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Abstract: The evaluation of in-service pavements’ performance is a complex system that encompasses
a variety of uncertain factors. These uncertainties include random, fuzzy, gray, and unascertained
information, and their interrelationships are intricate, making comprehensive quantification unachiev-
able. Nonetheless, current highway management organizations rely on a comprehensive indicator,
namely, the Pavement Quality Index (PQI), to assess the level of pavement performance. This paper
introduces a novel approach that employs blind number theory to evaluate the reliability of pavement
performance test data. The proposed method aims to enhance the representativeness of PQI and is
demonstrated using detection data from highway asphalt pavements in Hunan Province. The method
takes into account the probability distribution characteristics of evaluation metrics and incorporates
the blind number representation format of PQI. A confidence model for pavement performance
evaluation is established to assess the reliability of pavement detection results. The method also
integrates expert empowerment and entropy weight to consider both the subjectivity of evaluation
and the objectivity of measured data. The method presented in this study has demonstrated superior
performance compared to traditional evaluation index systems. This is attributed to the effective
utilization of blind information to accurately characterize the discreteness of pavement performance
indexes. Consequently, pavement performance can be quantitatively graded based on anticipated
issues and data.

Keywords: pavement performance evaluation; reliability study; confidence model; entropy weight
method; blind-number theory

1. Introduction

In the field of pavement engineering, one crucial aspect that affects the grade of pave-
ment performance is the occurrence of distresses or diseases in asphalt pavements over
time [1]. These distresses can manifest in various forms, such as cracks, potholes, rutting,
and surface deterioration [2]. The pavement management system (PMS) encompasses a
comprehensive range of interconnected activities, including road planning, design, con-
struction, maintenance, evaluation, and research [3]. Its primary objective is to optimize
the utilization of various resources such as capital, labor, machinery, materials, and en-
ergy [4]. Within the PMS framework, the maintenance management system plays a crucial
role. It aims to maximize available resources to maintain optimal pavement performance
throughout the entire life cycle [5]. Evaluating the service performance of pavements
at different stages of their life cycle is essential to proactively address necessary repairs
before they reach critical failure conditions [6]. By implementing maintenance manage-
ment systems, it becomes possible to reduce maintenance and repair costs while ensuring
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the safety of transportation networks [7]. The assessment of pavement performance is a
key component of maintenance management and directly impacts the quality of highway
service [8]. Therefore, accurately evaluating the grade of pavement performance is of
paramount importance.

To enhance the objectivity and persuasiveness of the evaluation process, numerous
quantitative analysis studies have been conducted to assess pavement performance. Majid-
ifard et al. [9] employed novel machine learning techniques to predict rut depth, thereby
enhancing the accuracy of rut curves. Fan and Dai [10] devised a comprehensive pave-
ment performance evaluation method that considers five performance indexes. Olowosulu
et al. [11] utilized a fuzzy evaluation method, presenting a novel framework for accurate
assessment and analysis of flexible pavement performance. Li et al. [12] proposed an
enhanced entropy weight analytic hierarchy process for evaluating pavement maintenance.
In recent years, evaluation models have expanded to machine learning models, including
the BP neural network [13], NARX neural network [14], and TOPSIS theory [15]. These
models employ single or comprehensive evaluation indexes to gain insights into the actual
pavement condition, thereby providing a scientific foundation for maintenance decision-
making schemes and designs [16,17]. However, current research on pavement performance
evaluation primarily focuses on single evaluation indexes, with limited consideration given
to the weight of individual evaluation indexes, comprehensive evaluation methods, and
reliability analysis of comprehensive evaluation indexes.

With the rapid expansion of highway transportation demand in China, there has
been significant construction of highway infrastructure, leading to increased research on
pavement performance evaluation methods [18]. The Pavement Quality Index (PQI) is a
comprehensive indicator that encompasses sub-indexes such as the Pavement Condition In-
dex (PCI), Riding Quality Index (RQI), Rutting Depth Index (RDI), and Skidding Resistance
Index (SRI) [19]. These sub-indexes are weighted to derive the comprehensive evaluation
index, which provides an overall assessment of pavement condition [20]. In engineering
applications, the evaluation of pavement performance often relies on the average value and
discrete grade of the performance indexes [21]. The average value approach calculates the
mean of the observed data along the entire road section, while the discrete grade approach
involves statistical analysis to determine the proportions of excellent, good, fair, poor, and
very poor road conditions based on unit pavement performance evaluation results [22].
However, the evaluation method based on the average value tends to compress the in-
formation contained in the data, potentially leading to the neglect of important details.
Predictions based solely on the average value may result in symmetric dispersion around
the average index value, which can misrepresent the actual pavement condition [23]. More-
over, the process of converting continuous unit-kilometer metrics to discrete pavement
levels can mask detailed information about pavement performance, further contributing
to evaluation inaccuracies [24]. To address these limitations, it is important to consider
more advanced evaluation methods that capture the variability and nuances of pavement
performance [25]. This may involve incorporating additional factors, such as the weight of
individual evaluation indexes, the use conditions of each measuring point, and the relia-
bility analysis of the comprehensive evaluation index [26]. Utilizing more sophisticated
techniques can improve the objectivity and accuracy of pavement performance evaluation,
providing a solid foundation for maintenance decision-making and design.

In this study, the probability function of each evaluation index parameter is established
to gain insights into the probability distribution characteristics of pavement performance
evaluation metrics. Fitting tests are conducted to analyze various influencing factors. By
utilizing probability distribution methods, it becomes possible to analyze potential indi-
cators per kilometer without losing information due to averaging and discretization of
evaluation results [27]. This approach ensures the maximum retention and utilization of
all indicator data at the unit kilometer level. However, it is important to note that due to
the different distribution forms of variables, a unified equation form cannot be adopted
when dealing with each index. Each evaluation index may follow a distinct probability
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distribution, and therefore, specific distribution functions need to be employed for accu-
rate analysis. Furthermore, pavement performance evaluation often involves uncertain
information, including randomness, fuzziness, gray areas, and unascertained factors [28].
Incorporating statistical techniques to handle uncertainty becomes crucial in accurately
assessing pavement performance and making informed decisions. By considering the
probability distribution characteristics and addressing uncertainties, this study aims to
enhance the understanding of pavement performance evaluation and provide a more
comprehensive and reliable assessment of the condition of highway pavements.

Therefore, this study presents the concept of blind-number theory and its application
in evaluating the performance of pavement surfaces. A reliability framework for the
pavement evaluation indicator using blind numbers is proposed. This framework integrates
obscured data into the evaluation system, ensuring that it remains unaffected by probability
distribution functions. By clearly defining the evaluation grade and its corresponding
confidence, the rigor of the evaluation process is enhanced.

2. Testing Methods for Pavement Performances
2.1. Evaluation Indexes and Data Collection Methods

Accurate assessment of pavement performance is crucial in maintenance management,
as it plays a pivotal role in determining the condition of pavements. Various factors such
as climate, region, traffic load, and pavement materials contribute to the deterioration
of pavements, leading to issues like ruts, cracks, pits, and oil flooding. The Highway
Performance Assessment Standard (JTG H20) requires the use of the PQI for evaluating
pavement performance in China. The PQI is calculated based on the PCI, RQI, RDI, and
SRI, as defined in Equation (1).

PQI = wPCI PCI + wRQI RQI + wRDI RDI + wSRISRI (1)

where wPQI, wRQI, wRDI, and wSRI are the calculated weights of PCI, RQI, RDI, and SRI,
respectively.

The data for the test object were collected using a laser-based 3D road intelligent
detection vehicle [29]. This vehicle enabled comprehensive coverage of all the pavement
performance indexes mentioned in the study. The collection of pavement condition data
was carried out on expressways located in plain, hilly, and mountainous terrains of a
province in China. These specific sections were carefully chosen to represent a diverse
range of engineering geological conditions, variations in traffic load, complexities in pave-
ment structure, and performance characteristics of pavement materials. The outcomes
of the investigation provide valuable insights into how different conditions influence the
probability distribution of pavement performance evaluation indicators.

2.2. Probability Distribution Analyses of Evaluation Indexes

In this study, several probability distributions, including Normal, Log-Logistic, Log-
Logistic (3P), Logistic, and Lognormal, were used to analyze the probability distribution
characteristics of the evaluation indexes. By employing different probability functions [30],
probability distribution characteristics of the pavement performance evaluation indexes
were determined.

To validate the appropriateness of the selected probability distributions for the evalua-
tion indexes, fitting tests were conducted using the probability functions. These tests aimed
to assess how well the probability distributions fit the observed data for the pavement
performance evaluation indicators. Table 1 lists three typical fitting methods of probabil-
ity results, providing insights into the suitability of the probability distributions for the
evaluation indexes.



Appl. Sci. 2023, 13, 8794 4 of 14

Table 1. Fitting test method of pavement performance evaluation index.

Type Test Method

Kolmogorov–Smirnov Test D = max
1≤i≤n

(F(xi)− i−1
n , i

n − F(xi))

Anderson–Darling Goodness Test A2 = −n− 1
n

n
∑

i=1
(2i− 1) · [ln F(Xi) + ln(1− F(Xn−i+1))]

Chi-Squared Goodness Test χ2 =
k
∑

i=1

(Oi−Ei)
2

Ei
, Ei = F(x2)− F(x1)

In the context of statistical hypothesis testing, H0 represents the assumption that the
observed data conform to the specified distribution, while H1 suggests that the data deviate
from the specified distribution.

Let x1, . . ., xn denote a series of random samples extracted from the theoretical proba-
bility density function F(x), with n representing the number of sample sequences. Based on
the predetermined significance level (typically 0.05) in the hypothesis test, the critical value
is determined by referencing the appropriate table. If the test statistic D exceeds the critical
value, the null hypothesis H0 is rejected; otherwise, it is accepted.

Fn(x) represents the empirical cumulative probability density function. By comparing
the test statistic A2 with the critical value size of each distribution cluster, it is determined
at the given significance level α (e.g., 0.01, 0.05, etc.) whether to accept or reject the null
hypothesis H0.

Oi is the observed frequency of the sample falling in the i-th interval, whereas Ei
signifies the expected frequency of the sample falling within the same interval. F(x) denotes
the probability density function of the calculated sample, and x1 and x2 specify the range
of interval i.

2.3. Analysis Framework Pavement Performance Reliability
2.3.1. Principle of Blind-Number Theory

According to the degree of completeness, information can be categorized into two
types: deterministic information and uncertain information. Deterministic information
refers to information that is known to be complete and certain. On the other hand, uncertain
information refers to information that is known to be incomplete and uncertain. Specifically,
many factors affect pavement performance, such as pavement structure, traffic volume,
pavement and base materials, engineering geological conditions, and environmental factors.
All of these influencing factors have uncertainty, and their performance on pavement
performance varies.

When dealing with incomplete and uncertain information, mathematical methods are
commonly used to process blind information comprehensively. Blind information refers to
information that lacks complete knowledge or certainty. To handle blind information, a
mathematical tool called a blind number is utilized. A blind number is essentially a gray
function that operates on a set of rational gray numbers, with its value varying between 0
and 1.

The study supposes that H(I) represents the set of interval-type gray numbers formed
by the gray interval ai, where each ai belongs to H(I). If αi ∈ [0, 1] for i = 1, 2, . . ., n, the
gray function in H(I) can be defined as f (x), as shown in Equation (2). If i 6= j, ai 6= aj, and
∑nαi = α ≤ 1, the f (x) should be called a blind number, which can be expressed by Equation
(3) [30].

f (x) =
{

αi, x = ai (i = 1, 2, · · · , n)
0, other

(2)

{[a1, an], f (x)} (3)

where n is the order of f (x); αi is the confidence of the value ai of f (x); α is the total confidence
of f (x). The greater n, the greater the accuracy of the blind number f(x).
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The probability distributions described by Equations (3) and (4) represent the likeli-
hoods associated with various intervals of the blind numbers Aˆ and Bˆ. The symbols “⊕”
“	” “⊗” “
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1, 2 . . . k and j = 1, 2 . . . m. To illustrate the blind number operation using addition, this
study considers x1, x2, . . ., xk and y1, y2, . . ., yn as lists of real numbers in descending order,
referred to as the sequence of possible values for Aˆ and Bˆ. The vertical side of a matrix is
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A∧ = f (x) =
{

αi, x = xi(i = 1, 2, . . . k)
0

(4)

B∧ = g(x) =
{

β j, x = yj(i = 1, 2, . . . m)
0

(5)

Table 2. The possible values of Aˆ and Bˆ with edge sum matrix.

x1 x1 + y1 x1 + y2 · · · x1 + yj · · · x1 + ym
x2 x2 + y1 x2 + y2 · · · x2 + yj · · · x2 + ym
...

...
...

...
...

...
...

xi xi + y1 xi + y2 · · · xi + yj · · · xi + ym
...

...
...

...
...

...
...

xk xk + y1 xk + y2 · · · xk + yj · · · xk + ym
y1 y2 · · · yj · · · ym

Based on the above assumptions, the confidence of the event A/B ≥ r, is shown in
Equation (6).

P{A/B ≥ r} = ∑
xi−yj≥r

f (xi)g(yj) (6)

where B can be the classification threshold of a certain evaluation standard, usually a
real value; r is a known real number determined according to the requirements of the
actual problem.

Construct the confidence matrix with edge product for Aˆ and Bˆ, where f (x1), f (x2),
. . ., f (xk) and g(y1), g(y2), . . ., g(yk) represent the vertical and horizontal sides of the matrix
with an edge, referred to as the confidence sequence of Aˆ and Bˆ. The horizontal and
vertical axes of the matrix with an edge are perpendicular lines. The resulting confidence
matrix obtained by performing an edge product on Aˆ and Bˆ is presented in Table 3.

Table 3. The confidence band-edge product matrix of Aˆ and Bˆ.

f (x1) f (x1)g(y1) f (x1)g(y2) · · · f (x1)g(yi) · · · f (x1)g(ym)
f (x2) f (x2)g(y1) f (x2)g(y2) · · · f (x2)g(yi) · · · f (x2)g(ym)

...
...

...
...

...
...

...
f (xi) f (xi)g(y1) f (xi)g(y2) · · · f (xi)g(yi) · · · f (xi)g(ym)

...
...

...
...

...
...

...
f (xk) f (xk)g(y1) f (xk)g(y2) · · · f (xk)g(yi) · · · f (xk)g(ym)

g(y1) g(y2) · · · g(yi) · · · g(ym)
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2.3.2. Confidence Modeling of Pavement Quality Index

Due to the inherent uncertainty in pavement detection information, all indicators of
pavement performance evaluation conform to specific probability distributions. Based on
the aforementioned blind number theory, if the PCI, RQI, RDI, and SRI are all considered
blind numbers, they can be expressed as follows:

PCÎ = {[PCI1, PCIn], f1(PCI)} (7)

RQÎ = {[RQI1, RQIm], f2(RQI)} (8)

RDÎ = {[RDI1, RDIi], f3(PCI)} (9)

SRÎ =
{[

SRI1, SRIj
]
, f4(SRI)

}
(10)

Therefore, this study uses the blind number representation of the pavement quality
index, as shown in Equation (10).

PQÎ = wPCI ⊗ PCÎ ⊕ wRQI ⊗ RQÎ ⊕ wRDI ⊗ RDÎ ⊕ wSRI ⊗ SRÎ (11)

In reliability calculations, the reliability of the representative value is defined as
the ratio of the occurrence frequency of a single indicator to the total frequency. The
credibility of the representative value can be determined using the traditional probability
density function method. In cases where the amount of data is limited, the frequency of
data occurrence can also be analyzed. The thresholds for different performance levels in
pavement performance evaluation are established: 90 for excellent, 80 for good, 70 for
medium, and 60 for bad. According to the blind number theory, the reliability of pavement
serviceability for excellent and good grades can be indicated in Equations (12) and (13).

RPQÎ (90) =
1

90
⊗ PQÎ (12)

RPQÎ (80) =
1

80
⊗ PQÎ (13)

3. Analysis of Examples
3.1. Statistical Result Analysis

To fulfill the requirements of probability function analysis and fitting tests for pave-
ment performance evaluation metrics, an operational program was developed for analysis
and calculation. The statistical results are shown in Table 4. The probability density and
fitting analysis results of PCI, RQI, RDI, SRI, and other indicators are presented in Figure 1.
The analysis of the results indicated that when comparing PCI, RQI, RDI, and SRI using
the Kolmogorov–Smirnov and Anderson–Darling test methods, the Log-Logistic (3P) dis-
tribution provided the most suitable fitting results. When using the Chi-Squared method
for comparison, the Log-Logistic (3P) distribution yielded the best fitting results for RQI
and RDI. The PCI achieved the best result through Logistic fitting method, followed by
Log-Logistic (3P) fitting. However, the SRI obtained the best result through Log-Logistic
fitting. By comprehensively comparing the calculation results from all three methods, it
can be concluded that the probability density distributions of PCI, RQI, RDI, and SRI can
be effectively characterized by the Log-Logistic (3P) distribution.
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Figure 1. Comparison of probability density of pavement performance indexes and fitting analysis
results: (a) PCI; (b) RQI; (c) RDI; (d) SRI.

The cumulative probability density functions of PCI, RQI, RDI, and SRI, as well as the
comparison between measured values and fitting values, are presented in Figures 2 and 3.
In the case of the PCI, the Log-Logistic (3P) fitting is not effective in the range of [80, 85],
meaning that the fitted function does not accurately represent the distribution of the index
within this range. However, the fitting becomes stable and reliable in the range of [85, 100],
indicating that the fitted function accurately represents the distribution of the PCI within
this range. For the RQI, the Log-Logistic (3P) fitting is not effective in the ranges of [82, 87]
and [93, 94], suggesting that the fitted function does not accurately represent the distribution
of the index within these ranges. However, the fitting becomes stable and reliable in the
range of [87, 93], indicating that the fitted function accurately represents the distribution of
the RQI within this range. The overall trend of the RDI obtained through Log-Logistic (3P)
fitting to the cumulative probability density function is evident. This suggests that the fitted
function accurately represents the distribution of the RDI across its entire range. Similarly,
the cumulative probability density function of the SRI obtained through Log-Logistic (3P)
fitting shows an ideal effect within the range of [84, 92] and is stable and reliable. This
indicates that the fitted function accurately represents the distribution of the SRI within
this range.
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The measured and fitted values of pavement performance indicators are compared
using Log-Logistic (3P) fitting. In the range of the PCI [0, 0.6], the fitting results fluctuate
significantly, and the fitting effect is poor. In the range of [0.6, 0.9], the fitting results
fluctuate slightly and are distributed on both sides of the line, indicating relative reliability
and stability. For the RQI, in the range of [0, 0.2] and [0.5, 1], the fitting results fluctuate
greatly, and the fitting effect is poor. However, in the range of [0.2, 0.5], the fitting results
fluctuate slightly and are distributed on both sides of the straight line, indicating stability
and reliability. The fitting values obtained for the RDI fluctuate around the actual values,
with local fluctuations being significant. In the range of the SRI [0.4, 0.9], the fitting values
exhibit a high correlation with the measured values, indicating a better effect.
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Figure 3. Comparison of measured values and fitting values of pavement performance indexes: (a)
PCI; (b) RQI; (c) RDI; (d) SRI.

Indeed, studying the probability distribution characteristics of asphalt pavement per-
formance evaluation indexes is an important research endeavor. The analysis conducted
above indicates that the PCI, RQI, RDI, and SRIes do not follow a normal distribution
entirely, and the probability distribution of pavement performance evaluation indexes
varies. The gradual decay of pavement performance over time is influenced by various
factors such as climate, geology, traffic load, material properties, and structural geometry
parameters. Consequently, the probability distribution of pavement performance evalua-
tion indexes will also change throughout different stages of the pavement’s life cycle. The
current deterministic evaluation method, which employs fixed weights, is insufficient to
meet the practical requirements of the project. To ensure accurate and reliable pavement
performance evaluation, it is crucial to consider the probabilistic nature of these indexes
and incorporate appropriate statistical models or methods for analysis.
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Table 4. Comparison of fitting function statistical test results of pavement performance indexes.

Serial Number Distribution Function
Kolmogorov–Smirnov Anderson–Darling Chi-Squared

Statistic Sort Statistic Sort Statistic Sort

PCI

Log-Logistic 0.10416 5 2.5466 5 18.017 6
Log-Logistic (3P) 0.05657 1 1.3167 1 8.0729 2

Logistic 0.07701 2 1.6292 2 6.5873 1
Lognormal 0.10857 6 3.0129 6 17.641 5

Lognormal (3P) 0.10026 4 2.5372 4 13.059 4
Normal 0.09952 3 2.3536 3 13.057 3

RQI

Log-Logistic 0.08961 5 2.83 6 14.394 3
Log-Logistic (3P) 0.06286 1 1.6038 1 10.768 1

Logistic 0.09492 6 2.3974 2 11.416 2
Lognormal 0.08381 4 2.8015 5 19.881 6

Lognormal (3P) 0.07966 3 2.6147 4 18.457 5
Normal 0.07928 2 2.4687 3 15.721 4

RDI

Log-Logistic 0.169 6 9.2652 6 79.025 6
Log-Logistic (3P) 0.10865 1 4.6751 1 41.345 1

Logistic 0.16246 4 6.3528 2 60.395 2
Lognormal 0.16794 5 8.9946 5 77.588 5

Lognormal (3P) 0.15262 2 6.606 4 63.712 4
Normal 0.15298 3 6.4046 3 62.267 3

SRI

Log-Logistic 0.09108 6 2.1105 6 5.8546 1
Log-Logistic (3P) 0.0554 1 1.2219 1 8.7292 5

Logistic 0.07973 2 1.8442 4 10.447 6
Lognormal 0.08903 5 2.031 5 7.0076 4

Lognormal (3P) 0.08081 3 1.7982 3 6.5312 3
Normal 0.08172 4 1.6595 2 6.3648 2

3.2. Confidence Analysis Based on Blind-Number Theory

Taking into account the uncertainty associated with randomness, fuzziness, grayness,
and uncertainty in the evaluation of pavement performance, the blind number theory is
employed to establish blind number expressions for pavement performance evaluation
indexes. Additionally, a confidence model is developed to analyze the confidence of
pavement performance. The integration of blind information into the evaluation system
ensures that it remains unaffected by probability distribution functions. This approach
not only provides a clear assessment grade for pavement performance but also assigns
corresponding credibility to the assessment grade, thereby enhancing the scientific nature
of the evaluation. The sample data and weight coefficients used in this study are based on
the research conducted by Li, Wei, Yao, Hu, and Wang [12]. By utilizing Equations (14)–(16),
blind numbers and reliabilities for the pavement performance indexes are computed, as
shown in Table 5.

PQÎ = wPCI ⊗ PCÎ ⊕ wRQI ⊗ RQÎ ⊕ wRDI ⊗ RDÎ ⊕ wSRI ⊗ SRÎ (14)

RPQÎ (90) =
1

90
⊗ PQÎ (15)

RPQÎ (80) =
1

80
⊗ PQÎ (16)
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Table 5. Confidence results for intervals of pavement performance.

No. PQI (Grade) PQIˆ (Grade) KPQIˆ (90) KPQIˆ (80)

1 83.64 73.31757 0.81464 0.91647
2 83.79 76.23695 0.847077 0.952962
3 84.89 76.85353 0.853928 0.960669
4 85.98 78.84341 0.876038 0.985543
5 84.90 80.23577 0.891509 1.002947
6 87.01 81.69958 0.907773 1.021245
7 84.92 82.01217 0.911246 1.025152
8 85.45 82.64352 0.918261 1.033044
9 84.96 82.85526 0.920614 1.035691
10 87.14 82.93161 0.921462 1.036645
11 84.72 83.26604 0.925178 1.040826
12 87.61 83.40383 0.926709 1.042548
13 87.67 83.48033 0.927559 1.043504
14 86.60 84.10160 0.934462 1.051270
15 86.36 84.60134 0.940015 1.057517
16 87.76 84.83564 0.942618 1.060446
17 87.91 84.84281 0.942698 1.060535
18 87.86 85.12389 0.945821 1.064049
19 88.06 85.74850 0.952761 1.071856
20 89.21 86.82397 0.964711 1.085300
21 89.70 87.03685 0.967076 1.087961
22 89.23 87.35512 0.970612 1.091939
23 89.22 87.47873 0.971986 1.093484
24 88.56 87.48089 0.972010 1.093511
25 89.42 87.75188 0.975021 1.096899
26 88.19 88.27680 0.980853 1.103460
27 89.83 88.34652 0.981628 1.104331
28 89.83 88.36494 0.981833 1.104562
29 90.35 88.42565 0.982507 1.105321
30 90.16 88.50354 0.983373 1.106294
31 89.74 88.56722 0.984080 1.107090
32 90.57 88.84937 0.987215 1.110617
33 89.18 88.98633 0.988737 1.112329
34 90.39 89.02159 0.989129 1.112770
35 90.99 89.17456 0.990828 1.114682
36 91.41 89.56480 0.995164 1.11956
37 90.84 89.72866 0.996985 1.121608
38 91.94 90.05702 1.000634 1.125713
39 92.94 90.97604 1.010845 1.137200
40 92.00 91.01112 1.011235 1.137639

The results of these calculations are presented in Table 4. It is evident that the calcu-
lated PQIˆ results do not align with those obtained using the current standard. The PQIˆ
interval determined by the current standard is [83.64, 92.94], whereas the PQI interval
computed is [73.32, 91.01]. Three of the judgment values for the optimal pavement perfor-
mance evaluation grade exceed 1, indicating that the confidence of judgment values greater
than 1 in the sample group is 0.075. There are 36 judgment values for the good pavement
performance evaluation grade that surpass 1, signifying a confidence of 0.9 or 90% for
judgment values greater than 1 in the sample group. Moreover, confidence is considered
as 1 for values exceeding 0.9. According to the current standard, the evaluation outcome
indicates that 30 samples are classified as good, while 10 samples are deemed excellent.
For instance, considering sample 14, the current standard assigns a PQI evaluation result
of 83.64, corresponding to a good evaluation grade. However, when employing the infor-
mation entropy weight determination calculation for PQIˆ, the result is 73.32, indicating a
medium evaluation grade. These evaluation results differ significantly.
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Analyzing the pavement performance sample data reveals that the evaluation grade
for the RDI is poor, while the PCI, RQI, and SRI receive excellent and good evaluation
grades, respectively. The current standard assigns weights of 0.35 and 0.4 to the PCI
and RQI, respectively, while the weight assigned to the pavement rutting depth index is
relatively small [31]. Consequently, the overall pavement evaluation result becomes overly
optimistic. In contrast, Li, Wei, Yao, Hu, and Wang [12] adopt the information entropy
weight determination method, which considers the difference in evaluation indexes and
reflects the contribution rate of these indexes to the system. This approach leads to an
improved weight for the road rutting depth index. By comparing the scores provided by
different experts, it is observed that the weight determination using information entropy
weight aligns more closely with the actual road condition level.

Through the proposed confidence model for pavement performance analysis, not only
is the evaluation level of pavement performance clearly defined, but the corresponding
confidence for each evaluation level is also provided. Moreover, it significantly expands
the application scope of pavement performance confidence analysis.

4. Conclusions and Outlook

This study has examined the probability distribution characteristics of the evaluation
index for asphalt pavement performance and introduced the concept of blind-number
theory to investigate the confidence model for analyzing the confidence of asphalt pavement
performance. The key findings are as follows:

(1) The Pavement Condition Index (PCI), Riding Quality Index (RQI), Rutting Depth
Index (RDI), and Skidding Resistance Index (SRI) of pavement facilities do not ex-
hibit complete adherence to the normal distribution. Furthermore, the probability
distribution of the pavement performance evaluation index differs.

(2) A blind-number expression for the pavement performance evaluation index is devel-
oped in this study. Additionally, a confidence model for analyzing the confidence of
pavement performance is constructed using the method of determining the weight in-
formation entropy weight of the pavement performance evaluation index. The model
effectively integrates blind information into the pavement performance evaluation
system, making it independent of the probability distribution function.

(3) Compared to the traditional method, the proposed confidence model for pavement
performance confidence analysis has several advantages. Firstly, it provides a clear
evaluation level for pavement performance, allowing for a more precise assessment.
Secondly, it also assigns corresponding credibility to the evaluation level, which en-
hances the scientific and rational nature of the evaluation process. This improvement
ensures that the evaluation takes into account the confidence of the data and the
assessment results.

Overall, the confidence model significantly enhances the scientific rigor and advanced
nature of pavement performance evaluation, thereby expanding the application scope of
pavement performance confidence analysis and enabling more accurate and reliable assess-
ments across a wide range of scenarios. In future research, it is highly recommended to
expand the sample size to enhance the richness and representativeness of the data. By incor-
porating a larger number of samples, the confidence model can comprehensively reflect the
performance of pavements under diverse road sections and conditions, thereby enhancing
its accuracy and reliability. While this study covers several critical pavement performance
evaluation indexes, future investigations should consider incorporating additional relevant
indexes, such as traffic flow and climate conditions, which also exert significant influence
on pavement performance. The careful consideration of these additional factors can further
enhance the applicability and prediction capability of the confidence model.

Moreover, future work should focus on expanding and refining the credibility model
of pavement performance based on blind number theory, thereby increasing its appli-
cability to road projects in different regions and under varying conditions. This will
provide road maintenance activities with more scientific and reliable decision support. By
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continuously advancing the credibility model, road engineers can make well-informed
decisions regarding maintenance strategies, ensuring the long-term functionality and safety
of transportation networks in diverse geographical locations and environmental conditions.
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