 13,220 2800
Bogie moment of inertia Ib [kgm] 27,100 1700
Wheelset mass mw [kg] 2495 1900
Length over buffer d [m] 18.59 26.50
Bogie axle distance r [m] 9.90 19.00
Wheelset distance b [m] 3.00 2.50
Primary suspension stiffness kp [kN/m] 3680 1690
Primary suspension damping cp [kNs/m] 80 20
Secondary suspension stiffness ks [kN/m] 2720 280
Secondary suspension damping cs [kNs/m] 200 14

All cars are vertically decoupled from each other, which means that displacements or
rotations of individual elements of one car do not affect the adjacent cars. The centers of
gravity of all car bodies are assumed to be precisely in the midpoint of the bogie distances,
and the centers of gravity of the bogies in the midpoint of the wheelset distances.

2.5. Parametric Analysis—Calculation and Evaluation Parameters

In order to evaluate the effect of considering vehicle–bridge or track–bridge interaction,
the accelerations

..
wmax occurring at the structure (either at the Bernoulli–Euler beam or the

structural beam of the coupling beam model) are compared with each other in calculations
with the different modeling alternatives. The ratio of the maximum accelerations in percent
serves as a comparison value, whereby only maximum absolute values during the train
crossings in the time domain at midspan are used. In evaluating the acceleration changes

η = 100%
..
wmodel−

..
wre f erence

..
wre f erence

, negative values of η indicate that the maximum accelerations
..
wreference obtained with a reference model are reduced by the alternative modeling to

..
wmodel,

while positive values of η indicate an increase in maximum accelerations.
Only peak accelerations are considered, i.e., only local maxima occurring in the defined

range of train speeds for which the calculations are performed. Dynamic calculations result
in exceptionally high structural vibrations, for instance, peak accelerations, whenever reso-
nance occurs. The acceleration peaks at resonance (generally representing the maximum
accelerations within a considered speed range) mainly occur at train speeds at which the
regularly spaced train axles exert a periodic excitation close to a natural frequency ni of
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the bridge structures. This means that if the train speed is near one resonance speed vx,i,j
according to Equation (13), resonance vibrations are to be expected. Equation (13) is as
follows:

vx,i,j =
ni x

j
, (13)

where i = 1, 2, . . ., j = 1, 2, . . . and x = d, r or b (see Table 2).
In this regard, the length over buffers dpc of the passenger cars and the fundamental

bridge frequency (i = 1) are of particular significance, which means that the highest com-
putational acceleration results are obtained at vdpc,1,1. The acceleration peak at this critical
speed exceeds the accelerations at subordinate resonance scenarios without exception.
The Railjet has a maximum operational speed of 230 km/h; however, the calculations for
the numerical study were performed for a speed range from 100 to 420 km/h. Since the
fundamental frequencies n0 of the investigated single-span bridges are usually in the range
from 2 to 40 Hz, and the passenger car length of the Railjet is dpc = 26.5 m, the Railjet
only reaches the critical speed vdpc,1,1 within a realistic speed range on a few bridges, for
example for the lowest considered fundamental frequency n0 = 2 Hz at 190 km/h. For
most bridge structures, vdpc,1,1 lies well beyond the operational speed maximum. Subor-
dinate critical speeds at j > 2 most likely produce the critical resonance scenario with the
highest acceleration peaks for these bridge structures. The examined speed range was
extended to 420 km/h to investigate the effects of considering track–bridge interaction
for a representative number of bridge structures at the resonance speed vdpc,1,1. Thus, all
bridge structures with fundamental frequencies below n0 = 4.4 Hz can reach this particular
resonance scenario (48 combinations of span and natural frequency, with spans between
19 and 40 m).

It should be noted that the maximum acceleration occurs at train speeds slightly devi-
ating from vx,i,j when vehicle–bridge or track–bridge interaction effects are considered. In
the case of vehicle–track interaction, the train axle loads rigidly connected to the structure
influence their modal mass matrix, which leads to a slight reduction in the natural frequen-
cies and, therefore, the critical speeds at which resonance occurs. In the case of track–bridge
interaction, the coupling between the rail beam and the structure beam increases the modal
stiffness of the overall bridge, leading to a slight increase in the natural frequencies. Both
effects are particularly pronounced in bridge structures with very low mass.

Additionally, another scenario can suppress resonance acceleration peaks: the cancel-
lation effect of bridge vibrations at a specific cancellation speed according to Equation (14):

vcanc,i,j =
2 n0,i L
2 j− 1

, (14)

where i = 1, 2, . . ., j = 1, 2, . . .
Resonance effects that might occur at critical speeds vx,i,j that are close to one only

span- and frequency-dependent cancellation speed vcanc,i,j are generally less pronounced or
might be suppressed entirely.

All calculations are performed with four different model alternatives, which are
referred to as follows:

• V1-B1: Reference calculations with the MLM (V1) and the Bernoulli–Euler beam (B1)
→ 3330 parameter combinations.

• V2-B1: Calculations with the DIM (V2) and the Bernoulli–Euler beam (B1)—Consideration
of vehicle–bridge interaction possible→ 3330 parameter combinations.

• V1-B2: Calculations with the MLM (V1) and the coupling beam (B2)—Consideration
of track–bridge interaction possible→ 16,500 parameter combinations.

• V2-B2: Calculations with the DIM (V2) and the coupling beam (B2)—Consideration of
vehicle–bridge and track–bridge interaction possible→ 3330 parameter combinations.

The reference calculations with model V1-B1 are performed for the entire speed range
in 1 km/h steps. The results are used to identify the highest local acceleration maxima in the



Appl. Sci. 2023, 13, 8746 15 of 45

chosen speed range, whereby up to five acceleration peaks are considered. The calculations
with the other three modeling alternatives considering the interaction effects are performed
only for the identified critical speeds with maximum accelerations and a limited speed
range around them. This approach helps to significantly reduce the calculation effort for the
computationally demanding modeling alternatives V2-B1, V1-B2, and V2-B2. An example
can be seen in Figure 7. Acceleration peaks that occur at the boundaries of the overall speed
range (close to 100 km/h or 420 km/h) are only included in the following evaluations
if all modeling alternatives fully capture them. This prevents distorting the comparison
results by shifts of peaks beyond the examination scope due to the increase or reduction in
critical speed at which they occur due, as mentioned before, to the modal stiffness or mass
increment of the bridges.
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3. Results
3.1. Investigation of an Exemplary Bridge Structure

Figure 7 illustrates the speed-dependent acceleration results obtained with the four
different modeling alternatives for one exemplary bridge structure representing a light
concrete structure (µ3), which is, in terms of mass distribution, very close to a heavy steel
structure (µ4, see Figure 4). The Lehr’s damping ratio is chosen according to the normative
prescriptions in Equation (8). The ballast bed stiffness is kba = kba,2 = 100,000 kN/m2 and
the damping cba = cba,2 = 60 kNs/m2.

In Figure 7, it can be observed that there are three pronounced acceleration peaks in the
examined speed range that occur close to vdpc,1,4 = 410 km/h, between vdpc,1,8 = 205 km/h
and vdpc,1,7 = 234 km/h, and close to vdpc,1,11 = 149 km/h. Different acceleration peaks
become relevant or decisive depending on which speed range is investigated in bridge
verifications under dynamic loading. This is of interest, for example, if lower operational
train speeds are prescribed in certain railway sections than the maximum train speed,
which may result from other routing conditions (curves, distances to railway stations, etc.).
Applying the simplest structural and vehicle model, the Bernoulli–Euler beam and the
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MLM (V1-B1), leads to the highest acceleration results in all cases. By considering vehicle–
bridge interaction (V2-B1), it is possible to obtain lower acceleration results, reduced by
η = −2.4% to −12.9%, depending on the respective critical speed at which the acceleration
peaks occur. Applying the coupling beam model and, thus, considering track–bridge
interaction (V1-B2) leads to a slightly lower reduction in structural accelerations for the
peak close to vdpc,1,4, but a significantly higher reduction in the acceleration peaks at lower
critical speeds. The acceleration peak at vdpc,1,8 is damped by η = −55.9%. The acceleration
peak at the even lower resonance speed vdpc,1,11 is strongly suppressed by applying the
coupling beam model so that it no longer appears as a local acceleration maximum in
the speed–acceleration curve. If the acceleration at exactly the same speed at which the
maximum acceleration peak occurs with the reference model is used for calculating the
acceleration reduction η, then it yields a value of η = −80.6%.

Applying the DIM in combination with the coupling beam model (V2-B2) generally
yields the lowest acceleration results. The acceleration peak at vdpc,1,8 is damped to such an
extent that the peak at the next higher resonance speed vdpc,1,7 now slightly exceeds that
at vdpc,1,8 (η = −62.5% compared to the reference acceleration at vdpc,1,8). With this model
alternative, the difference compared to the results of considering only the track–bridge
interaction (MLM and coupling beam model V1-B2) is relatively small and of the same
order as applying vehicle–bridge interaction to calculations with the Bernoulli–Euler beam.
This indicates that applying vehicle–bridge interaction might be relatively independent of
the applied structural model. The specific results are summarized in Table 3.

Table 3. Acceleration peaks and their reduction with different models (reference: V1-B1) of the
exemplary bridge structure.

V1-B1 V2-B1 V1-B2 ηV1-B2/
ηV2-B2

V2-B2

vPeak~vdpc,1,4

Train speed v [km/h] 409 409 413 - 406
Acceleration

..
wmax [m/s2] 13.0 12.7 12.9 - 11.9

Reduction η [%] - −2.4 −1.0 0.12→ −8.6

vPeak~vdpc,1,8/vdpc,1,7

Train speed v [km/h] 209 208 221 ** - 232 **
Acceleration

..
wmax [m/s2] 6.3 5.5 2.8 - 2.4

Reduction η [%] - −12.9 −55.9 0.89→ −62.5

vPeak~vdpc,1,11

Train speed v [km/h] 149 147 149 * - 149 *
Acceleration

..
wmax [m/s2] 4.0 3.5 0.8 - 0.7

Reduction η [%] - −12.0 −80.6 0.97→ −82.7

* No pronounced acceleration peak recognizable→ vPeak = vPeak ,V1-B1. ** Acceleration peak occurs at different
resonance speed→ vPeak > vPeak ,V1-B1.

3.1.1. Variation in Coupling Beam Parameters

Figure 8 illustrates the speed-dependent accelerations for the same exemplary struc-
ture, but this time with a variation in the structural damping ratio ζ between ζ1 = ζEC (in the
case of the exemplary bridge 2.41%) and ζ3 = 2.0 ζEC (4.82%). As expected, higher structural
damping yields smaller maximum accelerations, whereby increasing the damping ratio
has primarily a scaling effect on the accelerations. By suppressing the most pronounced
acceleration peaks, now neighbored peaks may become more relevant in the evaluation of
acceleration maxima, as can be observed, for instance, at the peaks at vdpc,1,11, which are
sometimes suppressed with the damping variants ζ > ζEC. If no clear acceleration peak can
be determined, the acceleration at vPeak,V1-B1 is used as the comparative value.
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Figure 8. Acceleration results for one exemplary structure, four different modeling alternatives, and
variation in structural damping ζ.

The maximum accelerations resulting from applying the reference model V1-B1 and
the subsequently calculated reduction values η for the different models and structural
damping values are summarized in Table 4. It can be observed that there is still no
significant reduction in accelerations at vdpc,1,4 when only the coupling beam model or the
DIM is applied, independently of the damping ratio. Combining both models yields smaller
values of η with an increasing damping ratio. At the second highest resonance scenario at
vdpc,1,8, the influence of the coupling beam model alternative stays approximately the same
with increasing damping ratio, while higher damping ratios yield smaller absolute values
of η by applying the model V2-B1. The smallest resonance scenario in the examined speed
range at vdpc,1,11 generally produces minor accelerations, especially if the coupling beam
is applied. The corresponding values of η also scatter more strongly with the increasing
damping ratio than for the other acceleration peaks.

Table 4. Acceleration peaks and their reduction with different models (reference: V1-B1) of the
exemplary bridge structure with variation in structural damping ζ.

V1-B1 V2-B1 V1-B2 ηV1-B2/
ηV2-B2

V2-B2

vPeak~vdpc,1,4

ζ1= ζEC ..
wmax

[m/s2]

13.0
η [%]

−2.4 −1.0 0.12→ −8.6
ζ2 = 1.5 ζEC 9.6 −0.6 0.2 −0.04→ −4.4
ζ3 = 2.0 ζEC 7.9 −0.2 0.2 0.04→ −4.0

vPeak~vdpc,1,8/vdpc,1,7

ζ1= ζEC ..
wmax

[m/s2]

6.3
η [%]

−12.9 −55.9 ** 0.89→ −62.5 **
ζ2 = 1.5 ζEC 5.3 −6.1 −55.2 0.90→ −61.1
ζ3 = 2.0 ζEC 4.8 −5.4 −55.9 ** 0.93→ −60.0

vPeak~vdpc,1,11

ζ1= ζEC ..
wmax

[m/s2]

4.0
η [%]

−12.0 −80.6 * 0.97→ −82.7 *
ζ2 = 1.5 ζEC 3.0 −7.7 −75.7 * 0.97→ −77.7 *
ζ3 = 2.0 ζEC 2.7 −8.1 −73.9 * 0.98→ −75.2 *

* No pronounced acceleration peak recognizable → vPeak = vPeak ,V1-B1.** Acceleration peak occurs at different
resonance speed→ vPeak > vPeak ,V1-B1. Grey shading indicates approximately equal results
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The grey shading of several table elements highlights that the results of η are approxi-
mately constant for the same model alternative, independently of the applied structural
damping ζ. This especially applies to the influence of implementing the coupling beam
model, i.e., to the results of V1-B2 compared to V1-B1 and the results of V2-B2 compared to
V2-B1.

Lastly, Figure 9 illustrates the influence of applying different ballast bed stiffnesses kba
to the coupling beam model and for both vehicle models.
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Figure 9. Acceleration results for one exemplary structure, four different modeling alternatives, and
variation in ballast bed stiffness kba.

As shown in Figure 9 and the summarized results of η in Table 5, varying the bal-
last bed stiffness significantly influences the acceleration results, whereby increasing the
stiffness leads to higher acceleration results and vice versa. Especially in the case of acceler-
ation peaks at resonances of lower order, such as the peaks occurring at vdpc,1,8 or vdpc,1,11,
reducing the ballast bed stiffness in calculations with the MLM and the coupling beam
model V1-B2 reduces the resulting acceleration peaks much more strongly than additionally
including vehicle–bridge interaction by choosing the DIM as the vehicle model. It should
also be noted that considering vehicle–bridge interaction is significantly more effective
in reducing the acceleration peak at vdpc,1,4 than at the other resonance peaks, but only if
applied simultaneously with the coupling beam model (V2-B2).

In the previous evaluations, the ballast bed damping coefficient was set constant to
cba= cba,2= 60 kNs/m2. The influence of varying this value is examined according to the
same principle as the variation in the ballast stiffness. The investigations performed by
Bruckmoser in [54] indicate a subordinate influence of the ballast bed damping on the
calculated vibrations. For the exemplary structure, the results of reducing the maximum ac-
celerations obtained by varying cba while keeping the other structural parameters constant
(kba= kba,2; ζ1 = ζEC) are summarized in Table 6. They confirm that only a slight deviation
in the calculated acceleration maxima is induced by varying the ballast bed stiffness, which
numerical inaccuracies may also explain. Again, the grey-shaded table areas highlight the
approximately same results of η for the varied ballast bed damping coefficients.
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Table 5. Acceleration peaks and their reduction with different models (reference: V1-B1) of the
exemplary bridge structure with variation in ballast bed stiffness kba.

V1-B1 V2-B1 V1-B2 ηV1-B2/
ηV2-B2

V2-B2

vPeak~vdpc,1,4
kba,1 ..

wmax
[m/s2]

13.0 η [%] −2.4
−6.4 0.24→ −27.4

kba,2 −1.0 0.12→ −8.6
kba,3 1.4 ~ 0.0

vPeak~vdpc,1,8/vdpc,1,7

kba,1 ..
wmax

[m/s2]
6.3 η [%] −12.9

−68.8 ** 0.92→ −75.1 **
kba,2 −55.9 ** 0.89→ −62.5 **
kba,3 −42.3 ** 0.85→ −49.8 *

vPeak~vdpc,1,11
kba,1 ..

wmax
[m/s2]

4.0 η [%] −12.0
−87.0 0.99→ −87.7 *

kba,2 −80.6 * 0.97→ −82.7 *
kba,3 −72.2 * 0.96→ −75.0 *

kba,1 = 50,000 kN/m2; kba,2 = 100,000 kN/m2; kba,3 = 200,000 kN/m2

* No pronounced acceleration peak recognizable→ vPeak = vPeak ,V1-B1. ** Acceleration peak occurs at different
resonance speed→ vPeak > vPeak ,V1-B1.

Table 6. Results of acceleration reduction (reference: V1-B1) of the exemplary bridge structure with
variation in ballast bed damping cba.

V1-B1 V2-B1 V1-B2 ηV1-B2/ηV2-B2 V2-B2

vPeak~vdpc,1,4

cba,1 ..
wmax

[m/s2]
13.0 η [%] −2.4

−1.5 0.19 −7.8
cba,2 −1.1 0.12 −8.6
cba,3 −1.3 0.15 −8.9

vPeak~vdpc,1,8/vdpc,1,7

cba,1 ..
wmax

[m/s2]
6.3 η [%] −12.9

−57.4 0.92 −62.5
cba,2 −55.9 ** 0.89 −62.5 **
cba,3 −55.6 0.89 −62.7

vPeak~vdpc,1,11

cba,1 ..
wmax

[m/s2]
4.0 η [%] −12.0

−80.3 0.97 −82.8
cba,2 −80.6 * 0.97 −82.7 *
cba,3 −80.9 0.98 −82.7

cba,1= 30 kNs/m2; cba,2 = 60 kNs/m2; cba,3 = 100 kNs/m2

* No pronounced acceleration peak recognizable→ vPeak = vPeak ,V1-B1. ** Acceleration peak occurs at different
resonance speed→ vPeak > vPeak ,V1-B1. Grey shading indicates approximately equal results

3.1.2. Evaluation of Critical Train Speed

Based on the evaluations of the results on the exemplary structure described above,
it can already be seen what significant influenced not only the modeling, the applied
structure, and coupling parameters, but also the considered speed range of the passing
trains can have on the results. The latter is particularly relevant because, depending on
the respective fundamental frequency of the structure, only certain resonance events can
occur in this predefined speed range. However, since the different models can have a
different effect on the acceleration results depending on the examined resonance event, not
only the reduction in the acceleration by a specific model is investigated in the following
evaluations, but also another comparison feature: the maximum speed vlim at which a
prespecified acceleration limit is exceeded for the first time in the calculations applying
one of the four models. Subsequently, the normative acceleration limit for railway bridges
with ballast superstructure according to EN 1990/A2 [1] is used for this purpose, defined
as

..
wlim = 3.5 m/s2.

For the exemplary structure, the resulting values of vlim are marked in Figures 7–9
with yellow markers and shortly summarized for all considered variants of the models and
structural parameters in Table 7:



Appl. Sci. 2023, 13, 8746 20 of 45

Table 7. Results of maximum train speed at which
..
wlim is exceeded for the first time.

ζ kba cba V1-B1 V2-B1 V1-B2 V2-B2

ζ1 = ζEC
kba,2 cba,2 vlim [km/h]

147 147 357 354
ζ2 = 1.5 ζEC 184 188 359 354

ζ3 = 2.0 ζEC 187 189 363 356

ζ1 = ζEC

kba,1
cba,2 vlim [km/h] 147 147

359 354
kba,2 357 354
kba,3 205 352

ζ1 = ζEC kba,2

cba,1
vlim [km/h] 147 147

357 348
cba,2 357 354
cba,3 357 354

Grey shading indicates approximately equal results

In this comparison, it can be observed that for this exemplary bridge structure, with
the application of the coupling beam model, a significant increase in the train speed is
achievable, at which the normative acceleration limit according to EN 1990/A2 [1] is
reached. Essentially, this effect can be explained by the fact that the resonance events at
vdpc,1,11 and vdpc,1,8 are suppressed by considering track–bridge interaction to such an extent
that they do not generate accelerations of a critical magnitude, so only the resonance event
at vdpc,1,4 becomes relevant.

Between the results with different vehicle models, structural damping ratios, or cou-
pling properties, only marginal results occur, except for the shift of vlim at the highest ballast
bed stiffness kba,3 to 205 km/h.

3.2. Investigations on a Parametric Field of Bridges

All parameter combinations described in Section 2.3 were investigated analogously to
the exemplary bridge, and the results are mainly presented graphically in the following
sections.

3.2.1. Acceleration Results of Reference Model

The following Figure 10 shows, for each mass distribution separately, the highest
acceleration peak results obtained in the considered speed range when applying the ref-
erence model V1-B1. The structural damping ζ for all structures in Figure 10 was set
to the normative value ζ1 = ζEC according to Equations (8) and (9). Grey-shaded areas
mark those examined bridge structures for which no calculated acceleration exceeded the
normative acceleration limit of

..
wlim = 3.5 m/s2 according to EN 1990/A2 [1]. The number

of structures for which this is the case increases primarily with increasing mass distribution
and bridge span and secondarily with the bridge’s fundamental bending frequency. Within
the white dashed contours in each subfigure lie those bridges with parameter combinations
with a more than 25%, 50%, or 75% probability of occurrence, according to the investi-
gations in Section 2.3 and Figure 6, distinguished by concrete/filler beam structures and
steel/composite structures.

It can be observed that the maximum acceleration peaks for bridge structures with
particular spans are significantly lower than for bridges with slightly longer or shorter
spans, e.g., for bridges with L = 22 or 23 m. This can be traced back to the occurrence of
cancellation effects at the same critical speed at which resonance effects would occur (for
example, for L = 22 m: vdpc,1,3 = n0 d/3≈ vcanc,3 = n0 2 L/(2 3-1), see Equations (13) and (14)).
This concurrence may oppress the resonance peak so that neighboring but at the same time
usually less pronounced resonance peaks become decisive.

Generally speaking, especially the light steel and composite bridges experience ex-
ceptionally high accelerations in the considered speed range, which would most likely
exceed the normative limitations even at lower train speeds. It should be noted that the
absolute acceleration results can only represent fundamental tendencies of the expected
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dynamic structural response since the results can change significantly when other factors,
such as rail irregularities, deviating bearing conditions, or soil–structure interaction, are
considered.
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3.2.2. Influence of Modeling on Critical Train Speed

As previously mentioned, comparing only maximum peak accelerations yields results
strongly dependent on the considered speed range. Thus, Figure 11 displays the train
speeds vlim at which each structure experiences accelerations above the normative limit
..
wlim = 3.5 m/s2 according to EN 1990/A2 [1] for the first time when applying V1-B1. The
structural damping of all considered bridge structures in Figure 11 is defined to comply with
the normative prescriptions for ζ1 = ζEC. Blue-shaded areas mark parameter combinations
for which the train speeds of the Railjet can easily reach 350 km/h or more without causing
critical accelerations. However, the graphical representation reveals that especially the
bridge structures within the red-shaded areas experience critical accelerations at relatively
low train speeds in calculations with V1-B1. Therefore, the basic calculation model could
not be applied in the serviceability limit state design for a large share of bridge structures
and operational train speeds of 230 km/h.

Applying V2-B1 (the calculation model considering vehicle–bridge interaction effects
with the train’s DIM but applying the simple Bernoulli–Euler beam) brings up the critical
speed vlim for many bridge structures, especially the lighter structures with spans L above
15 m, see Figure 12. Conversely, implementing V1-B2 (coupling beam model considering
track–bridge interaction and the simple MLM) favorably affects the limit train speeds
for shorter bridge structures with spans below 15 m in particular, regardless of the mass
distribution, as shown in Figure 13. The graphical representation only contains results
obtained with the medium ballast coupling stiffness kba,2 and damping coefficient cba,2, but
the results for other combinations of kba and cba display similar tendencies.
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Combining both the more sophisticated DIM and the coupling beam model in V2-B2
yields acceleration results for a large share of the considered bridges, which meet the
normative acceleration limits at train speeds above 250 km/h and, therefore, above the
operational speed of the Railjet, see Figure 14. Both influences observed in Figures 12 and 13
are superimposed, leaving only a few exceptionally light bridges with low fundamental
frequencies, which would exceed the acceleration limits at train speeds of less the 200 km/h.

These findings can also be observed in the graphical representation in Figure 15, which
displays the percentage of bridge structures with critical accelerations at certain train speeds
on an interval scale. Analogous to Figures 11–14, the color scale of the figure shows the
train speed intervals in which the normative acceleration limit of 3.5 m/s2 according to EN
1990/A2 [1] is exceeded for the first time for the concrete and filler beam structures and the
steel and composite structures. The stacked bar chart indicates the respective proportion of
the bridge structures exceeding said acceleration limit.

At first glance, it is noticeable that it is possible to comply with the acceleration limit
without any problems for a large proportion of the concrete and filler beam structures, even
at train speeds above 400 km/h, almost irrespective of the dynamic calculation model used.
The proportion of structures for which this is not computationally possible at speeds below
250 km/h amounts to a total of 14.9% for the reference model V1-B1 and can be reduced
substantially to 5.4% (V1-B2) or, in combination with the DIM (V2-B2), to 3.2%, above
all by using the coupling beam model. The use of the DIM without consideration of the
track–structure interaction (V2-B1) shows a less pronounced influence on the calculation
results.

A more differentiated picture emerges in the case of steel and composite structures,
which tend to be associated with lower mass distributions. Generally, the proportion of
structures for which verification with the simple reference model V1-B1 becomes problem-
atic is much larger. The acceleration limit is exceeded in about 61.3% of the structures with
train speeds below 250 km/h. If the DIM is used alone (V2-B1), the proportion is reduced
to 43.5%; if the coupling beam is used alone (V1-B2), it is reduced to 51.9%. The latter,
however, has a particularly strong effect on those structures whose maximum acceleration
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already exceeds the normative limit at 100 to 150 km/h; this proportion is reduced from
31% to 12.4%, while it is still 19.5% when the DIM is used alone.
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For both types of structures, the joint application of DIM and coupling beam (V2-B2)
is the most influential.

The influence of the different calculation models on the critical train speed vlim at
which the acceleration limit is exceeded is additionally shown in Figure 16. The results are
distinguished according to mass distributions µ1 to µ6. The resulting bandwidth of vlim is
given for each calculation model, and, furthermore, for the average values, median, and
25% and 75% quartiles. The average, median, and quartiles are also shown as weighted
values, whereby the weighting is derived from the probability of structural parameter
combinations, as shown in Section 2.3.
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calculation model and mass distribution µ.

Again, this graph shows the tendency for the coupling beam model alone or in
combination with the DIM (V1-B2 and V2-B2) to have a more significant effect on the
results than using the DIM alone (V2-B1), especially in the observed bandwidth of results.
In turn, using the DIM (V2-B1) alone has a stronger effect on the lighter steel structures
than using the coupling beam model (V1-B2) alone, whereby a relatively large spread of
results can be observed.

3.2.3. Influence of Modeling on Acceleration Peaks

The following graphical evaluations show the reduction in acceleration peaks resulting
from applying one of the dynamic calculation models compared to the respective reference
model. Figure 17 shows the acceleration reductions η resulting from the sole use of the
coupling beam model V1-B2 compared to the reference model V1-B1. Both models are
applied to calculations on the parametric field of bridges with the normative structural
damping (ζ1 = ζEC), and the coupling beam model assumed medium stiffness and damping
(kba,2, cba,2). The reduction is plotted as a percentage ratio on the ordinate according to the

definition given by η = 100%
..
wmodel−

..
wre f erence

..
wre f erence

. The larger the absolute value of the negative

results η, the smaller the resulting acceleration peak when V1-B2 is used compared to the
acceleration calculated with V1-B1.
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The train speeds at which the respective acceleration peak occurred are plotted on
the abscissa in a logarithmic scale. However, these critical speeds are normalized to the
respective fundamental frequency n0 of the structures as follows:

λPeak =
vPeak

n0
, vPeak in [m/s] (15)

For each structure, depending on its fundamental frequency and the range of train
speeds considered, the calculations were only carried out in specific wavelength ranges of
λ. For example, dynamic calculations for a structure with n0 = 4 Hz are performed for only
λ = 27.78 m/s/4 Hz = 6.94 m (lower limit v = 100 km/h) to λ = 116.67 m/s/4 Hz = 29.17 m
(upper limit v = 420 km/h). For this exemplary structure, acceleration peaks are to be
expected, in particular, at the critical speeds occurring at vdpc,1,j = dpc n0/j (see Equation
(13)) or with the relation of Equation (15) in between λdpc,1,1 = 26.5 m and λdpc,1,3 = 8.83 m.

The evaluation considers one to five acceleration peaks for each structure. The proba-
bility that the respective combination of bridge parameters (L, n0, µ) occurs is characterized
by the transparency of the individual markers; the more transparent they are displayed,
the less likely the parameter combination is in reality. In addition, the color of the mark-
ers gives information about the respective ratio of span L and structural damping ζ of
each structure, normalized to the maximum values of the considered parameter field
(Lmax = 40 m, ζmax = 2.62%).

Figure 17 reveals a clear dependence of the acceleration reductions η (generated by
considering the track–bridge interaction in V1-B2) on the normalized train speed λ at which
the respective acceleration peaks occur. The lower the normalized speed λ, the higher the
reduction in the respective acceleration, which can take values below −80% for all mass
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distributions at λ < 2.5 m. In the value range of λ > 10 m, the achievable acceleration
reductions approach zero, with a large scatter of results and also positive values of η
observed, especially for the steel and composite structures. The more scattered results
seem to be related to tendencies of higher values of L/ζ of the respective structures, i.e.,
structures with larger spans and, at the same time, low structural damping (particularly
frequent in steel and composite structures).

The relationship between λ and η can be approximated by regression functions. The
results observed, particularly in the lower value range of λ < 2.5 m, suggest that an s-shaped
or sigmoidal regression function would represent the relationship of λ and η better than
the exponential regression function of the form, i.e.,:

η(λ) = a eb λ, (16)

as displayed for each mass distribution. However, since a sigmoidal regression function
would require considerably more parameters to estimate, the more straightforward expo-
nential form is resorted to, though its validity must be restricted to the range of values
2.5 m < λ < 10 m. The range of the respective parameters a and b to determine the expo-
nential regression functions are given in the legend of Figure 17, as are the coefficients
of determination R2, which can be understood as a goodness-of-fit measure describing
the percentage of the variance in output values that is explained by the variance in input
variables (quotient of error squares).

In all subgraphs, the respective regression function and its 95% prediction intervals for
new observations are plotted as black solid and dotted lines, respectively. The estimation
of parameters for the regression functions according to Equation (16) involved weighting
the considered input parameters according to the probability of structural parameter
combination estimated in Section 2.3. The weighting factors are supplied as a value
between 0 and 1 for each bridge parameter combination, whereby each value corresponds
to the probability of occurrence.

The evaluations displayed in Figure 17 could be used to assess the beneficial influence
on the maximum acceleration peaks that could be generated by applying the coupling
beam model before actually performing the calculations and, therefore, evaluate whether
the choice of structural model complexity significantly influences the results. However,
this requires prior knowledge of the probable resonance events, or more precisely, the
normalized train speed at which particularly pronounced acceleration peaks are most
likely to occur. Furthermore, the resulting regression function could be used to estimate
the reduction in acceleration obtained with the reference model, even without additional
calculations. For this purpose, it would be recommended to use the 95% confidence
boundary for new predictions (the upper boundary in Figure 17, illustrated with a dotted
line) to ensure sufficient prediction reliability. Since it can be observed that all regression
functions regarding the different mass distributions are relatively similar, the parameters
for estimating said upper boundary are only given for the regression functions obtained
with all calculation results (independent of the respective mass distribution).

Figure 18 shows, analogously to Figure 17, the evaluation of η when the more so-
phisticated vehicle model DIM is being applied alone (V2-B1) compared to the V1-B1
reference model, again plotted against the normalized train speed λ at which the respective
acceleration peaks occur. In contrast to Figure 17, no clear dependence of λ and η can be
observed in this plot, although the vehicle model’s influence can take particularly large
absolute values of up to η = −70%, especially for acceleration peaks in the range from 6.6 m
< λ < 13.2 m. Since much smaller absolute values and positive values of η can occur at the
same normalized speeds, specifying a regression function with high predictive reliability
is impossible. However, the results indicate that V2-B1 has a more substantial effect with
decreasing mass distribution of the structures and that a high ratio of L/ζ also tends to be
associated with larger acceleration reductions η. It is also noticeable that the sole use of the
DIM (V2-B1) has a particularly favorable effect at different normalized speeds (λ > 6.5 m)
than the sole use of the coupling beam model (V1-B2).
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Lastly, Figure 19 shows the influence of using the coupling beam model while simul-
taneously applying the more complex DIM (V2-B2), but this time in comparison to the
reference model V2-B1, i.e., applying the same vehicle model. The figures show a very
similar picture to the one already shown in Figure 17, except for a slightly larger scatter of
results, which is also reflected in the lower R2 values and larger prediction intervals of the
determined regression functions. The parameters of the regression functions, especially for
the concrete and filler beam structures, are very similar to those obtained by comparing the
accelerations obtained with the V1-B2 model with those obtained with V1-B1. The results
indicate that the influence of the coupling beam has a very similar effect on the results of
the structure accelerations for both vehicle models investigated, namely the MLM (V1) and
the DIM (V2).

Figure 20 summarizes the results for comparing the calculation results of models
V1-B2 to V1-B1 and models V2-B2 to V2-B1 for all mass distributions. The regression
functions created based on all calculation results are shown with solid red lines; the 95%
prediction intervals are marked with dashed lines; the respective functions for each mass
distribution are displayed as black lines. The mathematical formulation of the overall
regression functions can be found in the legend on the right side of the figure. Particularly
when comparing the models using the MLM as the vehicle model, there is good agreement
between the calculated regression functions of each mass distribution and those calculated
based on all results. The boundary line of the upper 95% prediction interval could be
assumed to be on the safe side for estimating the achievable acceleration reductions for
λ < 8 m.

When using the DIM, it is noticeable that there are more significant deviations of the
95% prediction boundaries of the regression functions for each mass distribution compared
to the regression function determined based on all results, in particular for the somewhat
lighter mass distributions, whose results noticeably spread more strongly (e.g., µ6, see
Figure 19, right bottom). Nevertheless, both regression functions have high coefficients of
determination.



Appl. Sci. 2023, 13, 8746 29 of 45Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 46 
 

 
Figure 19. Evaluation of influence η of V2-B2 on acceleration peaks, compared to V2-B1, distin-
guished by mass distribution. 

Figure 20 summarizes the results for comparing the calculation results of models 
V1-B2 to V1-B1 and models V2-B2 to V2-B1 for all mass distributions. The regression func-
tions created based on all calculation results are shown with solid red lines; the 95% pre-
diction intervals are marked with dashed lines; the respective functions for each mass dis-
tribution are displayed as black lines. The mathematical formulation of the overall regres-
sion functions can be found in the legend on the right side of the figure. Particularly when 
comparing the models using the MLM as the vehicle model, there is good agreement be-
tween the calculated regression functions of each mass distribution and those calculated 
based on all results. The boundary line of the upper 95% prediction interval could be as-
sumed to be on the safe side for estimating the achievable acceleration reductions for λ < 
8 m.  

 
Figure 20. Comprehensive depiction of regression functions η(λ) for V1-B1 and V2-B2. 

Figure 19. Evaluation of influence η of V2-B2 on acceleration peaks, compared to V2-B1, distinguished
by mass distribution.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 46 
 

 
Figure 19. Evaluation of influence η of V2-B2 on acceleration peaks, compared to V2-B1, distin-
guished by mass distribution. 

Figure 20 summarizes the results for comparing the calculation results of models 
V1-B2 to V1-B1 and models V2-B2 to V2-B1 for all mass distributions. The regression func-
tions created based on all calculation results are shown with solid red lines; the 95% pre-
diction intervals are marked with dashed lines; the respective functions for each mass dis-
tribution are displayed as black lines. The mathematical formulation of the overall regres-
sion functions can be found in the legend on the right side of the figure. Particularly when 
comparing the models using the MLM as the vehicle model, there is good agreement be-
tween the calculated regression functions of each mass distribution and those calculated 
based on all results. The boundary line of the upper 95% prediction interval could be as-
sumed to be on the safe side for estimating the achievable acceleration reductions for λ < 
8 m.  

 
Figure 20. Comprehensive depiction of regression functions η(λ) for V1-B1 and V2-B2. Figure 20. Comprehensive depiction of regression functions η(λ) for V1-B1 and V2-B2.

In the example in Section 3.1, it was evident that the applied spring stiffness of the
coupling between the rails and the bridge structure kba, which can also be understood as
the dynamic ballast bed stiffness, significantly influences the reduction in the calculated
acceleration peaks. This effect can also be seen in the regression functions displayed in
Figure 21 for the various coupling stiffnesses investigated, whereby other model parameters
(coupling damping coefficient cba and structural damping ζ) are kept unchanged. In the
center of the figure, the two regression functions already shown in Figure 20 are presented
for the models V1-B2 (red) and V2-B2 (green) at the applied medium ballast bed stiffness
kba,2. The left subfigure additionally shows the regression function with the lower ballast
bed stiffness kba,1. This function is shifted to the right compared with kba,2, which means that
if an acceleration peak occurs at the same normalized speed λ, a more significant reduction
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in the acceleration peak can be expected with lower ballast stiffness. With the higher ballast
bed stiffness kba,3 the determined regression function shifts to the left compared to that
with kba,2, i.e., the acceleration peaks at the same normalized speed are reduced to a lesser
extent. This influence of the coupling stiffness can become quite large. For example, the
reduction η estimated with the exponential regression function using V1-B2 at λ = 6.625 m
(corresponds to vdpc,1,4) with kba,1 is about −18.9%, while with kba,2 it −12.2%, and with
kba,3 it is −7.5%. For acceleration peaks in the range of λ = 4.417 m (corresponds to vdpc,1,6),
the results are η = −45.1%, −33.9%, and −24.1%, respectively.
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Furthermore, the subfigure on the left reveals that for the lowest ballast stiffness con-
sidered, the results of η obtained with the more complex DIM (green regression functions)
differ stronger from those obtained with the MLM (black regression functions), whereby the
coupling beam model influences the acceleration results more strongly when it is combined
with the more sophisticated vehicle model.

Finally, Figure 22 shows the determined regression functions η(λ) resulting from the
analysis of the calculations results when V1-B2 is used versus V1-B1 and other parameters
are varied. In the left subfigure, the results yielded from applying different ballast bed
stiffnesses kba are again displayed, whereby the ballast bed damping coefficients cba and
the structural damping ζ remain the same for all underlying calculations. The apparent
difference in the determined regression functions can also be seen in this diagram. In
contrast, increasing or reducing the applied ballast bed damping coefficient cba while
keeping the other structural parameters constant has no discernible effect on the generated
results (see subfigure in the center), nor does increasing the structural damping ζ beyond
the normative damping (subfigure on the right).
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4. Conclusions and Outlook

Extensive numerical parameter studies are conducted using various models to identify
and quantify the influence of four different modeling variants on the calculated structural
accelerations. All the model variants share the assumption of relatively straightforward
mechanical idealizations and can only capture vibrations in the vertical direction of the
structure. In addition to the reference model (V1-B1), which idealizes the structure as a
Bernoulli–Euler beam and the vehicle as a series of moving axle loads, two additional
models are considered: one (V2-B1) that incorporates vehicle–bridge interaction using a
multi-body model of the train (DIM), and another (V1-B2) that accounts for track–structure
interaction using a two-layer coupling beam model of the bridge. The last model (V2-B2)
combines both interaction effects. A standard configuration eight-car Railjet train is used in
all models.

4.1. Statistical Analysis of Bridge Parameters

Four computational models were applied to a parameter field of bridge structures
defined by the span (L), mass distribution (µ), fundamental bending frequency (n0), and
structural damping (ζ) of the bridges. The probability of occurrence for combinations
of span, mass distribution, and fundamental bending frequency within the parameter
field was statistically analyzed using measured or documented structural properties of
275 existing bridge structures (see Figures 3 and 4). This analysis provides a better assess-
ment of the benefits of different modeling variants in terms of their practical relevance
in dynamic analyses. The following combinations of structural parameters represent a
particularly relevant framework for further investigations (see also Figure 6):

1. Regarding existing concrete and filler beam structures, the average span is L = 10.65 m,
the average mass distribution is µ = 17.5 t/m, and the average fundamental bending
frequency n0 = 10.1 Hz. Combinations with spans ranging from 7 to 23 m and
fundamental frequencies from 5 to 17 Hz, particularly for heavy to medium structures
(µ1 to µ2), have a probability of occurrence greater than 50%.

2. Regarding existing steel and composite structures, the average span is L = 15.3 m,
the average mass distribution is µ = 7.5 t/m, and the average fundamental bending
frequency n0 = 8.1 Hz. Parameter combinations with spans ranging from 10 to 31 m
and fundamental frequencies from 4 to 13 Hz, particularly for structures with medium
mass distribution (µ4), have a probability of occurrence greater than 50%.

4.2. Evaluation of Exemplary Bridge Structure

When analyzing the results for the specific exemplary structure (see also Figures 7–9
and Tables 3–7), several tendencies emerge that are also confirmed when examining the
results of the entire parameter field, as follows:

1. The reference model (V1-B1) generally yields the highest acceleration values, which
can be reduced to varying degrees by using one of the other models. Notably, the
most complex model (V2-B2), which considers both track–bridge and vehicle–bridge
interaction, consistently produces the lowest accelerations. When assessing the ac-
celeration peak at the maximum train speed, which occurs within the range of the
resonant speed vdpc,1,4 for this specific structure, the most substantial reduction can be
achieved by employing the train’s multi-body model (DIM: V2–B1 and V2–B2). How-
ever, for acceleration peaks at lower train speeds (vdpc,1,8 and vdpc,1,11), the coupling
beam model (V1-B2 and V2-B2, respectively) exerts a greater influence in reducing
the acceleration results.

2. Using the train’s multi-body model alone (V2-B1) leads to a shift in the acceleration
peaks towards slightly lower train speeds due to the increase in the modal mass of
the overall system caused by considering the train masses. Conversely, employing
only the coupling beam model (V1-B2) tends to shift the acceleration peaks towards
somewhat higher train speeds. Moreover, the influence of the coupling beam model
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results in more pronounced damping of acceleration peaks at lower train speeds
compared to higher speeds. This effect allows acceleration peaks at higher train
speeds, previously overshadowed in the reference model, to become more significant
or decisive (see also Figure 9).

3. Combining both model extensions in the V2-B2 model reveals an additive super-
position of the computational benefits of both interaction effects. Specifically, the
accelerations are reduced to a similar extent by applying the coupling beam model,
regardless of the vehicle model used (see also Tables 3–6). This implies that the in-
fluence of the coupling beam model on reducing accelerations remains consistent
regardless of the specific characteristics of the vehicle model.

4. When varying the underlying structural damping ζ (to the same extent in all models),
the coupling beam model (V1-B2) demonstrates a similar effect on reducing accelera-
tions (see also Figure 8 and Table 4). However, solely employing the more complex
vehicle model (V2-B1) at higher underlying structural accelerations results in a less
achievable reduction compared to cases with normatively lower bound damping
(ζ1 = ζEC). In other words, the coupling beam model consistently contributes to re-
ducing accelerations regardless of the damping level, whereas the sole application of
the more complex vehicle model is less effective in reducing accelerations when the
underlying structural accelerations are higher than the normative damping would
suggest.

5. Varying the coefficients of the ballast bed damping cba while using the coupling beam
model shows only marginal deviation in the resulting influence on accelerations (see
also Table 6). This indicates that the ballast bed damping has no noticeable impact
on the influence of the coupling beam model on structural accelerations within the
considered range of variation.

6. When the spring stiffness of the ballast bed kba is varied while utilizing the cou-
pling beam model, a significant influence on computed acceleration reductions is
observed (see also Figure 9 and Table 5). Specifically, a lower applied ballast stiffness
is associated with a higher reduction in acceleration.

7. The evaluation of speeds vlim, at which the calculated structural acceleration exceeds
the acceleration limit of

..
wmax = 3.5 m/s2 specified by the standard, reveals a significant

potential for the coupling beam model to assess high-speed train crossings as compu-
tationally uncritical. For the exemplary structure, regardless of the specific parameters
applied to the coupling stiffness kba, coupling damping cba, structural damping ζ,
and vehicle model (MLM or DIM), the coupling beam model allows for train speeds
exceeding 350 km/h without exceeding the acceleration limit (see also Table 7). In
contrast, the reference model predicts a first-time exceedance of the acceleration limit
at speeds below 150 km/h. Additionally, applying the DIM (V2-B1) alone does not
significantly influence the limit speed achieved with the reference model (V1-B1) for
this specific exemplary structure.

4.3. Evaluation of Parametric Field of Bridges

The results obtained from the analysis of the entire parameter field confirm the ten-
dencies observed for the exemplary structure and provide the basis for deriving some
fundamental conclusions. The evaluation focuses on examining the specific impact of the
extended models (V2-B1, V1-B2, and V2-B2) on the acceleration peaks of the reference
model (V1-B1), as well as determining the critical velocity vlim, which represents the train
speed at which the normative acceleration limit

..
wmax = 3.5 m/s2 is first exceeded.

1. Critical accelerations, which substantially exceed the normative limit value, tend to
occur more frequently as the structures’ mass distribution and span length decrease
(see also Figure 10). This is particularly prominent in the case of steel and composite
structures, where nearly all parameter combinations with a probability of occurrence
exceeding 50% are affected by excessive structural accelerations when the reference
model is applied (within the considered speed range).
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2. When considering the critical speed vlim, it is observed that for a relatively large
proportion of the concrete and filler beam structures, with a probability of occurrence
exceeding 50% (and approximately 62% of all structures), critical accelerations only
occur at train crossing speeds above 250 km/h (see also Figures 11 and 15). The median
critical speeds range from 268–296 km/h, with a weighted range of 288–326 km/h (see
Figure 16). Consequently, these structures can be identified as dynamically uncritical
without any issues (at least when considering the Railjet in the standard configuration),
even when using the reference model V1-B1. Lower critical speeds are only observed
for structures with lower mass distributions, shorter spans, and lower fundamental
bending frequencies.

3. In contrast, assessing steel and composite structures as dynamically uncritical us-
ing the reference model V1-B1 is rarely possible above speeds of 250 km/h (see
Figures 11 and 16). Almost all structures experience high maximum accelerations at
relatively low speeds. The median critical speeds range from 133–230 km/h, with a
weighted range of 161–231 km/h for these structures (see Figure 16).

4. Only minor increases in maximum crossing speeds vlim can be achieved for concrete
and filler beam structures when utilizing only the more complex multi-body model of
the train in the V2-B1 model (the median critical speeds range from 287–295 km/h,
with a weighted range of 319-322 km/h, see Figures 12 and 16). However, significant
increases in maximum crossing speeds are attainable for steel and composite structures
(the median critical speeds range from 204–262 km/h, with a weighted range of
228–271 km/h, see Figure 16). Notably, for structures with spans L > 15 m, the V2-B1
model has a highly favorable effect compared to the reference model. Nevertheless, it
should be noted that there is a considerable scatter of results, and a relatively high
proportion of 19.5% of structures still exhibit problematic accelerations at speeds
below 150 km/h (see Figure 15).

5. The sole application of the two-layer coupling beam model results in significant
increases in critical crossing speeds vlim for all types of structures or mass distribu-
tions (see Figures 13, 15 and 16). The median critical speeds for concrete and filler
beam structures range from 299–337 km/h, with a weighted range of 304–333 km/h.
Similarly, the median critical speeds for steel and composite structures range from
189–271 km/h, with a weighted range of 189–241 km/h. The increment of critical
train speed is particularly pronounced for structures with smaller spans L, specifically
those below 15 m. When considering parameter combinations with a probability of
occurrence exceeding 50%, the favorable impact of the coupling beam model in V1-B2
is similar to or slightly less pronounced than the influence achieved by using the DIM
model alone through V2-B1.

6. Once again, the beneficial effects of considering the interaction dynamics are fur-
ther amplified when both the DIM and the coupling beam model are combined in
the V2-B2 model (see Figures 14–16). As a result, critical accelerations at crossing
speeds vlim < 250 km/h are only observed for a smaller proportion of particularly
light steel and composite structures. Only 3.2% of all concrete and filler beam struc-
tures and 34% of all steel and composite structures experience acceleration peaks
below 250 km/h that exceed the normative limit. The median critical speeds vlim for
concrete and filler beam structures range from 323–344 km/h, with a weighted range
of 324–351 km/h. The median critical speeds for steel and composite structures range
from 219–300 km/h, with a weighted range of 238–274 km/h.

7. The influence of the coupling beam model (V1-B2) on the maximum acceleration
peaks of the reference model (V1-B1) exhibits a clear dependence on the normalized
crossing speed λ = v/n0 at which it occurs (see Figure 17). Larger reductions in
acceleration can be expected as the normalized speeds decrease. This relationship can
be accurately described by an exponential (weighted) regression function, which has
a high predictive probability. The reduction in acceleration peaks approaches zero
at a normalized speed of approximately 13.2 m. At higher normalized speeds, the
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results tend to scatter significantly; in some cases, even an increase in acceleration
peaks can occur. The upper 95% confidence limit for predicting new observations
can be considered reliable within a range of normalized speeds from 2.5 to 8 m. With
medium coupling stiffness, the reference model’s calculated acceleration results can
be reduced within this range from 0% to −77%.

8. In contrast to the coupling beam model (V1-B2), the sole application of the vehicle
model DIM (V2-B1) does not exhibit a clear dependence between the percentage
reduction in the maximum acceleration peaks and the normalized train speed at
which they occur (see Figure 18). Therefore, a regression function of the same form
cannot be provided. However, it can be observed that low mass distributions and
large ratios of span to structural damping tend to favor a stronger influence of the
DIM. In general, as the mass occupancy decreases, the magnitude of acceleration
reduction increases. In the maximum case, the reduction can reach up to −75%.

9. The comparison between the acceleration reduction achieved by using the coupling
beam model and the DIM (V2-B2) versus applying the DIM alone (V2-B1) shows
similar results to the comparison with the MLM for the vehicle (see Figures 17 and 19).
This indicates that the beneficial impact of the coupling beam model is mainly inde-
pendent of the specific vehicle model used. In other words, regardless of whether
the multi-body model or the MLM is employed, including the coupling beam model
consistently leads to favorable acceleration reductions.

10. The achievable acceleration reductions strongly depend on the ballast bed stiffness
kba of the coupling beam model (V1-B2 and V2-B2, see Figures 20–22). Lower cou-
pling stiffnesses are associated with more significant reductions in the acceleration
peaks of V1-B1. It is worth noting that the regression functions determined for the
different vehicle models, DIM (V2-B2) and MLM (V1-B2), may exhibit some deviation,
particularly in the case of the lowest coupling stiffness kba,1.

11. The variation in the ballast bed damping coefficient cba and structural damping ζ
has only marginal effects on the regression functions derived from the results of the
entire parameter field, analogously to the exemplary structure (see Figure 22). This
observation suggests that a more precise variation in these two parameters may not be
necessary for future investigations aiming to describe the influence of coupling beam
modeling. It implies that a more generalized approach can be applied, where specific
variations in coupling and structural damping can be omitted without significantly
compromising the accuracy of the results.

4.4. Limitations of Numerical Study

The numerical study based on the parameter field contains several restrictions, which
were made in favor of the computational effort and the reduction to the smallest possible
number of variable computational parameters. This is based on the assumption that the
influence of the different modeling strategies, particularly the coupling beam modeling,
affects the reduction in the accelerations independently of the concrete application and that
this influence can best be investigated in isolation by omitting other influencing parameters.
Concerning the following aspects, corresponding further investigations are to be carried
out in order to confirm the validity of the conclusions drawn from the results for further
application areas:

1. Bearing Conditions: As mentioned in Section 2.1, only beam-like structures with
hinged bearings and no skewness are considered in 2D modeling in the scope of the
study presented here. Thus, lateral or torsional vibrations cannot be reproduced. In
addition, the bearing conditions, e.g., the vertical flexibility of the bridge bearings,
their rotational stiffness, or possible bearing dampers to reproduce the damping
capacity resulting from soil–structure interaction, play a significant role regarding
the amplitude of calculable structural accelerations and the critical resonance train
speeds. However, the mathematical formulation of the equation of motion of the
structure used in the investigations presented here does not allow for implementing
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other support conditions; for this, models discretized based on finite beam elements
are better suited.
Frame structures are of particular importance due to their increased use in the shorter
span range. In [55], about 400 bridge structures in the Austrian railway network were
investigated, of which about 50% can be classified as single-span beam bridges and
35% as frame structures. The more than 1000 bridges in the Swedish railway network
with mainly short spans below 12 m studied in [56] consist of about 43% beam and
48% frame bridges. Due to the usually higher natural frequencies of the frame bridges
than beamlike bridges, the influence of the load distribution is expected to have a
correspondingly strong effect on the calculated accelerations. The accelerations in
the bridge span of a frame bridge can be reproduced by modeling it with rotational
restraint of the bridge bearings, e.g., by considering a rotational spring that reproduces
the clamping effect. However, implementing a realistic torsional spring stiffness
to represent the frame action requires much additional information regarding the
structure geometry, the subsoil, and the backfill, whose stiffness significantly affects
the restraint action of the bearing walls (see, amongst others, in [57–60]).
With the purpose of finding a model as simple as possible and dependent on few
parameters, which nevertheless does not exceed the actual structure vibrations in
the dimension as the simple reference model, and in favor of a computationally effi-
cient mathematic discretization and programming implementation required for the
execution of broad parameter studies, it was renounced to include a more exact imple-
mentation of varying support conditions in the study. It is assumed that frame bridges
behave like beam bridges of higher natural frequencies and that the influence of the
coupling beam modeling affects the respective bridge structure under consideration
independently of the bearing conditions. This assumption also needs to be confirmed
by further investigations, for example, based on finite bar element modeling.

2. Track irregularities: The condition of the rails and wheelsets can be taken into account
by implementing track irregularities in the loading vectors acting on the train and
on the track grid, whereby this is only possible if the train is modeled as a multi-
body system, and not if the MLM is used. In the case of poor track conditions, these
irregularities can have an unfavorable influence on the results of dynamic calculations,
especially on the vehicle accelerations, lateral structural vibrations, and contact forces
between rail and wheelsets. On the other hand, studies in [24,37,61–66], among others,
show that the influence on the vertical structure accelerations is small to negligible,
particularly when the irregularities are modeled as a randomized power spectral
density function, which could be due to the much higher frequency range in which
the vibrations due to track irregularities occur. Nevertheless, this makes applying
the coupling beam model in analyses with consideration of track irregularities an
interesting research question to be further investigated.

3. Shear stiffness: The differential equation of the bending line of the Bernoulli–Euler
beam used here does not include terms to account for shear stiffness or rotational
inertia, as, for example, modeling as a Timoshenko beam would allow. Studies
in [3,4,67,68] show that the influence of the rotational inertia on the natural frequency
of a Timoshenko beam compared to the Bernoulli–Euler beam is much smaller than
that of the shear stiffness. In addition, however, it can also be noted that the influence
of both aspects on beams with a span-to-height ratio L/H above 10 generally has only
a minor effect on the low-order natural frequencies. Especially for structures with
spans below 10 m, the L/H ratio can be lower than 10, which is why for such cases,
as well as for structures with high shear compliance (e.g., truss bridges), shear-soft
modeling is recommended to obtain realistic vibration results. As with the previously
mentioned aspects, the significance of the results obtained from the presented study
is yet to be confirmed.
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4.5. Final Conclusions and Outlook

The results of the parameter study highlight the significant potential of coupling
beam modeling in determining lower computational accelerations compared to a simple
beam model. This modeling approach requires only a few input parameters and can
be universally applied, independent of the specific train model, presenting a promising
complement or alternative to multi-body modeling of the train that considers the vehicle–
bridge interaction. This is particularly advantageous in situations where crucial input
parameters for multi-body modeling of the train are not accessible, and it tends to have a
favorable effect on bridges with different structural parameters.

In the case of the coupling beam model, its impact on the maximum computational
accelerations is influenced not only by the normalized train speed, which corresponds to
the resonance scenario at which they occur, but also by the applied coupling or ballast
bed stiffness. Estimating these characteristic values solely based on the existing literature
sources is associated with inadequate certainty, emphasizing the need for a more com-
prehensive and experimentally underpinned investigation into the dynamic load-bearing
behavior of the ballasted track.

When examining the calculation results underlying the regression functions used to
describe the impact of coupling beam modeling, it is evident that some positive values are
observed, indicating an increase in the maximum calculated acceleration peaks compared
to the reference model. This discrepancy can be attributed to simplifications in modeling
the coupling beam, such as the linear stiffness assumption of the coupling springs.

The deviation observed in the regression functions describing the influence of the
coupling beam for different vehicle models, particularly in the case of the lowest coupling
stiffness, warrants more detailed investigation. With such low coupling stiffness, minimal
or negligible acceleration peaks may be formed, making a direct comparison with the
acceleration peaks of the reference model less feasible and subsequently influencing the
resulting regression functions.

However, the overall finding that the vehicle model does not significantly interact
with the influence of the coupling beam model in other cases allows for simplifications
in future investigations. Extensive analysis of different vehicle models will no longer be
necessary to make universally applicable statements regarding the impact of considering
track–bridge interaction through a two-layer coupling beam model, significantly reducing
the computational effort required for future numerical investigations. The same applies
to the limited influence of coupling or ballast bed damping and structural damping as
parameters with minimal impact, allowing them to be excluded.
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Appendix A.

The following equations summarize the composition of the system matrices for the
dynamic calculation for the most complex applied train and bridge models (detailed
interaction model of the train and coupling beam model of the bridge). The modifications
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while applying the simpler models (the moving load model of the train and the Bernoulli–
Euler beam model of the bridge) are summarized in Equations (A34) and (A35).

The system of equations of motions is written as follows:

M
..
x + C

.
x + K x = p (A1)

where all matrices—the mass matrix M, damping matrix C, stiffness matrix K, force vector
p, and the displacement vector x and its time derivatives (velocities

.
x and accelerations

..
x)—

are generally time-dependent and two-dimensional. The matrices are formed by combining
several submatrices denoting the contributions of the train model (vehicle—index v), the
rails (index r), and the supporting structure (index s), including their interactions. The
derivation of the matrices was adopted as a modified version of the model described by
Lou [35] and is further described in Weber [46].

The displacement vector x consists of the following subvectors:

Displacement vector (N× 1 order) : x = [xv xr xs]
T, (A2)

with a total number of degrees of freedom N = 6 Nv + Nr + Ns.

Subvector of displacements of vehicles (6 Nv × 1 order) :
xv = [xv1 xv2 . . . xvNv ]

T,
(A3)

where Nv is the number of train wagons, and each displacement vector xvi consisting of six
degrees of freedom assigned to car bodies (index c: displacement wc and rotation ϕc) and
bogies (index b: displacements wb,1, wb,2 and rotations ϕb,1 and ϕb,2):

xvi = [wci ϕci wb,1i ϕb,1i wb,2i ϕb2,i]
T . (A4)

Subvector of displacements of the rail (Nr × 1 order) : xr = [qr1 qr2 . . . qrNr ]
T, (A5)

where Nr is the total number of considered rail modes, here limited by Equation (2).

Subvector of displacements of the supporting structure (Ns × 1 order) :
xs = [qs1 qs2 . . . qsNs ]

T ,
(A6)

where Ns is the total number of considered modes of the supporting structure, here limited
to Ns = 3.

Just like the displacement vector, the mass, damping, and stiffness matrices are com-
posed of submatrices, which then again consist of several contributions of the structural
mass, damping, and stiffness properties as well as their interconnections, as follows:

Mass matrix (N× N order) : M =

Mvv 0 0
0 M1

rr + M2
rr 0

0 0 Mss


N×N

(A7)

Damping matrix (N× N order) : C =

Cvv Cvr 0
Crv C1

rr + C2
rr + C3

rr Crs
0 Csr C1

ss + C2
ss


N×N

(A8)

Stiffness matrix (N× N order) : K =

Kvv Kvr 0
Krv K1

rr + K2
rr + K3

rr Krs
0 Ksr K1

ss + K2
ss


N×N

(A9)
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Vehicle:
The submatrices of the vehicle Mvv, Cvv, and Kvv can be written as follows:

Vehicle mass matrix (6 Nv × 6 Nv order) : Mvv = diag[Mv1 Mv2 . . . MvNv ] (A10)

Vehicle damping matrix (6 Nv × 6 Nv order) : Cvv = diag[Cv1 Cv2 . . . CvNv ] (A11)

Vehicle stiffness matrix (6 Nv × 6 Nv order) : Kvv = diag[Kv1 Kv2 . . . KvNv ] (A12)

Each submatrix Mvi corresponding to the ith train wagon is formed with the car body
mass mc and inertia Ic, and the bogies masses mb,1, and mb,2 and inertia Ib,1, and Ib,2, as
follows:

Mvi = diag[mci Ici mb,1i Ib,1i mb,2i Ib2,i]
T (A13)

The damping and stiffness matrices Cvi and Kvi of each train wagon contain coupling
terms denoting the connection of car bodies and bogies with spring-damper elements in
the primary (cp and kp) and secondary suspension stage (cs and ks). Also, the distances
of wheelset axles to the bogies’ center of gravity (Lb) and the distance of the secondary
suspension to the car bodies’ center of gravity (Lc) are considered in (A14).

Cvi =



2csi 0 −csi 0 −csi 0
2csiL2

ci csiLci 0 −csiLci 0
csi + 2cpi 0 0 0

2cpiL2
bi 0 0

symm. csi + 2cpi 0
2cpiL2

bi

 (A14)

The stiffness matrix of each wagon Kvi can be formed analogously by replacing cp and
kp and cs by ks in (A14).

Rail beam:
The submatrices of the rail Mr, Cr, and Kr are composed of several matrices containing

the contributions of the rail itself, the wheelset masses mw acting on them, and the coupling
to the supporting structure:

Contribution of rail mass (Nr ×Nr order) : M1
rr = diag[µr

Lr

2
µr

Lr

2
. . . µr

Lr

2
] (A15)

Contribution of wheelsets to rail mass matrix :

M2
rr =


m2,rr

1,1 m2,rr
1,2 · · · m2,rr

1,Nr

m2,rr
2,1 m2,rr

2,2 · · · m2,rr
2,Nr

...
...

. . .
...

m2,rr
Nr ,1 m2,rr

Nr ,2 · · · m2,rr
Nr ,Nr


Nr×Nr

,

with m2,rr
i,j = ∑Nw

k=1 mwk sin
(

i π xk
Lr

)
sin
(

j π xk
Lr

)
(A16)

whereby xk denotes the longitudinal distance of the kth wheelset from the left rail end, and
Nw is the total number of wheelsets Nw = 4 Nv.

Contribution of rail stiffness (Nr × Nr order) :

K1
rr = diag[ Lr

2 Er Ir

(
π
Lr

)4 Lr
2 Er Ir

(
2π
Lr

)4
. . . Lr

2 Er Ir

(
Nr π

Lr

)4
]

(A17)
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Contribution of coupling to train through the primary suspension stage :

K2
rr =


k2,rr

1,1 k2,rr
1,2 · · · k2,rr

1,Nr

k2,rr
2,1 k2,rr

2,2 · · · k2,rr
2,Nr

...
...

. . .
...

k2,rr
Nr ,1 k2,rr

Nr ,2 · · · k2,rr
Nr ,Nr


Nr×Nr

,

with k2,rr
i,j = ∑Nw

k=1

{
[kpk −mwkv2

(
j π
Lr

)2
]

sin
(

i π xk
Lr

)
sin
(

j π xk
Lr

)
+ cpkv

(
j π
Lr

)
sin
(

i π xk
Lr

)
cos
(

j π xk
Lr

)}
,

(A18)

where v is the train speed.

Contribution of coupling to the supporting structure beam :

K3
rr =


k3,rr

1,1 k3,rr
1,2 · · · k3,rr

1,Nr

k3,rr
2,1 k3,rr

2,2 · · · k3,rr
2,Nr

...
...

. . .
...

k3,rr
Nr ,1 k3,rr

Nr ,2 · · · k3,rr
Nr ,Nr


Nr×Nr

,

with k3,rr
i,j = ∑Nba

p=1 kba sin
(

i π xp
Lr

)
sin
(

j π xp
Lr

)
,

(A19)

where xp denotes the longitudinal distance of the pth discrete coupling point from the left
rail end.

Contribution of rail damping applying Rayleigh damping (Nr × Nr order) :

C1
rr = α M1

rr + β K1
rr,

with ζr1 = ζr2 = ζr, α = 2ζr

(
ωr1 ωr2

ωr1+ωr2

)
and β = 2 ζr

ωr1+ωr2
.

(A20)

Contribution of coupling to train through the primary suspension stage :

C2
rr =


c2,rr

1,1 c2,rr
1,2 · · · c2,rr

1,Nr

c2,rr
2,1 c2,rr

2,2 · · · c2,rr
2,Nr

...
...

. . .
...

c2,rr
Nr ,1 c2,rr

Nr ,2 · · · c2,rr
Nr ,Nr


Nr×Nr

,

with c2,rr
i,j = ∑Nw

k=1[cpk sin
(

i π xk
Lr

)
sin
(

j π xk
Lr

)
+ 2mwkv

(
j π
Lr

)
sin
(

i π xk
Lr

)
cos
(

j π xk
Lr

)
]

(A21)

The contribution to the damping matrix of the rail denoting the coupling to the
supporting structure beam (C3

rr) can be derived analogously to (A20) by replacing kba
with cba.

Supporting structure beam:
The submatrices of the supporting structure Ms, Cs, and Ks are similarly obtained as

the ones for the rail beam.

Bridge mass matrix (Ns × Ns order) : Mss = diag[µs
Ls

2
µs

Ls

2
. . . µs

Ls

2
] (A22)

Contribution of rail stiffness (Ns × Ns order) :

K1
ss = diag[ Ls

2 Es Is

(
π
Ls

)4 Ls
2 Es Is

(
2π
Ls

)4
. . . Ls

2 Es Is

(
Ns π

Ls

)4
]

(A23)



Appl. Sci. 2023, 13, 8746 40 of 45

Contribution of coupling to the rail beam :

K2
ss =


k2,ss

1,1 k2,ss
1,2 · · · k2,ss

1,Ns

k2,ss
2,1 k2,ss

2,2 · · · k2,ss
2,Ns

...
...

. . .
...

k2,ss
Ns ,1 k2,ss

Ns ,2 · · · k2,ss
Ns ,Ns


Ns×Ns

,

with k2,ss
i,j = ∑Nba

q=1 kba sin
(

i π xq
Ls

)
sin
(

j π xq
Ls

)
,

(A24)

whereby xq denotes the longitudinal distance of the qth discrete coupling point from the
left bridge end.

Contribution of damping of the supporting structure
applying Rayleigh damping (Ns × Ns order) :

C1
ss = α M1

ss + β K1
ss,

with ζs1 = ζs2 = ζs, α = 2ζs

(
ωs1 ωs2

ωs1+ωs2

)
and β = 2 ζs

ωs1+ωs2

(A25)

Again, the contribution to the damping matrix of the supporting structure denoting
the coupling to the rail beam (C2

ss) can be derived analogously to (A25) by replacing kba
with cba.

Furthermore, the coupling between the vehicle and rail beam, as well as between the
beams of the rail and the supporting structure, induce interaction submatrices Cvr, Crv, Kvr,
Krv, Crs, Csr, Krs, and Ksr.

Vehicle–Rail interaction:

Substiffness and subdamping matrices induced
by interaction between rail beam and vehicle, coupling

through the primary suspension stage (6 Nv × Nr order) :

Cvr = CT
rv = [Cv1r Cv2r . . . CvNvr]

T (6 Nv × Nr order)

Kvr = [Kv1r Kv2r . . . KvNvr]
T (6 Nv × Nr order)

Krv = [Krv1 Krv2 . . . KrvNv ] (Nr × 6 Nv order)

(A26)

The submatrices Cvir and Crvi corresponding to the ith train wagon can be written as
follows:

Cvir = CT
rvi =



0 0 . . . 0
0 0 . . . 0

cvr,b11
i,1 cvr,b11

i,2 . . . cvr,b11
i,Nr

cvr,b12
i,1 cvr,b12

i,2 . . . cvr,b12
i,Nr

cvr,b21
i,1 cvr,b21

i,2 . . . cvr,b21
i,Nr

cvr,b22
i,1 cvr,b22

i,2 . . . cvr,b22
i,Nr


6×Nr

,

with the translational share of the kth bogie

cvr,bk1
i,j = −cpi

[
sin
(

jπxw1
Lr

)
+ sin

(
jπxw2

Lr

)]
,

and the rotatory share of the kth bogie

cvr,bk2
i,j = cpi Lbi

[
sin
(

jπxw1
Lr

)
− sin

(
jπxw2

Lr

)]
.

(A27)

In (A27), the first two rows correspond to the degrees of freedom of the car bodies,
which are not coupled to the rail. The rows associated with the translational and rotatory
degrees of freedom of each car wagon (i) bogies (bk, k = 1, 2) consist of coupling terms related
to both wheelsets w1 and w2 of each bogie, in which xw1 and xw2 denote the longitudinal
distances of the wheelset to the left end of the rail beam.
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The submatrices Kvir and Krvi are obtained similarly to (A27), as follows:

Kvir =



0 0 . . . 0
0 0 . . . 0

kvr,b11
i,1 kvr,b11

i,2 . . . kvr,b11
i,Nr

kvr,b12
i,1 kvr,b12

i,2 . . . kvr,b12
i,Nr

kvr,b21
i,1 kvr,b21

i,2 . . . kvr,b21
i,Nr

kvr,b22
i,1 kvr,b22

i,2 . . . kvr,b22
i,Nr


6×Nr

,

with

kvr,bk1
i,j = −kpi

[
sin
(

jπxw1
Lr

)
+ sin

(
jπxw2

Lr

)]
− cpi v jπ

Lr

[
cos
(

jπxw1
Lr

)
+ cos

(
jπxw2

Lr

)]
,

denoting the translational share of the kth bogie, and

kvr,bk2
i,j = kpi Lbi

[
sin
(

jπxw1
Lr

)
− sin

(
jπxw2

Lr

)]
+ cpiv

jπ
Lr

Lbi

[
cos
(

jπxw1
Lr

)
− cos

(
jπxw2

Lr

)]
,

denoting the rotatory share of the kth bogie.

(A28)

Krvi =


0 0 krv,b11

i,1 kvr,b12
i,1 kvr,b21

i,1 kvr,b22
i,1

0 0 krv,b11
i,2 kvr,b12

i,2 kvr,b21
i,2 kvr,b22

i,2
...

...
...

...
...

...
0 0 krv,b11

i,Nr
krv,b12

i,Nr
krv,b21

i,Nr
krv,b22

i,Nr


Nr×6

,

with the translational share of the kth bogie

krv,bk1
i,j = −kpi

[
sin
(

jπxw1
Lr

)
+ sin

(
jπxw2

Lr

)]
,

and the rotatory share of the kth bogie

krv,bk2
i,j = kpi Lbi

[
sin
(

jπxw1
Lr

)
− sin

(
jπxw2

Lr

)]
.

(A29)

Rail–Supporting structure interaction:

Subdamping matrices induced by the interaction between beams of rail
and supporting structure (Nr × Ns, respectively, Ns × Nr order) :

Crs = CT
sr =


crs

1,1 crs
1,2 crs

1,3
crs

2,1 crs
2,2 crs

2,3
...

...
...

crs
Nr ,1 crs

Nr ,2 crs
Nr ,3


Nr×Ns

,

with crr
i,j = −∑Nba

p=1 cba sin
(

i π xp
Lr

)
sin
(

j π xp,s
Ls

)
,

(A30)

where Nba is the number of discrete coupling points. The distance xp denotes the longitu-
dinal distance of the pth coupling point from the left bridge end and xp,s the respective
longitudinal distances of the same coupling point to the left end of the bridge structure.
With Lemb as embankment length (Lr = Ls + 2 Lemb), xp,s is defined as follows:

xp,s =

{
0,

xp + Lemb

if xp < Lemb or xp > Ls + Lemb
if Lemb ≤ xp ≤ Ls + Lemb

(A31)

The sub-stiffness matrices Krs and Ksr can be obtained analogously to (A31) by replac-
ing cba by kba.

Finally, also the vector of external forces p is formed consisting of three subvectors:

Force vector (N × 1 order) : p = [pv pr ps]
T, (A32)
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where all elements of the subvector denoting the forces acting on the supporting structure
ps are zero. Furthermore, the force vector acting on the vehicle pv only contains non-
zero elements if rail irregularities are taken into account, which is not the case for the
investigations described in this article. Therefore, only the vector pr acting on the rail beam
has to be constructed as follows:

Force vector acting on rail beam (Nr × 1 order) : pr =
[
pr1 pr2 . . . prNr

]T
,

with pri = g ∑Nv
j=1 ∑4

k=1(mwk +
1
2 mbj +

1
4 mcj) sin

(
iπxwk,j

Lr

)
.

(A33)

In (A33), xwk,j denotes the longitudinal distance of the kth wheelset of the jth train
wagon from the left end of the rail, whereby only those wheelsets currently located on
the rail beam are considered in the calculations. The sum of weight forces (exerted by the
wheelset mass mw and a proportional mass of bogie mb and car bodie mc) transmitted at
each contact point between wheelsets and bridge can also be defined as a static axle load
Fstat = g (mw + 1/2 mb + 1/4 mc), with g being the gravitational constant.

Suppose the interaction between the train and the bridge model is not to be considered,
i.e., the Moving Load Model is applied. In this case, the subvector of displacements of
the vehicle xv and its time derivatives (

.
xv,

..
xv), the related submatrices (Mvv, Cvv, and

Kvv) and subvector of external forces pv are excluded. The number of considered train
wagons Nv is set to zero; therefore, also the submatrices, considering the interaction of
the vehicle with the subjacent beam considered by the submatrix contributions M2

rr, C2
rr,

and K2
rr, and the interaction submatrices Cvr, Crv, Kvr, and Krv are omitted. The excitation

exerted by the train is only considered in the subvector of forces acting on the rail (in the
case of the coupling beam model) or the supporting/bridge structure (in the case of the
Bernoulli-Euler beam).

Similarly, the coupling beam model is degenerated to the Bernoulli–Euler beam model
by setting Ns = 0 and adapting the related properties in the mass, damping, and stiffness
submatrices. The displacement subvector of the supporting structure (xs,

.
xs, and

..
xs) and

its submatrices (Mss, C1
ss, and K1

ss) and its force subvector forces ps are excluded. The
additional submatrices denoting the contributions due to interaction effects (C2

ss, K2
ss, C3

rr,
K3

rr, Crs, Csr, Krs, and Ksr) are removed by setting the coupling properties between rails and
supporting structure (kba, cba) to zero. Finally, all rail properties influencing the matrices M1

rr,
C1

rr, C1
rr, and in case of vehicle-bridge interaction also C2

rr, K2
rr, Cvr, Crv, Kvr, and Krv) are set

to match the properties of the total bridge, i.e., Nr = Ns, Lr = L, µr = µ, ErIr = EI, ζr = ζ.
The equation of motions for the three simplified models can be written as follows:

Coupling beam and moving load model :[
M1

rr 0
0 Mss

][ ..
xr..
xs

]
+

[
C1

rr + C3
rr Crs

Csr C1
ss + C2

ss

][ .
xr.
xs

]
+

[
K1

rr + K3
rr Crs

Csr K1
ss + K2

ss

][
xr
xs

]
=

[
pr
ps

]
.

(A34)

Bernoulli–Euler beam and detailed interaction model :[
Mvv 0

0 M1
rr + M2

rr

][ ..
xv..
xr

]
+

[
Cvv Cvr
Crv C1

rr + C2
rr

][ .
xv.
xr

]
+

[
Kvv Kvr
Krv K1

rr + K2
rr

][
xv
xr

]
=

[
pv
pr

]
,

with Nr = Ns, Lr = L, µr = µ, Er Ir = EI, ζr = ζ

(A35)

Bernoulli–Euler beam and moving load model :[
M1

rr
][ ..

xr
]
+
[
C1

rr
][ .

xr
]
+
[
K1

rr
][

xr
]
=
[
pr
]
with Nr = Ns, Lr = L, µr = µ, Er Ir = EI, ζr = ζ

(A36)
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