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Abstract: A one-time password is a security system that uses a password that is only used once
for authentication, and it is commonly used in multi-factor authentication systems. The process of
generating an OTP is very similar to generating pseudorandom sequences in cryptography. However,
since only a part of the bit string is used in OTP, an algorithm is needed to extract that part. In
addition, the OTP process also includes converting the value of the bit string value into decimal form
for human perception. This paper focuses on analyzing the extraction function, which is the step
before the hexadecimal is reprocessed into the decimal form. We analyze a function family, which
includes functions used in the process of extracting a bit string in terms of distinguishable security. As
a result, we conclude that the OTP extraction function family is vulnerable in terms of distinguishable
security compared to the random function family.

Keywords: one-time password; random number; extraction algorithm; distinguishable security

1. Introduction

This paper is a follow-up to a previous publication entitled “Analysis of Vulnerabilities
That Can Occur When Generating One-Time Password” [1]; it includes multiple experimen-
tal data on vulnerability points that can occur in OTP systems. While the previous paper
hypothesized and conducted experiments to derive OTP security, this follow-up paper
establishes an oracle attack model and derives theoretical security from a cryptographic
perspective, which is the biggest difference. Reviewing the previous paper first may help
in understanding this paper.

A cryptographic system is applied, assuming the use of secure random numbers. In
other words, random numbers are essential elements for cryptographic functions, such
as confidentiality, authentication, availability, etc. [2]. Meanwhile, the encoding of data
is a fundamental procedure in all digital environments. The values generated by the
algorithm are bit strings consisting of zeroes and ones. IT developers apply these values
by combining zeroes and ones into four or eight units and reading or writing them in
hexadecimal. However, situations can arise where people who are not in the IT industry or
are not familiar with PCs (such as the elderly or children) need to use the values generated
by the algorithm. This includes “typing in passwords for bank transactions” or “typing
in One-Time Passwords (OTP) values issued for entity authentication”. If the generated
bit string is used as hexadecimal, it can be applied to the authentication system, selected
by uniform distribution without wasting any values. However, considering people who
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are not familiar with hexadecimal (such as 0xA, 0xB, 0xC, 0xD, 0xE, and 0xF), the selected
hexadecimal values are conveniently reprocessed into decimal values [3,4].

An OTP, which guarantees security based on the characteristics of random numbers,
is vulnerable if weaknesses are exposed during the actual application step (such as the
extraction step), even if this is generated based on a secure algorithm. When extracting the
number of bits to be used as the OTP and converting them into decimal form, the variation
in each digit (∀i ∈ Z8, 10ith) is not uniform. To increase unpredictability, which should be
difficult to predict for higher security, the digits with the smallest variation are excluded.

This paper analyzes the extraction function, which is a step before the hexadecimal
is reprocessed into decimal form. In this process, the function family, including the OTP
extraction function used, is analyzed in terms of distinguishable security; as a result, it is
concluded that the OTP extraction function family is less secure in terms of distinguishabil-
ity when compared to the random function family.

2. Background
2.1. Random Number

Cryptographically secure random numbers are used in various security parameters.
They must satisfy unpredictability, unbiasedness, and bit independence, and must provide
security strength recommended in modern times. To ensure unbiasedness and bit indepen-
dence, a deterministic random number generator (DRBG) is used; to satisfy unpredictability
and security strength recommended by the government, various entropy sources (noise
sources) are collected and mixed into the DRBG as input with recommended or higher
security strength.

In the field of cryptography (and statistics), randomness refers to the property of being
selected randomly within a defined range, making it difficult to predict the outcome of
an event or find patterns. Randomness is like the result of tossing a fair and unbiased
coin continuously. If we assume that each side of the fair coin is represented by 0 or
1 when it is tossed once, the probability of getting either 0 or 1 is the same, and each toss is
independent [5]. Therefore, the result of continuously flipping a fair coin is equivalent to
the result of an ideal random number generator. A sequence is considered to be random if
each bit is independent and identically distributed (IID) with equal probability [6].

In an environment where encryption is used, random numbers must be unpredictable.
Even a slight possibility of predicting random numbers can greatly affect cryptographic se-
curity. Depending on the situation, an attack may be possible on a secure protocol designed
by predicting sensitive parameters such as an encryption key, and encrypted messages
output by secure standard algorithms can be decrypted with a predicted key. Random
numbers generated through encryption algorithms should not only be unpredictable for
future values based on current values but should also prevent inferring past records. Since
random number generation algorithms are generally publicly available, the input values
(entropy sources) of the algorithm must remain confidential to ensure the unpredictability
of values [5,6].

Since cryptographic systems frequently use random numbers, secure random numbers
within the system must be generated quickly. However, obtaining random numbers
for cryptographic purposes without a separate algorithm is impossible, and even if a
generator can produce unpredictable values each time it outputs (a true random number
generator), its speed may not meet the required availability. For this reason, deterministic
algorithms are used in cryptography to generate secure random numbers quickly. The
algorithm used in this case is called a deterministic random bit generator (DRBG), which
generates random numbers according to a predetermined logic based on the input seed [7].
Therefore, if the same seed is set for the identical DRBG, the output values are exactly
the same. Due to this characteristic, if the algorithm user uses a predictable value as the
seed, an attacker can accurately determine the random numbers generated by the user.
Therefore, the seed used to initialize or update the DRBG must be unpredictable and
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different every time. Generally, the seed is composed of noises that can be easily obtained
in the operating environment [8–11].

2.2. One-Time Password (OTP)

A one-time password is an electronic financial transaction authentication service that
authenticates users with a different password for each transaction, making it mathematically
impossible to guess the next password from the currently used password. By using shared
secret information between the institution and the user, such as timing or event information,
the algorithm for generating the disposable password is created internally so that attackers
cannot guess it on their own. Currently, OTPs are provided as tokens, card-type terminals,
and mobile applications (e.g., phones) [12].

Authentication methods using OTPs are divided into synchronous and asynchronous
methods, and are classified into timing synchronization, event synchronization, and com-
bination synchronization [13]. Each method has its advantages and disadvantages, and
the timing method may vary, depending on the situation. Timing synchronization requires
accurate synchronization between the OTP terminal and the authentication server, and
with event synchronization, events generated on the terminal and the server must be syn-
chronized accurately. Combination synchronization complements the problems of timing
and event synchronization methods, but issues such as synchronization failure or error
range may still occur [14,15].

An asynchronous method is an authentication technique that does not require syn-
chronous information between the OTP terminal and the authentication server. An example
is the challenge–response method, which sends a query value to a terminal that generates
a password, verifies whether the user’s response is valid, and performs authentication.
When a user requests a transaction using that password, the server sends a random query
value to the user, and the user enters the output value from the terminal and sends it
back to the server. If the response sent by the user is valid, the server authenticates the
user and performs the transaction. However, this challenge–response method has an
inconvenience—the user must enter the query value and response value, and when using
the communication network, there may be charges for the transmitted data. In addition,
the server bears the burden of generating and managing the query and response values.

3. Related Works
3.1. NIST Standards for Cryptographic Random Numbers

Ref. [7] describes a PRNG that uses the approved cryptographic algorithm. This makes
it impossible to distinguish between an ideal random sequence and a pseudorandom
sequence without infinite computational power. It is designed with a fixed finite security
strength to measure the workload required to attack PRNG. Ref. [9] describes mechanisms
and entropy sources for obtaining unpredictable bits through non-deterministic processes.
These entropy sources are equal to the security strength. Ref. [16] describes the overall
RNG structure that combines 90A and 90B, as shown in Figure 1 [7,9,16].

Figure 1. Similar steps of the OTP and random number generation.



Appl. Sci. 2023, 13, 8761 4 of 12

3.2. OTP Mechanism

The OTP generation mechanism consists of three stages [17]: ‘Generating correlation
information’, ‘Generation algorithm’, and ‘Extraction algorithm’. This is very similar to the
process of generating pseudorandom numbers used in cryptography[18]. Figure 1 shows
the similar parts of the two mechanisms in the same color.

OTP is generated following the procedure in Figure 1.

3.2.1. Correlation Information Generation

Correlation information refers to random numbers that can be collected from time
information, event occurrence information, and so on. This can be a complete value
generated by the OTP generation method based on the current time, event occurrence,
or a random number that has been transformed through additional processes, such as
hashing or encryption. Correlation information is necessary for the unpredictability of
OTP, similar to the noise source (or entropy source) required to generate cryptographically
secure pseudorandom numbers. This process corresponds to the red part in Figure 1.

3.2.2. Generation Algorithm

The generation algorithm refers to the cryptographic algorithm used when generating
OTP, and generates a 20-byte bit string by encrypting the correlation information using
this algorithm [19]. The Korean OTP standard [20] introduces the cryptographic algorithm
used in this process. The generation algorithm is deterministic, so it generates the same
ciphertext from the same correlation information. However, depending on the extraction
algorithm applied to the generated bit string, different OTP values can be generated from a
single bit string. The encryption algorithm used must provide a security strength of at least
112 bits [8,17,19]. This process corresponds to the blue part in Figure 1.

3.2.3. Extraction Algorithm

This is an algorithm that extracts three-byte or four-byte data from the encrypted
bit string to use as the OTP. This can be divided into static algorithms and dynamic
algorithms (RFC4226 [19], an OTP-related standard, only specifies dynamic algorithms; and
the Telecommunication Technology Association (TTA) [17] specifies static, dynamic, and
improved dynamic algorithms), and it uses an ‘extraction index’ to specify the extraction
location. This algorithm uses the value at the extraction index as the ’extracted data’. The
extraction index can use a value defined in a specific area of the ciphertext or an undefined
value. After extracting three bytes, the hexadecimal value of the three bytes is converted
to a decimal form for ease of human recognition. At this point, the range of the extracted
3-byte value is [0, 16,777,215] (i.e., [0, 224 − 1]), but the upper two digits change little (107:
d7th digit ∈ {0, 1}, 106: d6th digit ∈ {0, 1, 2, 3, 4, 5, 6}), so they are discarded, and only the
lower six digits are used. Therefore, the final range is [0, 999,999]. This process corresponds
to the yellow part in Figure 1.

The static algorithm extracts data by specifying in advance the extraction information
(the offset of the cipher text) to be used. The dynamic algorithm extracts data by obtaining
extraction information from the cipher text. The improved dynamic algorithm is used
when generating OTP using a chip used as a smart card or USIM [17]. Figure 2 shows the
extraction algorithms by type. It illustrates the operation of static, dynamic, and improved
dynamic extraction algorithms in order, showing slight differences in their operations [1].
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Figure 2. Type of extraction algorithms: static, dynamic, and improved.

4. Materials and Methods
4.1. Scenario of Vulnerability in OTP Extraction Function

The OTP vulnerability analyzed in Ref. [1] is shown in Figure 3.

Figure 3. Vulnerabilities in the improved dynamic extraction algorithm.

The improved dynamic extraction algorithms can be vulnerable to OTP generation.
Figure 3 illustrates a situation where a vulnerability can occur in that case.

When using the improved dynamic extraction algorithm of Ref. [17], if the first extrac-
tion index and the next extraction index are the same, all values of the three-byte extraction
data outputted will be duplicated. For example, if the four-bit LSB of the lowest data byte
of the ciphertext is used in the initial extraction data, and the lowest data byte arr[19] is
0 × 42, the extraction index is 0 × 02, which is the four-bit LSB, and the initial extraction
datum is the value of arr[2]. Using the four-bit LSB of arr[2] in the second extraction data,
if the four-bit LSB of arr[2] is also 0x02, and the second extraction datum will also be the
value of arr[2]. Similarly, the last (third) extraction datum will also have the same value,
resulting in the total three-byte extracted data being duplicated. The output format of the
example is arr[2]||arr[2]||arr[2].

4.2. Predictability of OTP Extraction Function Values

If the values of the extracted data are all duplicated as shown above, the OTP range will
become a set of elements in the form of “arr[i]||arr[i]||arr[i]”, where 0 × 00 ≤ arr[i] ≤ 0 × FF
and 0 ≤ i ≤ 15. If we call this reduced set V, then |V| = 256. Even if we convert the
elements of this set into decimal numbers using only the lower 6 digits, there will be no
collision pairs, and the set will still have 256 elements. As a result, |V| shows a decreased
rate of about 99% compared to [0, 999,999], and the range is rapidly reduced, making it easy
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to predict the range of possible random numbers that can be output. Ref. [1] also analyzes
how frequently this phenomenon occurs.

As indicated in Figure 4, Ref. [1] conducted experiments on a single continuous ran-
dom number sequence, applying three extraction algorithms handled in the TTA standard,
converting them to decimal numbers, and outputting only up to a maximum of six digits.
For example, if the OTP’s three-byte data 0xE7812B are converted to decimal form, the
resulting 15, 171, 883 is outputted up to two digits, which is 83, and the possible range is
[0, 102 − 1]. Alternatively, if it is outputted up to four digits, it becomes 1883, and the possi-
ble range is [0, 104 − 1]. Table 1 shows the experimental group, which applies an improved
dynamic extraction algorithm to the sequence to demonstrate predictability, and the control
group, which applies the other two algorithms to the sequence. The random variable X rep-
resents the frequency of occurrence of each ’element’ within the range of decimal numbers
outputted; that is, the frequency. If all elements have an equal probability of occurrence,
each element within the range should be distributed evenly at E(X). However, by looking
at MAX(X) in Table 1, we can see that the value of the experimental group, which is the
‘improved dynamic’, is significantly different from that of the control group. Threshold H
is a value obtained experimentally in Ref. [1] and can clearly classify the experimental and
control groups. While the samples of the control group appear somewhat similar to the
expected value E(X), the samples of the experimental group show a significant difference
from the expected value. By using the improved algorithm, the probability of OTP results
being mapped to 256 numbers is increased by 1

16 [1]. As evidence of this, the number of
’elements exceeding the threshold’ (i.e., #(X > H)) is exactly 256, and none of the remaining
elements of the control group exceed threshold H. Therefore, this algorithm is vulnerable
to prediction attacks by attackers due to the increased predictability of certain numbers
appearing with a high probability.

Figure 4. Truncation of OTP strings to varying lengths.

4.3. Analysis of Distinguishability of OTP Extraction Function

Expanding on the predictability experiment mentioned above, we propose a distin-
guishable security model. Due to the use of an improved dynamic extraction algorithm, the
reduced range of V is |V| = 256. Thus, we construct an oracle that distinguishes between
this extraction function and a random function by leveraging the characteristic of a higher
probability of mapping to a specific number.

4.3.1. Distinguishable Security Model for the Proposed OTP Extraction Function

When comparing an arbitrary function family to a family of random functions with the
same domain and range, if the two families are indistinguishable, then the arbitrary family
satisfies pseudorandomness, which is called a pseudorandom function (PRF) [21]. Based
on this, we define a family of random functions and a family of extraction functions with
weak properties. The domain and range of the random and weak functions are presented in
Table 2. To distinguish between the family of weak extraction functions J, a set of functions,
called a function family, was constructed, which generalizes the extraction function defined
by TTA and has the same properties.
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Table 1. Results of the experiment in Ref. [1]: This table numerically shows how often certain numbers
occur when the improved algorithm is used.

• Element: A decimal number obtained with each extraction algorithm (static, dynamic, improved)

• Experimental group: Improved algorithm dataset

• Control groups: Static/dynamic algorithm datasets

• Sample: 220 elements (1,048,576)

• Random variable X: Number of occurrences of each “element” in the range (frequency)

• E(X): Expected value of X when each “element” in the range uniformly occurs. ( ∑ Xi
| Range| )

• MAX(X): The number of ‘most frequent’ element(s) in the range

• Threshold H: Heuristic value that distinguishes each extraction method

• #(X > H): The number of elements whose random variable X exceeds the threshold

• Eccentricity e: Relative measure of how far from normal. ( MAX(X)
H )

Range E[X] MAX(X) H #(X > H) #(X ≤ H) e

[0, 101 − 1] ≈105 - - - - -

static 10,714 static 2 static 98 1.001
[0, 102 − 1] ≈104 dynamic 10,679 10,700 dynamic 0 dynamic 100 0.998

improved 10,821 improved 10 improved 90 1.011

static 1151 static 61 static 939 1.046
[0, 103 − 1] ≈103 dynamic 1154 1100 dynamic 59 dynamic 941 1.050

improved 1358 improved 256 improved 744 1.235

static 148 static 0 static 10,000 0.740
[0, 104 − 1] ≈102 dynamic 151 200 dynamic 0 dynamic 10,000 0.755

improved 413 improved 256 improved 9744 2.065

static 33 static 0 static 100,000 0.33
[0, 105 − 1] ≈101 dynamic 29 100 dynamic 0 dynamic 100,000 0.29

improved 333 improved 256 improved 99,744 3.33

static 9 static 0 static 1,000,000 0.257
[0, 106 − 1] ≈100 dynamic 8 35 dynamic 0 dynamic 1,000,000 0.229

improved 320 improved 256 improved 999,744 9.143

Table 2. Definition of function families for analysis.

Glossary of Terms Symbols Description

Domain of Extraction Function D D = Z224 , 24-bit representation area
Range of Extraction Function R X mod 106, (X ∈ D)

Family of Random Functions Func(D, R) A set that includes all functions with domain D and range R
Family of Vulnerable
Extraction Functions J A set that includes all functions with the domain D and range R,

and has the vulnerable characteristics mentioned in “Section 4”

Randomly Selected Instance g A function randomly selected from J or Func(D, R),
(i.e., g← Func(D, R) or g← J)

Representing the elements (i.e., functions) of function families in canonical form
makes it easier to understand the elements of the family. Figure 5 illustrates the pro-
cess of finding a function with the same properties as function family J. The extraction
function starts with generating a 20-byte random sequence using a generation algorithm
(random sequence generation algorithm) to extract a 3-byte OTP. The extraction index uses
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a total of 4 bits (i.e., 24 possible number representations), so there are a total of 16 extrac-
tion locations that can be used for OTP random number extraction. If the four indices
that cannot be selected as extraction positions from the 20-byte sequence are listed as
(0, 1, 2, 3), (0, 1, 2, 4), · · · , (16, 17, 18, 19), the total number of cases is (20

4 ) = (20
16) = 4845.

Furthermore, 4-bit data are used for assigning extraction indices in 4 randomly se-
lected locations outside of the 16 extraction locations (i.e., 4-byte = 32-bit). The possi-
ble 4-bit positions that can be used for index purposes among the 32 bits are listed as
(0, 1, 2, 3), (0, 1, 2, 4), · · · , (28, 29, 30, 31), resulting in a total of (32

4 ) = 35, 960 cases. With
this, all elements of the function family J can be represented in a canonical manner as

E0
0, E0

1, · · · , E0
(32

4 )−1
, · · · , E1

0, E1
1, · · · , E(20

4 )−1

(32
4 )−1

, and the total number of elements in the func-

tion family J, in other words, |J| = (20
4 ) × (32

4 ) = 174, 226, 200. Based on this, we can
define the selection of a function in Func J as randomly choosing a function (with identical
probability for all elements) as Ei

j ← J.

Figure 5. Conceptual diagram for generalizing the extraction function family.

Then, with regards to ∀i, j (0 ≤ i ≤ (20
4 )− 1, 0 ≤ j ≤ (32

4 )− 1), the probability of
Ei

j ← J is Pr[Ei
j ← J] = 1

(20
16)×(

32
4 )

. In contrast, the size of the random function family

|Func(D, R)| is 106×224
, so the probability of selecting a random function from Func(D, R)

is Pr[g ← Func(D, R)] = 1
106×224 . Since the selection of an instance from each function

family has been explicitly described, we can define adversary A as an algorithm that
distinguishes between the random function family and a specific function family in order
to analyze distinguishability. Oracle selects an instance from a group of random functions
or specific functions with a probability of 1

2 , and A inputs a finite number of queries (x ∈ D)
to that chosen function by the Oracle [21,22]. A does not know which group of functions
the Oracle has chosen, and while a finite number of queries are inputted, the Oracle retains
the same instance (function) g without selecting again. The Oracle responds with g(x), and
based on the queries and responses, A outputs a 1-bit value b ∈ {0, 1}, indicating whether
it is World 0 (Oracle selects g as g← Func(D, R)), or World 1 (Oracle selects g as g← J).

4.3.2. Analysis of Distinguishable Security of the OTP Extraction Function

To represent the distinguishable model, the experiment performed by adversary A is
defined as follows. The model defined in this section is illustrated in Figure 6.

Figure 6. The Oracle model selects one instance randomly from the function family or extraction
function family J.
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Experiment 1 Experiment 0

Exppr f−1
J (A)

Ei
j ← J

b← AEi
j

Return b

Exppr f−0
J (A)

Ei
j ← Func(D, R)

b← Ag

Return b

To distinguish between the OTP extraction function and the random function, the
adversary A algorithm is constructed, as shown in Algorithm 1 for the model defined in the
previous section. Adversary A distinguishes between World 0 and World 1 using threshold
H shown in Table 1, and the detailed process consists of five steps.

Algorithm 1: Algorithm for distinguishing the random function of adversary Ag

Input : Queries xi
Output : Decision b

1: b← 0
2: for i← 0 to |V| do
3: cntvi ← 0
4: end for
5: for i← 0 to n do
6: yi ← g(xi)
7: if yi ∈ V then
8: cntyi ← cntyi + 1
9: end if

10: end for
11: for i← 0 to |V| do
12: if cntvi ≥ H then
13: b← 1
14: Break
15: end if
16: end for
17: return b

In step 1, A initializes the final output value of b to 0 (line 1). In step 2, A initializes
a total of 256 cntvi (count values for each element vi of the reduced set V) to 0 to check
how many times each vi is output (line 2 to 4). In step 3, A inputs the query xi to the
oracle and stores the response g(xi) in yi (line 5 to 10). If yi ∈ V, then A updates the cntvi

initialized in step 2 to cntvi + 1. A repeats steps 3 and 4 for n times (for example, 220 times,
as shown in Table 1). Based on Table 1 analyzed in Ref [1], adversary algorithm A succeeds
in distinguishing. According to Table 1, static and dynamic extraction functions equivalent
to random functions output all elements within the range (Z106) in similar frequencies to
the expected value, while the improved dynamic extraction function corresponding to
the vulnerable function family J outputs the elements of set V (V ⊂ Z106

) by more than
35 times the expected value. Therefore, if Oracle chooses World 0, arbitrary cntyi values
do not exceed H, and if Oracle chooses World 1, arbitrary cntyi values are considered to
exceed H. Hence, adversary A can distinguish World 0 and World 1 with high probability
by verifying the existence of the cntvi output more than threshold H.
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5. Results and Discussion
5.1. Results

At this point, from the perspective of adversary A, the attack advantage Advpr f
J (A) of

distinguishability between the random function family and the extraction function family J
is defined as follows [22,23].

Advpr f
J (A)

= Pr[Exppr f−0
J (A) = 0]− Pr[Exppr f−1

J (A) = 0]

= Pr[Ag = 0|g← Func(D, R)]− Pr[Ag = 0|g← J]

(1)

Advpr f
J (A) represents the difference between the probability that A determines the

outcome of experiment 0 as 0 (the success probability of distinguishing) and the probability
that A determines the result of experiment 1 as 0 (the failure probability of distinguishing).
Since g(xi) outputted by g ← J in lines 11 to 17 of Algorithm 1 can be distinguished
accurately, it is only necessary to consider the case of distinguishing failure, J ⊂ Func(D, R).
That is, since |J| = (20

4 )× (32
4 ) = 174, 226, 200, the advantage of A is:

Advpr f
J (A)

= 1− 174, 226, 200
106×224

≈ 1− 10−3×223

≈ 1.

(2)

Depending on the values derived in this way, the OTP extraction function defined
in Ref. [17] is distinguishable from random functions, because the adversary can directly
construct effective algorithms with an advantage that is almost 1. Therefore, financial
institutions and mobile systems that use this vulnerable extraction algorithm in their
OTP generation mechanism should review whether there are similar vulnerabilities; it
is critical to replace it with other extraction algorithms that have not yet been found to
have vulnerabilities.

5.2. Discussion

We analyzed the characteristics of vulnerable extraction functions that can be utilized
during the OTP generation process and proved their security from a distinguishability
perspective.

Ref. [1] constructed a sufficient amount of OTP datasets as extraction methods. Based
on numerous datasets, Ref. [1] demonstrated that as the OTP extraction method used
in actual systems becomes more similar, the randomness of the data decreases. On the
other hand, this paper demonstrated the adversary’s advantage and the corresponding
provable security with theory alone, without a sufficient amount of practical datasets. This
vulnerable extraction function has experimentally increased predictability and theoretically
increased distinguishability by compromising the randomness that is the source of security
in all crypto and OTP systems.

From the perspective of generating “secure OTP values”, the solution we propose to
mitigate the problem is as follows:

Use static or dynamic algorithms: Not only should non-improved algorithms be used,
but the specifications related to this algorithm should be removed from the standard. If
this algorithm continues to be specified in the standard, the institution developing OTP
may mistakenly use this vulnerable algorithm as the strongest algorithm by seeing the
phrase “improved”. If this algorithm is used in the institution using OTP, the algorithm
is easily analyzed based on the adversary’s attack model presented in this paper. This
increases the probability of predicting OTP values. OTP is widely used because it is not
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reused, has randomness, and cannot predict the next value based on current information.
However, as in the results of this paper, if the value is distinguished by the algorithm, the
OTP output can be predicted. In this case, the advantages provided by OTP disappear.
Therefore, improved algorithms that eliminate these advantages should be removed from
the standard, and static and dynamic algorithms should be used instead.

6. Conclusions

Currently, OTP is used in various ways, such as multi-factor authentication. However,
the OTP standard in Korea was established around 2010 and has not been updated since
then [24]. In this paper, we analyzed the security of the extraction algorithm, which is part
of the OTP generation mechanism defined in the TTA’s OTP-related standard, from the
perspective of distinguishability, to clarify its probable security. Adversary A’s algorithm
in this paper has a limit of using the experimentally obtained threshold H and preparing
no less than 220 queries. However, it is significant that we identified the vulnerability of the
function that may still be used in the field. Although 5G and next-generation cryptography
are being studied, the current reality is that we still have to rely on existing cryptographic
systems. Therefore, it is important to continue paying attention to existing cryptographic
systems such as OTP to make them reliable until alternative technologies emerge.
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