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Abstract: This article introduces GTMesh, an open-source C++ library providing data structures
and algorithms that facilitate the development of numerical schemes on general polytopal meshes.
After discussing the features and limitations of the existing open-source alternatives, we focus on the
theoretical description of geometry and the topology of conforming polytopal meshes in an arbitrary-
dimensional space, using elements from graph theory. The data structure for mesh representation
is explained. The main part of the article focuses on the implementation of data structures and
algorithms (computation of measures, centers, normals, cell coloring) by using State-of-the-Art
template metaprogramming techniques for maximum performance. The geometrical algorithms are
designed to be valid regardless of the dimension of the underlying space. As an integral part of the
library, a template implementation of class reflection in C++ has been created, which is sufficiently
versatile and suitable for the development of numerical and data I/O algorithms working with
generic data types. Finally, the use of GTMesh is demonstrated on a simple example of solving the
heat equation by the finite volume method.

Keywords: polyhedral meshes; mesh topology; numerical library; template metaprogramming; class
reflection in C++; numerical schemes; finite volume method

1. Introduction

Numerical algorithms for the solution of problems for partial differential equations
often rely on meshes covering the computational domain. The prominent representatives
of mesh-based methods are the finite element method (FEM) [1–4] and the finite volume
method (FVM) [5–7]. In order to tackle domains with nontrivial geometries, efficient tools
for unstructured mesh representation and manipulation are needed. In particular, using
general polygonal or polyhedral meshes comprising a relatively small number of highly
complex cells can be beneficial in several situations.

Using FVM to solve problems involving, e.g., reacting multiphase flows [8,9], the num-
ber of necessary evaluations of computationally costly terms in the governing equations can
be reduced by using polyhedral meshes. In the CFD domain, the properties of polyhedral
meshes and their possible advantages, in terms of convergence rate and computational
costs, have recently started to be investigated systematically [10–13], and their support
is available in popular packages, such as ANSYS Fluent, OpenFOAM [14] or AVL FIRE.
Efficient finite volume schemes, specifically tailored to polyhedral meshes, are in active
development [15,16].

FEM traditionally uses tetrahedral or hexahedral meshes (in 3D). However, FEM has
recently been successfully generalized to meshes of convex polyhedrons, which has brought
about significant advantages [17–20]. Their applications also extend to computer graphics [21].

For developers of numerical codes, several open-source projects offer mesh handling
support, but none of them can provide the complete set of features required by high-
performance parallel FVM and FEM codes. Notable examples are outlined below:
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• OpenMesh [22] is aimed at applications in computer graphics, and provides tools for
mesh modification. However, it only supports polygonal meshes for the representation
of surfaces in 3D.

• PUMI (Parallel Unstructured Mesh Infrastructure) [23] is a complex library supporting
distributed mesh storage and processing via MPI [24]. By default, the mesh repre-
sentation by means of the MDS (Mesh Data Structure) submodule only accepts a
limited set of topological types known a priori at compile time, in order to achieve
high performance.

• ViennaGrid [25] is a modern library leveraging the concepts of template metapro-
gramming and iterators available in C++. It provides data structures for arbitrary-
dimensional meshes and also a number of specialized data types and mesh algorithms
that are often limited to certain dimensions or mesh types.

• MOAB (Mesh-Oriented datABase) [26] is an extensive library that allows general
topology meshes and supports mesh refinement, decomposition, parallel I/O and
other features. Despite being written in C++, it does not take advantage of templates,
and its performance has been shown to be relatively poor when processing polyhedral
meshes [27]. MOAB always represents mesh geometry in a 3D coordinate system.

• DUNE (Distributed and Unified Numerics Environment) [28] is a framework for nu-
merical computations primarily (but not exclusively) aimed at FEM. It is a mature and
very complex project with incomplete documentation, which also supports general
topology meshes.

• TNL (Template Numerical Library) [29] is a dynamically evolving framework for
implementing efficient numerical algorithms in C++, taking advantage of State-of-
the-Art C++ programming paradigms and exposing both CPU and GPU program-
ming through a unified interface. Recently, support for general topology polytopal
meshes [27] has been added.

With all the above in mind, we introduce GTMesh, a library created to facilitate
rapid development of numerical schemes and data postprocessing algorithms on general
polytopal meshes in an arbitrary dimension. GTMesh is implemented as a modern C++
header-only library (compliant with the C++14 standard [30]). GTMesh makes extensive
use of template metaprogramming, together with advanced concepts, such as SFINAE [31],
on account of which it can provide generic data structures and mesh algorithms that
compile for the desired use case and provide maximum run time performance. Using
GTMesh, it is possible to write the dimension-agnostic code of a complete numerical solver,
including the numerical scheme, the data association with the mesh and the data I/O. The
dimension of the problem is then specified as a template parameter at a single point in
the code. Currently, GTMesh is a relatively small open-source project, which is publicly
available, together with introductory documentation (see Data Availability Statement at
the end).

This paper serves as an introduction to the concepts used in GTMesh. In Section 2,
the theoretical description of general topology meshes in Rd, d ∈ N, is laid out. Section 3
presents the general data structure for the mesh representation used in this project. The im-
plementation details are explained in Section 4, including the data structures
(Sections 4.1 and 4.2) and the mesh algorithms (Section 4.3). In this section, the ideas
are often presented in the context of FVM schemes. For simplicity, geometrical consid-
erations are demonstrated on 2D polygons or 3D polyhedra, despite the possibility of
generalization into Rd, d > 3. Section 5 is devoted to a useful concept of class reflection,
which finds utility in generic numerical and data I/O algorithms. Its implementation
is based on original ideas combining C++ class templates and preprocessor macros, in
order to create a transparent and comfortable interface for the user. Finally, a simple ex-
ample program that solves heat conduction in 3D, by the FVM scheme, is demonstrated
in Section 6.
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2. Geometry and Topology of Unstructured Meshes

The following definitions are motivated by meshing computational domains for the
purpose of finite volume schemes. For an arbitrary set, S ⊂ Rd, denoted by m(S), the
d-dimensional Lebesgue measure of S, and by m̃(S), the (d− 1)-dimensional Hausdorff
measure of S.

Definition 1. Let the spatial domain Ω be a bounded polytope in Rd, d ∈ N. Let T be a set of
polytopal cells, and denote by E the set of all faces that constitute the boundaries of all elements of
T . T is called a d-dimensional conforming mesh on Ω, if the following properties are satisfied:

1.
⋃

K∈T K = Ω̄.
2. (∀K ∈ T )(∃EK ⊂ E )

(
∂K =

⋃
σ∈EK

σ̄
)
.

3. (∀K, L ∈ T )(K 6= L =⇒ (m̃(K̄ ∩ L̄) = 0∨ (∃σ ∈ E )(σ = K̄ ∩ L̄))).
Next, we introduce the notation for the sets of elements of different dimensions that

form the geometry of the mesh. For example, in a 3D mesh, the boundaries of the 3D cells
consist of 2D faces, which in turn represent flat surfaces bounded by 1D edges, which in
turn span between their two 0D vertices. In order to avoid confusion with the notion of
element in FEM, these objects are also called entities [27].

Definition 2. Let T be a d-dimensional mesh, where d ∈ N. The set of elements of dimen-
sion k ∈{0, 1, . . . , d} is denoted by T k. Nk

T =
∣∣∣T k

∣∣∣ is the number of elements of dimension k in
T . Finally, the complete system of geometrical elements is defined as

T ∗ =
d⋃

k=0

T k.

By Definition 2, we have E = T d−1. In terms of the mutual inclusion of elements of various
dimensions, we define the relation of connection on T ∗:

Definition 3. e, f ∈ T ∗ are connected ⇐⇒
(
e ⊂ f̄ ∨ f ⊂ ē

)
.

An example of mesh connections can be seen in Figure 1.

Figure 1. Example of connections in a simple 2D mesh. Vertices connected to element c1 are {v3, v2, v4}.
The cells connected to element v1 are {c1, c2}.

In a similar intuitive way, the neighborhood of elements is defined:

Definition 4. Let e ∈ T ∗. Then, the neighborhood of e is defined as

N(e) =
{

e′ ∈ T ∗
∣∣e′ is connected to e

}
.
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Moreover, we denote the subset of the connected elements with the given dimension k ∈ {0, 1, . . . , d} as

Nk(e) = N(e) ∩T k.

Graph Description of a General Topology Mesh

All connections in the mesh can be represented by means of a graph GT ∗ = (VT ∗ , ET ∗),
where the vertices of the graph match the elements of the mesh, and where the edges of the
graph correspond to the connections between them. The vertices VT ∗ of GT ∗ are grouped
into layers by dimensions of elements:

VT ∗
∼= T ∗ = T 0 ∪T 1 ∪ . . . ∪T d; (1)

Vk
T ∗
∼= T k. (2)

The edges of GT ∗ are defined as

ET ∗ =
{(

e, e′
)
∈ V2

T ∗
∣∣e, e′ are connected

}
. (3)

For an example, see Figure 2.

Figure 2. Example of the graph GT ∗ associated with the mesh shown in Figure 1. The edges in the
graph are presented by black or red lines. The edges between cells and vertices are highlighted in red.

The graph GT ∗ contains all information about the topology of the mesh. As the
connection of elements is a symmetrical relation, the graph GT ∗ is de facto undirected,
i.e., (e, e′) ∈ ET ∗ ⇐⇒ (e′, e) ∈ ET ∗ , ∀e, e′ ∈ VT ∗ . Additionally, for a simpler description
of the connections, i.e., of the graph edges, we denote a subset of graph edges from
dimension d1 to dimension d2 as

Ed1,d2
T ∗ =

{(
e, e′
)
∈ ET ∗

∣∣∣e ∈ Vd1
T ∗ , e′ ∈ Vd2

T ∗

}
. (4)

Definition 5. Let G = (V, E) be a graph. The adjacency matrix of the graph G is matrix AG ∈
R|V|×|V|, defined as

[AG]ij =

{
1 if
(
vi, vj

)
∈ E,

0 if
(
vi, vj

)
/∈ E,

(5)

where i, j ≤ |V|,vi, vj ∈ V.

Furthermore, to investigate certain types of connections and properties of the graph
mesh representation, we introduce the idea of a connection matrix, closely related to the
adjacency matrix. The connection matrix from dimension d1 to dimension d2 reads

[
Ad1,d2

GT ∗

]
ij
=

{
1 if

(
vi, vj

)
∈ E, vi ∈ Vd1

T ∗ , vj ∈ Vd2
T ∗ ,

0 if
(
vi, vj

)
/∈ E, vi ∈ Vd1

T ∗ , vj ∈ Vd2
T ∗ ,

, (6)
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where Ad1,d2
GT ∗

∈ RN
d1
T ×Nd2

T . The connection matrix is a rectangular block of AGT ∗ .
The primary aim of the data structure representing any unstructured mesh is to

store all connections of the elements in the mesh. Equivalently, it must contain enough
information for the reconstruction of the whole GT ∗ . The graph is fully described by its
adjacency matrix. Due to certain properties of the adjacency matrix of GT ∗ , it is possible to
reduce the amount of connections stored. First, it holds that(

Ad1,d2
GT ∗

)T
=
(
Ad2,d1

GT ∗

)
, (7)

where the Ad1,d2
GT ∗

∈ {0, 1}
∣∣∣Vd1

T ∗
∣∣∣×∣∣∣Vd2

T ∗
∣∣∣ is a rectangular submatrix of AGT ∗ reflecting the

connections from T d1 to T d2 . The second property is the dependence between adjacency
matrices between specified dimensions. The relation reads[

Ad1,d2
GT ∗

]
ij
= connect

(
Ad1,d3

GT ∗
,Ad3,d2

GT ∗

)
=

 1 if
(
∃k ∈

{
1, 2, . . . , Nd3

T ∗

})([
Ad1,d3

GT ∗

]
ik

[
Ad3,d2

GT ∗

]
kj
= 1

)
,

0 else,
(8)

where the dimensions d1, d2, d3 satisfy (d1 > d3 > d2) ∨ (d1 < d3 < d2). In other words,
the Formula (8) represents the chaining of the connections in the graph. The condition for
the dimensions of the connection matrices consists in finding the correct paths in the graph
that are consistent with the mesh topology.

3. Abstract Data Structure for Mesh Representation in Rd

This section describes the system of connections used in this work for storing an
unstructured mesh with general topology and dimensions.

According to (7) and (8), it is necessary to store either connections from Vk
T ∗ to Vk−1

T ∗

or from Vk−1
T ∗ to Vk

T ∗ , because those connections cannot be correctly obtained otherwise.
Therefore, we introduce a basic data structure as a sub-system of connections suitable to
represent any unstructured mesh in any dimension. Let us first consider the case d = 3.
The chosen data structure in 3D stores the connections

E∗T ∗ = E∗3,2
T ∗ ∪ E∗2,2

T ∗ ∪ E2,3
T ∗ ∪ E2,1

T ∗ ∪ E1,0
T ∗ , (9)

where the E∗3,2
T ∗ and E∗2,2

T ∗ are auxiliary connections enabling direct iteration over cell
boundaries. The E∗3,2

T ∗ are pointers from each cell to one of its faces, while the references E∗2,2
T ∗

are between the faces, and they connect the faces making up the boundary of each single
cell. Other connections are defined according to Equation (4). For better understanding of
the connections between the elements, see Figure 3 presenting connections in a 3D mesh.

This concept is extensible to any dimension. The formula describing the system of
connections stored in d-dimensional unstructured mesh is

E∗T ∗ = E∗d,d−1
T ∗ ∪ E∗d−1,d−1

T ∗ ∪ Ed−1,d
T ∗ ∪ Ed−1,d−2

T ∗ ∪ . . . ∪ E2,1
T ∗ ∪ E1,0

T ∗ . (10)

The system of connections E∗T ∗ is presented in Figure 4.
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Figure 3. Connections on an example 3D mesh corresponding to the graph presented in Figure 4.

Summary of connections

Arrow Connection subset From To #connections from element

E∗d,d−1
T ∗ cells faces 1

E∗d−1,d
T ∗ faces cells max. 2

E∗d−1,d−1
T ∗ faces faces 1
E∗k,k−1

T ∗ generic dim. k generic dim. k− 1 arbitrary
E∗1,0

T ∗ edges vertices 2

Figure 4. An example of a graph representing the topology of a generic d-dimensional mesh. If d > 3,
one or more violet layers of generic elements with dimensions k ∈ {2, 3, . . . , d− 2} appear. Each of
these generic elements refers to the elements of its boundary, using blue arrows Ek,k−1

T ∗ . In the last
column of the table, the numbers of connections of the given type from each element are reported.

4. The GTMesh Library

The GTMesh library is a C++ project designed for efficient work with polytopal meshes.
In order to achieve both user friendliness and computational efficiency, it utilizes modern
C++ paradigms. The architecture of GTMesh aims at maintainability and extensibility,
using, e.g., the open–closed principle [32].

From the construction point of view, the internal structure of the mesh storing the
chosen system of connections (10) is very similar to formats of sparse matrices. However,
the structures representing elements are designed to be more convenient for the user.

The library provides commonly used mesh algorithms determining, e.g., connections
between elements of any desired dimensions, neighborhood of elements, measures of all
elements of a mesh of an arbitrary dimension and normals to cell faces.
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The architecture of GTMesh is split into four main parts:

• storing the mesh topology;
• associating data with the mesh;
• calculating various properties of the mesh;
• exporting and importing mesh-related data.

The construction parts of GTMesh are described in the following sections. Section 4.1
discusses the structure storing the mesh topology. Section 4.2 presents the system of data
mapping to the mesh. This data mapping system significantly contributes to the user
friendliness of GTMesh. Next, the auxiliary functions for calculating, e.g., elements centers
and measures are described in Section 4.3. Section 5 describes a unique system of class
reflection, developed to automate basic operations with C++ structures or classes such
as serialization, deserialization or arithmetical operations. This concept improves the
development efficiency, as it reduces the amount of routine work on data interface coding.

4.1. Mesh Data Structure

The complete C++ data structure storing a mesh consists of arrays containing the mesh
elements. The representation of a mesh element is to be understood as a simple C++ data
structure containing the respective references from (10). An example for the dimension
d = 3 is depicted in Figure 5. In addition, the structures for cells and faces contain two
auxiliary data elements: center (see Section 4.3) and flag.

Figure 5. Scheme of the chosen representation demonstrated on a 3D unstructured mesh.

The elements are collected in a data structure called MeshElements, which is de facto
the unstructured mesh itself. Due to the template implementation of the mesh element
data structure, it is possible to automatically generate the system of elements based on the
template arguments, i.e., only one definition of the MeshElements class is required, e.g., for
definitions of 2D or 3D mesh. The dimension of the mesh is given by a template parameter.

Additionally, it is possible to prescribe the maximum number of sub-elements of
faces and other elements which have references represented by blue arrows in Figure 4.
This number is called Reserve. When Reserve is defined, it is possible to embed the
references directly into the corresponding mesh element data structure, avoiding dynamic
memory allocation. For example, when the number of sub-elements of faces in a 3D mesh
is prescribed to three, the stored mesh can only have triangular faces. Note that, due to the
chosen representation, the number of faces of one cell is unlimited in any dimension.

4.2. Associating Data with the Mesh

Any numerical method for solving a system of partial differential equations on a
domain tessellated by the mesh needs to store data associated with the individual mesh
elements. The data can represent the values of the solution, auxiliary pre-calculated space-
dependent quantities or implementation-specific storage for intermediate results. The
purpose (and hence the type) of data associated with mesh elements is specific to their
dimension. For example, finite volume methods use solution values for the computationally
significant elements, i.e., cell centers, cell faces or both. However, additional data storage
may be allocated, for each vertex to hold the results of intermediate calculations.

GTMesh provides a data container, named MeshDataContainer, to conveniently store
data associated with mesh elements. Once the mesh geometry and topology has been
provided, MeshDataContainer provides a flexible interface for allocating and accessing the
mesh-associated data. In the most generic case, a single instance of MeshDataContainer
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is capable of holding data represented by types T1, T2, . . . , Tn associated with all mesh
elements of dimensions d1, d2, . . ., dn, respectively. The dimensions specifiers (d1, d2, . . ., dn)
need not be unique, i.e., there can be more than one data type associated with elements of
the given dimension.

Internally, MeshDataContainer contains n arrays with interfaces similar to
std::vector<T1> . . .std::vector<Tn>. For each i ∈ {1, . . . , n}, the length of the vector is
the same as the number of mesh elements of dimension di.

The vectors within MeshDataContainer can be addressed in two ways:

1. By position i of the dimension di within the ordered list (d1, d2, . . ., dn);
2. By dimension d. In this case, the ith vector is returned, where i is the first integer in

the sequence (1, 2, . . . , n), such that di = d.

In addition, the data within MeshDataContainer can also be indexed directly by the
instances of MeshElement, i.e., the MeshDataContainer provides a subscript operator for
instances of the MeshElement class (see Listing 1). This establishes a mapping between
mesh elements and data instances. The data vector in MeshDataContainer is given by
the dimension of the mesh element (by using the rule explained above). The component
of the vector is given by element dimension and index, present in every MeshElement
data structure.

Listing 1. Presentation of the usage of the MeshDataContainer class. The data container allocates
four different data types to dimensions of the mesh. Upon construction, the MeshDataContainer
class allocates data according to the dimensions of the provided mesh. Then, the example presents
the possibility of accessing data, using elements of the mesh or the underlying data collections, by
explicitly specifying the dimension or position template parameter.

1 UnstructuredMesh <3, double > mesh3d;
2 mesh3d.load("mesh_file.vtk")
3 // Associate data to a mesh
4 // automatically allocates data according to the mesh dimensions.
5 // Type char -> cells , int and double -> faces and float -> vertices.
6 MeshDataContainer <std::tuple <char , int , double , float >, 3,2,2,0> meshData(mesh3d);
7

8 // Accesses the value corresponding to the first vertex.
9 meshData[mesh3d.getVertices ()[0]];

10 // equivalent to
11 // getDataByDim returns the first collection corresponding to the desired dimension.
12 meshData.getDataByDim <0>() [0];
13

14 // Redundant mappings to a dimension are accessible via getDataByPos only.
15 meshData.getDataByPos <2>();

4.3. Algorithms

This section presents mesh algorithms provided by the GTMesh library. Each algo-
rithm is implemented in a member function of a separate class template. The respective
member function accepts a reference to a MeshElements instance as a parameter: thus, the
set of functions may be extended without modifying the MeshElements structure. There-
fore, the data structures presented in Section 4.1 do not have any calculation methods, in
contrast to, e.g., OpenFOAM [14]. Generally, each external function aims to calculate the
respective property for the whole mesh at once, e.g., calculating measures of all elements
(of all dimensions) in the mesh. Note that function templates cannot generally be used for
this purpose instead of class templates, as C++ does not support partial specialization of
function templates. Whenever possible, the functionality of the respective class is wrapped
in a function template, to simplify the user interface.

4.3.1. Iteration Over Mesh Structure

The first realized algorithm, MeshApply::apply(), provides a unified approach to
iterating the connections in the mesh (i.e., MeshElements) according to Figure 4: for example,
it is able to perform an operation for each vertex (target element dimension) connected to a
cell (source element dimension), which would require three nested loops. The dimensions
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of the source and target elements are prescribed by template parameters StartDim and
TargetDim. The operation to be performed is provided by a reference to a callable object
(e.g., lambda function, function pointer).

This functionality guarantees that the desired operation will be performed with the
indices of each element of the source element dimension and all the elements of the target
element dimension connected to it. However, it is not guaranteed that the function will be
called exactly once for each pair of elements: if this is a concern, multiple calls have to be
handled by the user-defined algorithm itself.

Due to the symmetry of the connection relation (Definition 3), the iterations where the
target element dimension is higher than the source element dimension (e.g., loop over cells
connected to vertices) can be realized by looping with swapped dimensions and by only
providing the correct indices of the target and source elements. Hence, GTMesh is able
to realize such loops, even though the connections from lower-dimension elements to the
ones with higher dimension are not stored in memory.

4.3.2. Determining the Elements’ Connections

By means of MeshConnections::connections(), the connection matrix Ad1,d2
GT ∗

is cal-
culated. The dimensions d1, d2 are given by the template parameters StartDim and
TargetDim. The result is a MeshDataContainer mapping a vector of indices of the con-
nected elements of the TargetDim dimension for each element of the StartDim dimension.
For an example of using MeshConnections, see Listing 2. MeshConnections provides the
functionality of the map “connect” introduced in Equation (8).

Listing 2. An example of using MeshConnections. The MeshConnections::connections() member
function returns a MeshDataContainer, mapping to each element the indexes of the connected
elements of the requested dimension. The sequence of indexes does not contain duplicities, and the
connections can optionally be returned in ascending order.

1 // Connected vertices to the cells
2 auto conCellToVert = MeshConnections <3,0>:: connections(mesh);
3 for (auto& cell : mesh.getCells ()){
4 conCellToVert[cell]; // Vector of connected vertices to the given cell
5 }
6

7 // Connections in the original order in the mesh
8 auto conCellToVertOrig = MeshConnections <3,0,Order :: ORDER_ORIGINAL >:: connections(

↪→ mesh);
9 for (auto& cell : mesh.getCells ()){

10 conCellToVertOrig[cell]; // Vector of vertices connected to the given cell
11 }
12

13 // Detection of the cells connected to a vertex
14 auto conVertToCell = MeshConnections <0,3>:: connections(mesh);
15 for (auto& vert : mesh.getVertices ()){
16 conVertToCell[vert]; // Cells connected to the given vertex
17 }

Using MeshApply, the implementation of MeshConnections is very simple. The only
problem to be solved is that the connected elements are visited more than once, because the
function MeshApply does not care whether a connected element has already been visited.
The solution consists of utilizing the standard template library class std::set, which
prevents insertion of multiple keys (in our case, the element indexes).

4.3.3. Determining the Elements’ Neighborhood

MeshNeighborhood::neighbors() determines the neighborhood of elements. In terms
of graph theory, the neighborhood of a vertex v is a set of graph vertices that are connected
to v by an edge. We adapt the definition of neighborhood to respect the mesh geometry. This
neighborhood is defined by two dimensions: the first is the connecting dimension d1, and
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the second is the connected dimension d2. For any element e ∈ Vd
T ∗ , the set of neighboring

elements of dimension d2 connected by elements of dimension d1 reads

Nd1,d2
GT ∗

(e) =
{

f ∈ Vd2
T ∗

∣∣∣(∃g ∈ Vd1
T ∗

)
((g, f ) ∈ ET ∗ ∧ (g, e) ∈ ET ∗ ∧ e 6= f )

}
, (11)

where d, d1, d2 ∈ {0, 1, . . . , dT }. In the MeshNeighborhood class, the parameters d, d1, d2 are
named StartDim, ConnectingDim and ConnectedDim, respectively. This algorithm returns
a vector of indices of neighboring elements according to (11) for each element of dimension
d. If a broader neighborhood is needed, the neighborhoods of neighboring elements can be
combined, using the std::set_union() function.

4.3.4. Calculation of Proper Coloring of a Mesh

The last of the algorithms related to graph representation of the mesh topology is
the coloring algorithm ColorMesh::color(). The problem consists of the proper coloring
of the elements of dimension d according to the connections of dimension d1 [33]. This
algorithm can be used to advantage, to prevent race conditions during multi-threaded
parallel computation.

The template parameters of the ColorMesh class are as follows: d as ColoredDim; d1
as ConnectingDim; and Method, to select one of the two supported coloring methods. The
greedy method utilizes the first free color index when determining the color index for an
element. Obviously, this approach may lead to uneven distribution of color indices in the
mesh. If this turns out to be a limiting factor for parallel performance, random update
strategy can be used instead: first, a proper coloring is obtained, using the greedy algorithm;
then, a second phase is launched, which rebalances the color indices randomly, while still
maintaining the proper coloring in each step.

4.3.5. Calculation of Element Centers

The previous algorithms work with the mesh as a topological object, i.e., they do not
use the coordinates of vertices. Now, we will describe the algorithms that calculate some
significant geometrical properties of the mesh. We begin with an algorithm calculating
the center points of all objects in the mesh, which is crucial for implementing cell-centered
FVM schemes.

The center of each element is calculated as an average of the positions of the centers of
all the connected sub-elements. For example, the center of a cell is an average of the centers
of the cell’s faces. The advantage of this approach is the reduction of the depth of iteration
over the mesh (see the example of the algorithm in Figure 6). Because the algorithm uses
the previously calculated values, the computation may speed up against the calculation of
the center as the average of the positions of the connected vertices. For example, in the case
of dimension dT = 2, it is sufficient to visit the sub-elements of dimension 1. The scheme
of the algorithm is as follows:

1. set the dimension d = 1;
2. for all elements e ∈ T d, calculate the center of e as xe =

1
|Nd−1(e)| ∑ f∈Nd−1(e) x f by a

loop over sub-elements of e;
3. if d < dT then d = d + 1, and go to step 2; else, stop the algorithm and return

the result.

In a 2D mesh, this algorithm returns the same result as the average of the positions
of the connected vertices. However, in a 3D mesh, the results of both algorithms may
differ if there are faces with different numbers of vertices. The computeCenters() function
calculates the centers of all elements in the mesh, using the algorithm presented above.
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Figure 6. An example of the algorithm for calculating the element centers in a simple 3D mesh.
The center point of an element is calculated as an average of the center points of its sub-elements.
For example, the cell center point denoted xc is the average of the centers of all connected faces,
denoted x fi

.

4.3.6. Calculation of Element Measures

The next algorithm calculates the Hausdorff measures of elements, with respect to
their dimension 1 < d ≤ dT , where dT is the dimension of the mesh. We assume that
every polytope e ∈ T d is a star domain, with respect to its center xe [34]. For d > 1,
such polytopes can be subdivided into pyramids Pe,e′ with (planar) bases formed by their
sub-elements e′ ∈ T d−1 and a common top xe. An example of subdivision of an element
into pyramids is presented in Figure 7. This can be expressed as

e =
⋃

e′∈Nd−1(e)

Pe,e′

(see Definition 4). The d-dimensional Hausdorff measure of e is then given by

m(e) = ∑
e′∈Nd−1(e)

m
(

Pe,e′
)
. (12)

Let us denote by v the geometrical position of each vertex v ∈ T 0. Then, the measure of
the pyramid Pe,e′ reads

m
(

Pe,e′
)
=

1
d

m
(
e′
)
dist(Ve′ , xe), (13)

where Ve′ is a linear manifold of dimension d− 1, containing the element e′, and m(e′) is
the (d− 1)-dimensional measure of the pyramid base, calculated recursively by the same
algorithm. To find the height of the pyramid dist(Ve′ , xe), the Gram–Schmidt process is
applied to the system of linearly independent vectors:(

ve′ ,2 − ve′ ,1, ve′ ,3 − ve′ ,1, . . . , ve′ ,d − ve′ ,1, xe − ve′ ,1
)
, (14)

where ve′ ,i ∈ T 0 ∩ e′ are unique vertices of e′. Note that an element of dimension d− 1 has
at least d vertices. This results in an orthogonal system:

(y2, y3, . . . , yd, ỹ), (15)
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where the last vector, ỹ, is not normalized. Finally, we calculate

dist(Ve′ , xe) = |ỹ|.

For d = 1, the 1D measure (length) of an edge e ∈ T 1 is calculated by

m(e) = |vA − vB|, (16)

where {vA, vB} = N0(e) .
The above algorithm is implemented by the computeMeasures() function, and it

returns a MeshDataContainer with measures of all elements in the mesh (except vertices).
The computeMeasures() function calculates the measures from lower dimensions to higher
ones, and it utilizes, to advantage, the already-calculated measures of lower-dimensional
elements. This function also supports the compensation for non-planar elements [35].

Figure 7. An example of the computation of a 2D Hausdorff measure of a polygonal element, e ∈ T 2,
and of a 3D measure of a polyhedron, e ∈ T 3.

4.3.7. Calculation of Face Normal Vectors

Another common operation is to calculate the outward-pointing normal vector ne′ to
each face e′ ∈ NdT −1(e) of each cell e ∈ T dT . After constructing the system of vectors (14)
and applying the Gram–Schmidt process, to obtain (14), the normal vector is calculated as

ne′ = −
ỹ
|ỹ| .

The function responsible for the calculation of normal vectors is computeFaceNormals().
This function calculates a normal vector for each face in the mesh. The calculated normal
vector points from the right cell (CellRightIndex) to the left cell (CellLeftIndex) are given
by the data structure.

4.3.8. Import and Export of the Mesh

GTMesh provides tools for importing and exporting the mesh and the data associated
with the mesh. The supported formats are VTK [36] for 2D and 3D meshes and FPMA for
3D meshes. The loading of meshes is realized by the VTKMeshReader and FPMAMeshReader
classes, which accept the dimension of the source mesh as a template parameter. Similarly,
there are classes for exporting meshes to the respective formats, i.e., VTKMeshWriter and
FPMAMeshWriter. As the export operation is expensive, both mesh writers support a caching
mechanism. If a mesh with the same topology is exported repeatedly via the same writer
instance, the previously cached data are used. Note that VTKMeshWriter needs to know the
types of cells to be exported. This information is not stored in the mesh directly, but it can
be obtained from the reader instance that loaded the mesh. If the cell type is identified as a
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generic polyhedron, the cell is tessellated into tetrahedrons constructed from cell center,
face center and edge vertices.

Support for other popular formats used, e.g., by ANSYS Fluent or CFX can be added in
future, by implementing the respective classes. In addition, the readily available conversion
tools provided by OpenFOAM [14] have been successfully tested.

4.3.9. Import and Export of Mesh Data

As the FPMA format does not support storing data, the only currently supported
mesh data export is to the VTK format. The classes responsible for reading and writing
data associated with a mesh are VTKMeshDataReader and VTKMeshDataWriter. The aim is
to export data in a format that can be directly visualized using, e.g., ParaView.

The VTKMeshDataWriter::writeToStream() member function accepts a reference to
an std::ostream to which the data will be appended, MeshDataContainer, with data
associated with cells and a VTKMeshWriter instance utilized to export the mesh, as it
contains metadata related to the tessellation of cells. The data must have the I/O Traits
defined (see Section 5 below), in order to be exported. If a cell tesselation is performed, the
data associated with the original cell is exported for all the resulting tetrahedrons.

The VTKMeshDataReader::readFromStream() member function accepts an
std::istream from which the data will be loaded and a MeshDataContainer instance
with corresponding data types associated with cells in which to store the data. The data
types must have I/O Traits defined, in order to be loaded. The data array is allocated
according to the length of the loaded array, regardless of the size of the actual mesh.

GTMesh provides other tools for data analysis, especially the DBGVAR_JSON debugging
macro defined in debug.h. This macro prints JSON-formatted logs into a .json file. This
file can subsequently be analyzed by a number of readily available tools, e.g., using the
features and scientific packages in the Python ecosystem.

Finally, GTMesh provides the BinarySerializer class to save/load raw data in binary
form without any information loss due to rounding. This is useful for creating snapshots of
a numerical simulation that can serve as starting points for later continued computation.
The endianness is not guaranteed, and depends on the architecture of the host system.

4.4. The UnstructuredMesh Wrapper Class

As described in the project architecture (Section 4), GTMesh aims at providing a single
compact class exposing both the mesh structure and the mesh algorithms by means of its
member functions, to simplify the work with the mesh. This construction makes the work
with the mesh much more convenient. This wrapper class is called UnstructuredMesh.
It inherits the MeshElements class, and it has no further structure. The only purpose of
UnstructuredMesh is to provide the algorithms from Sections 4.3 as its public member
functions. The provided functions are constructed with as few template parameters as pos-
sible, because most of the parameters of the mesh functions can be deduced from the setup
of UnstructuredMesh. For example, the member function computeElementMeasures() has
only one template parameter Method, because the rest of the parameters of the function
computeMeasures() are deduced. An example of UnstructuredMesh wrapper usage is
shown in Listing 3.
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Listing 3. An example of use of the UnstructuredMesh wrapper class. This listing illustrates calcu-
lating mesh properties, exporting them into a VTK file and loading them back. The exported three
quantities associated with the cells are coloring with respect to connections over vertices, center point
and inverse measure of cells. The process of calculation of the exported properties illustrates the
fundamental design of the function calculating the properties of the UnstructuredMesh object.

1 #import <fstream >
2 #import <GTMesh/UnstructuredMesh/UnstructuredMesh.h>
3

4 struct CellData {
5 unsigned int color;
6 Vertex <3, double > center;
7 double invVol;
8 };
9 // Create default Traits for the class CellData

10 MAKE_ATTRIBUTE_TRAIT(CellData , center , color , invVol);
11

12 void main() {
13 // load mesh
14 UnstructuredMesh <3, size_t , double , 6>& mesh;
15 auto meshReader = mesh.load("mesh_file.vtk");
16 mesh.initializeCenters ();
17

18 // Calculate mesh properties and store them into meshData
19 MeshDataContainer <CellData , 3> meshData(mesh);
20 auto colors = ColorMesh <3,0>:: color(mesh);
21 auto measures = mesh.computeElementMeasures ();
22 for(auto& cell : mesh.getCells ()){
23 meshData[cell].color = colors[cell];
24 meshData[cell]. center = cell.getCenter ();
25 meshData[cell]. invVol = 1.0 / measures[cell];
26 }
27

28 // Export the mesh first
29 // In order to enforce the mesh tessellation , prepare the cell types as

↪→ polyhedrons
30 // the correct cell types can be obtained here: meshReader ->getCellTypes ()
31 MeshDataContainer <MeshNativeType <3>:: ElementType ,3> cellTypes(mesh ,

↪→ MeshNativeType <3>:: POLYHEDRON);
32

33 // Write the mesh to file
34 VTKMeshWriter <3, size_t , double > writer;
35 std:: ofstream out3D("mesh.vtk");
36 writer.writeHeader(out3D , "test␣data");
37 writer.writeToStream(out3D , mesh , cellTypes);
38

39 // Export the data mapped to the mesh
40 VTKMeshDataWriter <3>:: writeToStream(out3D , meshData , writer);
41 out3D.close();
42

43 // Load the mesh from file
44 ifstream in3D("mesh.vtk", std::ios:: binary); // VTKMeshDataReader requires

↪→ binary mode
45 VTKMeshReader <3> reader;
46 reader.loadFromStream(in3D , mesh);
47 mesh.initializeCenters ();
48

49 // Read the exported data from the mesh file
50 MeshDataContainer <CellData , 3> meshDataIn(mesh);
51 VTKMeshDataReader <3, size_t >:: readData(in3D , meshDataIn);
52 in3D.close();
53 }

5. Class Reflection in C++ Optimized for High-Performance Computing

As part of the GTMesh library, a support tool providing advanced reflection (intro-
spection) of C++ structures and classes has been developed. In general, the aim of this tool
is to provide a unified interface for data contained in user-defined structures or classes
similar to std::tuple. As a result, the data members can be accessed based on an integer
index resolved at compile time. As C++14 provides no direct way to introspect objects at
run time or compile time, the data access mechanism has to be defined manually by the
user. However, GTMesh provides tools that allow to do this in a single line of code.

The data accessed by this mechanism can be arbitrarily related to the data actually
stored in the data structure, as demonstrated in Listing 4. Both real and “virtual” data
members calculated from the actually stored data have names accessible at run time. In
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the context of numerical algorithms, this tool makes it possible to write generic code that
implements the following functionalities:

1. Data stored in user-defined data structures can be exported/imported to/from VTK,
JSON or binary formats.

2. Arithmetic or other mathematical operations (such as norm calculation) can be per-
formed on the user-defined data structures.

As the above (and possibly other) use cases have different requirements, multiple
reflections designed for different purposes can exist for a single class. The iteration over
data members is done via static for loops, i.e., resolved at compile time by means of template
function recursion. Hence, the generated code is as efficient as manually written code.

At the time of writing, there exist several other open-source projects that aim for data
serialization and/or class reflection in C++. A very recent and elegant solution is Cista++
(https://cista.rocks),which implements class reflection with the help of C++17 structured
bindings [37]. However, this approach suffers from substantial limitations that prevent
using Cista++ with GTMesh: in particular, it does not allow data transformations to create
“virtual” data members, and it only works with plain structures without constructors.

5.1. Member Access

A data member denotes any information calculated from the data stored in a data
structure. Data members are obtained by their getter and are set by their setter functions.
These functions might be arbitrary.

The first part of the architecture is the method for data access. This is realized by
the MemberAccess template class with several template specializations. This class then
provides a unified interface to getting and setting the member data values. MemberAccess
may be constructed in different ways:

1. Member reference, i.e., &data_structure::member, which defines the get, constant
get and set operations. These operations are, thus, accessing the member data directly.

2. Pair of getter and setter, where each of these may be a member function or global
function (callable object, e.g., lambda function) accepting the data structure instance
as a parameter.

5.2. Class Traits

The MemberAccess classes are then grouped in the Traits class template, which
manages their association with the names of the data members. Traits has member
functions returning the data accessed by MemberAccess based on an integer template
parameter (see Listing 4).

5.3. Default Traits

In order for the algorithms in GTMesh to be able to access the class reflection func-
tionalities, there has to be a standard mechanism of globally exposing Traits for the given
user-defined data structures. The solution is based on the DefaultTraits class template,
which accepts the reflected class as its template parameter. The generic declaration of
DefaultTraits has no methods or parameters. Traits for a particular class are exposed
by defining DefaultTraits template specialization with a single static member function
getTraits(), which returns the corresponding Traits instance. From DefaultTraits,
GTMesh derives DefaultIOTraits for mesh data I/O and DefaultArithmeticTraits for
arithmetics (see Listing 5). Both of them inherit the DefaultTraits functionality, but a
specialization of each template can be provided by the user. The SFINAE paradigm [31] is
used to detect whether a particular class has the respective type of Traits defined.

Finally, to simplify the definition of default class traits, GTMesh offers several pre-
processor macros expanding to the specializations of the above classes. For example,
MAKE_DEFAULT_ATTRIBUTE_TRAITS expands to DefaultTraits, etc., with the expected static
member functions and type definitions. As a result, the definition of the default class traits
for a data structure requires a single line of code, as demonstrated in Listing 4.

https://cista.rocks
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Listing 4. Example of class reflection. There are two types of class traits defined for the Data class: the
first is generic DefaultTraits, which is used as a fallback if a specific traits class is not defined; the
other is DefaultIOTraits, which provides access to the primary members density and momentum
of the class Data, whereas the DefaulIOTraits considers the Data class to consist of density and
velocity, where velocity is calculated upon request from the primary members.

1 class Data {
2 double density;
3 Vector <3, double > momentum;
4 Vector <3, double > getVelocity (){return momentum/density ;}
5 void setVelocity(const Vector <3, double > velocity){momentum = velocity * density

↪→ ;}
6 }
7

8 // Macro creates specialization of DefautTraits for Data and names
9 // according to the attributes names

10 MAKE_ATTRIBUTE_TRAIT(Data , density , momentum);
11

12 // Macro creates specialization of DefaultIOTraits for the Data class
13 MAKE_CUSTOM_TRAIT_IO(
14 Data ,
15 "density", &Data::density ,
16 "velocity", std:: make_pair (&Data:: getVelocity , &Data:: setVelocity)
17 );
18 // usage ...
19 // Only values returned as l-value reference can be obtained using getAttr function
20 DefautTraits <Data >:: getTraits ().getAttr <0>( qInstance) = 3; //get reference to

↪→ density
21 DefautTraits <Data >:: getTraits ().setValue <1>(qInstance , {3, 6, 9}); // set momentum
22

23 DefaultIOTraits <Data >:: getTraits ().getValue <1>( qInstance); // {1, 2, 3} get velocity
24 DefaultIOTraits <Data >:: getTraits ().setValue <1>(qInstance , {1, 1, 1}); // set

↪→ velocity
25

26 DefautTraits <Data >:: getTraits ().getValue <1>( qInstance); // {3, 3, 3} get momentum

Listing 5. Example implementation of operator + for any type with DefaultArithmeticTraits or
DefaultTraits defined, e.g., application of this operator on the data class from Listing 4 would sum
up the density and momentum members. This approach allows us to define all common mathematical
operations for the classes with traits defined. It is even possible to define maximum value among the
members, if the members of the class are comparable.

1 template < typename T1 , typename T2 >
2 struct BinaryPlus
3 {
4 static auto evaluate( const T1& a, const T2& b ) -> decltype( a + b )
5 {
6 return a + b;
7 }
8 };
9

10 template <typename TraitT >
11 typename std::enable_if <HasDefaultArithmeticTraits <TraitT >::value , TraitT >:: type
12 operator +( const TraitT& op1 , const TraitT& op2) noexcept {
13 TraitT res;
14 // A class performing an operation for each member of the class
15 TraitsBinaryExpressionProcessor <BinaryPlus >:: evaluate(res , op1 , op2);
16 return res;
17 }

5.4. Example of Use

By using the concept of class traits, it is possible to generalize complex computational
methods to be independent of the data structures utilized by the solved problem, which
simplifies their development and debugging. We demonstrate an implementation of a
generic version of the fourth-order Runge–Kutta–Merson (RKM) solver, with adaptive time
stepping for numerical integration of ordinary differential equation (ODE) systems [38].
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Considering the ODE system in the form

ẋ = f (t, x), (17)

where the x ∈ RN , N ∈ N and f : J ×RN → RN , the RKM solver works as presented in
Algorithm 1:

Algorithm 1 Pseudo-code of the Runge–Kutta–Merson ODE solver [38].

1 τ = τini; xτ = xτ
ini; t = Tini;

2 while(|Tini − t| < |Tini − T|){
3 if ( |T − t| < |τ| ) {
4 τ = T − t;
5 }
6 K1 = f (t, xτ);
7 K2 = f

(
t + τ

3 , xτ + τ
3 K1

)
;

8 K3 = f
(
t + τ

3 , xτ + τ
6 (K1 + K2)

)
;

9 K4 = f
(
t + τ

2 , xτ + τ
8 (K1 + 3K3)

)
;

10 K5 = f
(
t + τ, xτ + τ

( 1
2 K1 − 3

2 K3 + 2K4
))
;

11 ε = max_element τ
3 |0.2K1 − 0.9K3 + 0.8K4 − 0.1K5|

12 if ( ε < τ) {
13 xτ = xτ + τ

( 1
6 (K1 + K5) +

2
3 K4

)
;

14 t = t + τ;
15 if (ε == 0) continue;
16 }
17 τ = (δ/ε)0.2 ·ωτ;
18 }

The symbols used there are summarized in Table 1:

Table 1. Symbols used in the Runge–Kutta–Merson pseudo-code (Algorithm 1).

Symbol Meaning

t current time level
T final time

Tini initial time
τ time step

τini initial time step
xτ numerical solution
xτ

ini initial condition for the numerical solution xτ

δ tolerance parameter
ω time step adjustment parameter (ω = 0.8 is recommended)

For more information, see [38,39]. This algorithm is utilized in the example application
presented in Section 6 below. Finally, the implementation of the algorithm is illustrated
in Listing 6.
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Listing 6. Implementation of the Runge–Kutta–Merson [38] algorithm. This algorithm accepts an
instance of Problem class, which has several properties, such as computational mesh, ResultType
and mainly calculateRHS member function, which accepts MeshDataContainer associated with cells
of the mesh of the problem and returns f (t, x) as defined in (17). The implementation relies on the
fact that the ResultType data type has defined (e.g., by the arithmetic traits) arithmetical operations.

1 template <typename Functor , typename ...T, unsigned int Dimension >
2 void performVectorOperation(Functor && f, MeshDataContainer <T, Dimension >& ... args) {
3 const auto& firstVector = std::get <0>(std:: forward_as_tuple(args ...));
4 for (std:: size_t i = 0; i < firstVector.template getDataByPos <0>().size(); ++i) {
5 f((args.template getDataByPos <0>()[i])...);
6 }
7 }
8
9 template <typename Functor , typename ...T, unsigned int Dimension >

10 double performVectorReductionMax(Functor && f, MeshDataContainer <T, Dimension >& ... args) {
11 const auto& firstVector = std::get <0>(std:: forward_as_tuple(args ...));
12 double res = std:: numeric_limits <double >:: lowest ();
13 for (std:: size_t i = 0; i < firstVector.template getDataByPos <0>().size(); ++i) {
14 double tmp_res = f((args.template getDataByPos <0>()[i])...);
15 if (res < tmp_res) {
16 res = tmp_res;
17 }
18 }
19 return res;
20 }
21
22 template <typename Problem , std:: enable_if_t <HasDefaultArithmeticTraits <typename Problem ::ResultType >::value , bool > =

↪→ true >
23 void RKMSolver(Problem& problem ,
24 MeshDataContainer <typename Problem :: ResultType , Problem :: MeshType :: meshDimension () >& compData ,
25 double tau_ini , double startTime , double finalT , double delta)
26 {
27 using container_type = MeshDataContainer <typename Problem ::ResultType , Problem :: MeshType :: meshDimension () >;
28 container_type Ktemp(compData); //x_ini
29 container_type K1(compData), K2(compData), K3(compData), K5(compData), K4(compData);
30
31 double tau = tau_ini , time = startTime;
32 while (time < finalT) {
33 if (time + tau > finalT) {
34 tau = finalT - time;
35 }
36
37 problem.calculateRHS(time , compData , K1);
38 performVectorOperation(
39 [&tau](auto &Ktemp , auto& compData , auto& K1){ Ktemp = compData + (tau * (1.0 / 3.0) * K1); },
40 Ktemp , compData , K1
41 );
42
43 problem.calculateRHS(time , Ktemp , K2);
44 performVectorOperation(
45 [&tau](auto &Ktemp , auto& compData , auto& K1 , auto& K2){ Ktemp = compData + (tau * (1.0 / 6.0) * (K1 + K2))

↪→ ; },
46 Ktemp , compData , K1, K2
47 );
48
49 problem.calculateRHS(time , Ktemp , K3);
50 performVectorOperation(
51 [&tau](auto &Ktemp , auto& compData , auto& K1 , auto& K3){ Ktemp = compData + (tau * (0.125 * K1 + 0.375 * K3

↪→ )); },
52 Ktemp , compData , K1, K3
53 );
54
55 problem.calculateRHS(time , Ktemp , K4);
56 performVectorOperation(
57 [&tau](auto &Ktemp , auto& compData , auto& K1 , auto& K3, auto& K4){ Ktemp = compData + (tau * ((0.5 * K1) -

↪→ (1.5 * K3) + (2.0 * K4))); },
58 Ktemp , compData , K1, K3, K4
59 );
60
61 problem.calculateRHS(time , Ktemp , K5);
62 double error = performVectorReductionMax(
63 []( auto& K1, auto& K3, auto& K4 , auto& K5)->double{return max(abs (0.2 * K1 - 0.9 * K3 + 0.8 * K4 - 0.1 * K5

↪→ ));},
64 K1, K3 , K4 , K5
65 );
66 error *= tau * (1.0 / 3.0);
67
68 if (error < delta) {
69 performVectorOperation(
70 [&tau](auto& compData , auto& K1, auto& K4, auto& K5){ compData += tau * (1.0 / 6.0) * (((K1 + K5)) +

↪→ (4.0 * K4)); },
71 compData , K1, K4, K5
72 );
73 time += tau;
74 if (error == 0.0) continue;
75 }
76 tau *= std::pow(delta/error , 0.2) * 0.8;
77 }
78 }

6. Example Application

To introduce GTMesh in action, and to provide a starting point for numerical solver de-
velopment, an example application has been created (see Data Availability Statement). The
numerical solution of the heat equation is demonstrated, using a finite volume scheme for
spatial discretization, and using the RKM solver (see Algorithm 1) for temporal discretiza-
tion. The algorithm works both with 2D and 3D meshes, and is provided in three variants,
in terms of parallelization: single-threaded (Section 6.2); OpenMP utilizing graph coloring
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to avoid race conditions (Section 6.3); and OpenMP utilizing auxiliary computational data
values to avoid race conditions (Section 4.2).

6.1. Problem Formulation and Discretization

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded polyhedral domain and J = (0, Tend) be the
time interval, where Tend is the final time. The evolution of temperature T in J̄ × Ω̄
is governed by the problem

∂T
∂t

= ∆T in J ×Ω, (18)

T|∂Ω = Twall on J × ∂Ω, (19)

T|t=0 = Tini in Ω, (20)

where (18) is the heat equation (with heat conductivity equal to 1, for simplicity), (19) is a
constant Dirichlet boundary condition and (20) is the initial condition. Given a mesh T
covering Ω (recall Definition 1), we integrate (18) over each control volume K ∈ T , apply
the Gauss–Green theorem and use FVM approximations to arrive at∫

K

∂T
∂t

(t, x)dx =
∫
EK

∇T(t, x) · ndS ∀K ∈ T , (21)

↓ ↓

m(K)
dTK
dt

(t) = ∑
σ∈EK

m(σ)FK,σ ∀K ∈ T , (22)

where:

• TK is the approximation of T(t, xK);
• FK,σ is the approximation of ∇T(t, yσ) · n defined as

FK,σ =


TL−TK
|xL−xK |

σ = K̄ ∩ L̄, L ∈ T ,
Twall−TK
|yσ−xK |

σ ⊂ ∂Ω;

• xK, xL are the centers of the volumes K, L, respectively;
• yσ is the center of σ.

The semidiscrete scheme (22) represents a system of ODEs in the form (17), which is
solved by the RKM solver described in Section 5.4.

6.2. Single-Threaded Version

The aim of the single-threaded application is to provide a general overview of the
necessary steps related to the generic use of the GTMesh library. The application consists
of two main parts: the RKMSolver() function and the HeatConductionProblem class. The
HeatConductionProblem has three member functions:

• loadMesh(), responsible for loading an unstructured mesh into the UnstructuredMesh
structure mesh;

• exportMeshAndData(), responsible for exporting the computational mesh together
with the data;

• calculateRHS(), responsible for calculating the right-hand side of (22), which is in
the form (17). This function is called from within the RKMSolver() function.

6.3. OpenMP Multi-Threaded Version Using Graph Coloring

When using OpenMP for multi-threaded execution, the parallel version of the algo-
rithm can take advantage of edge coloring (see Section 4.3). This approach requires the
identification of the operations that access the same memory at the same time. In this
particular problem, it is the addition or subtraction of the temperature delta, as shown
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on lines 37, 38 in Listing 7. Hence, the coloring has to be calculated for the edges, with
respect to the connection to the cells. Then, iterating over the edges with the same color
index eliminates the risk of accessing the same cell by multiple threads at the same time,
because the edges with the same color do not share any cell. The corresponding logic
is incorporated in the calculateRHS() function, which is called from within the parallel
version of RKMSolver().

Listing 7. Implementation of the heat conduction equation, as introduced in (22). The defined
problem object is then passed to RKMSolver(), depicted in Listing 6. Note the definition of class traits
for the ComputationData class in line 4: due to this feature, the data can be serialized/deserialized
to/from the VTK format. In addition, RKMSolver() can be applied to this problem, as the definition
of all necessary arithmetical operations is guaranteed. Lines 55–58 demonstrate that the changes
required for transition between 2D and 3D problems are minimal.

1 struct ComputationData {
2 double T; //!< temperature
3 };
4 MAKE_NAMED_ATTRIBUTE_TRAIT(ComputationData , "temperature", T);
5
6 // Auxiliary mesh data
7 struct FaceData {
8 double measureOverCellsDistance;
9 double measure;

10 };
11 struct CellData {
12 double invCellVolume;
13 };
14
15 template <unsigned int ProblemDimension >
16 struct HeatConductionProblem{
17 using MeshType = UnstructuredMesh <ProblemDimension , size_t , double >;
18 using ResultType = ComputationData;
19 using ProblemDataContainerType = MeshDataContainer <ResultType , ProblemDimension >;
20 std::shared_ptr <MeshReader <ProblemDimension >> meshReader;
21
22 MeshType mesh;
23 const double T_wall = 300;
24 MeshDataContainer <std::tuple <CellData , FaceData >,ProblemDimension , ProblemDimension -1> meshData;
25
26 void calculateRHS(double time , //time is unused in this problem
27 const ProblemDataContainerType &compData ,
28 ProblemDataContainerType &outDeltas){
29 for (const auto& cell : mesh.getCells ()){
30 outDeltas[cell].T = 0;
31 }
32 for (const auto& face : mesh.getFaces ()){
33 const auto cRI = face.getCellRightIndex (), cLI = face.getCellLeftIndex ();
34 if (! isBoundaryIndex(cRI) and !isBoundaryIndex(cLI)){
35 const auto &cR = mesh.getCells ().at(cRI), &cL = mesh.getCells ()[cLI];
36 const auto dT_dn = (compData.at(cL).T - compData.at(cR).T) * meshData[face]. measureOverCellsDistance;
37 outDeltas.at(cL).T -= dT_dn;
38 outDeltas.at(cR).T += dT_dn;
39 } else if (isBoundaryIndex(cLI)) {
40 const auto &cR = mesh.getCells ().at(cRI);
41 const auto dT_dn = (T_wall - compData[cR].T) * meshData[face]. measureOverCellsDistance;
42 outDeltas.at(cR).T += dT_dn;
43 } else {
44 const auto &cL = mesh.getCells ().at(cLI);
45 const auto dT_dn = (compData[cL].T - T_wall) * meshData[face]. measureOverCellsDistance;
46 outDeltas.at(cL).T -= dT_dn;
47 }
48 }
49 }
50 // other functions responsible for loading and exporting data
51 // on loading mesh , the auxiliary mesh data are pre -calculated
52 };
53
54 int main() {
55 HeatConductionProblem <3> hcp; // 3D version
56 // HeatConductionProblem <2> hcp; // 2D version
57 auto compData = hcp.loadMesh("../ Meshes/mesh3D.vtk"); // 3D version
58 // auto compData = hcp.loadMesh ("../ Meshes/mesh2D.vtk"); // 2D version
59 for (int i = 0; i < 10; ++i) {
60 RKMSolver(hcp , compData , 1e-3, i, i + 1.0, 1e-4);
61 // export data ...
62 }
63 }

6.4. OpenMP Multi-Threaded Version Using Auxiliary Data

This variant avoids race conditions in cell data access, by introducing auxiliary data
structures storing temporary results. As discussed in Section 6.3, the risk of conflict occurs
while adding deltas to cell data. Hence, this approach stores the deltas in an auxiliary data
structure mapped to the edges. Then, in a separate parallel cycle, the deltas are summed
over the cells’ boundaries.
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7. Conclusions

GTMesh is a C++ library providing data structures and algorithms that facilitate the
development of numerical schemes working with general polytopal meshes. In this paper,
an overview of the features and design of GTMesh is presented. Aside from the software
point of view, the description of general-topology polytopal meshes in arbitrary spatial
dimensions is based on the elements of graph theory, which allow for devising the most
suitable data structure for mesh representation.

From bottom to top, GTMesh is built upon template metaprogramming principles, us-
ing template recursion, specialization, SFINAE and other advanced techniques. Compared
to the several alternative projects dealing with similar topics, we believe that GTMesh
offers a unique combination of generality, simplicity, efficiency, innovation and elegance
that could be beneficial for the developers of numerical software. In particular:

• Despite being a relatively compact project, GTMesh provides the tools for developing
complete numerical solvers in a dimension-agnostic manner.

• The code generated by template instantiation for the particular situation is equivalent
to a direct implementation with no additional overhead.

• GTMesh not only includes data structures for arbitrary-dimensional meshes but also
provides robust algorithms related to mesh geometry.

• The implementation of class reflection in C++ using the Traits mechanism is sufficiently
versatile and suitable for development of numerical and data I/O algorithms working
with generic data types.

• GTMesh algorithms provide support for multi-threaded (OpenMP) parallelization.

On the other hand, the current implementation of GTMesh has several limitations, in
comparison to other much larger projects, such as PUMI, MOAB or TNL:

• Only conforming meshes are supported. Other types of mesh topology, such as
recursively refined non-conforming meshes based on quadtree/octree structures,
would require a separate implementation.

• GTMesh does not offer support for distributed computing. However, the architecture
of GTMesh could be extended in this manner, without the need to redesign its core
data structures.

• The authors of GTMesh and this article also collaborate with the developers of
TNL [29], opening up the possibility of introducing GPU support, which is currently
missing. Some preliminary steps have already been made in this direction.

GTMesh is open-source. Its source code, the code of the sample solver presented in
Section 6 and an introductory documentation are publicly available (see Data Availabil-
ity Statement below). It has also been successfully utilized in the numerical solver for
multiphase flow problems [40].
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Nomenclature

Important notation used throughout this manuscript:
AG adjacency matrix of the graph G (Definition 5)
Ad1,d2

GT ∗
connection matrix of the graph GT ∗ from dimension d1 to dimension d2

E a set of faces of all cells in the mesh T (Definition 1)
EK a set of faces constituting the boundary of K ∈ T (Definition 1)
ET ∗ edges of GT ∗ , given by (3)
Ed1,d2

T ∗ a subset of edges of GT ∗ from dimension d1 to dimension d2, given by (4)
GT ∗ graph representation of T ∗

J time interval (Section 6)
m(S) d-dimensional Lebesgue measure of S ⊂ Rd (Section 2)
m̃(S) (d− 1)-dimensional Hausdorff measure of S ⊂ Rd (Section 2)
Nk

T number of elements of dimension k ∈ {0, 1, . . . , d} in T ∗

N(e) neighborhood of the mesh element e ∈ T ∗

Nk(e) elements with dimension k ∈ {0, 1, . . . , d} connected to e ∈ T ∗

Nd1,d2
GT ∗

(e) set of neighbors of dimension d2 connected by elements of dim. d1, given by (11)
Ω spatial domain discretized by the mesh T

T the mesh, i.e., the set of cells covering Ω (Definition 1)
T ∗ the system of geometrical elements of T (Definition 2)
T k system of geometrical elements of T with dimension k (Definition 2)
T temperature (in the example problem in Section 6)
VT ∗ vertices of GT ∗ , given by (1)
xe geometrical center of the element e ∈ T ∗

Acronyms used in this manuscript:
CFD Computational Fluid Dynamics
DUNE Distributed and Unified Numerics Environment [28]
FEM Finite Element Method
FVM Finite Volume Method
I/O Input/Output
JSON JavaScript Object Notation, a lightweight data-interchange format (www.json.org)
MOAB Mesh-Oriented datABase [26]
ODE Ordinary Differential Equation
OpenMP Open Multi-Processing, a parallel programming API (www.openmp.org)
PUMI Parallel Unstructured Mesh Infrastructure [23]
RKM Runge–Kutta–Merson, an ODE solver with adaptive time step [38]
SFINAE Substitution Failure Is Not An Error [31]
TNL Template Numerical Library [29]
VTK Visualization Toolkit [36]
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