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Abstract: In order to accurately analyze the load supply capability of power systems with high
penetration of renewable energy generation, this paper proposes a probabilistic available load supply
capability (ALSC) forecasting method. Firstly, the optimal input features are selected by calculating
the maximal information coefficient (MIC) between the input features and the target output. Based
on this, a stacking ensemble learning model is applied for the prediction of wind power, photovoltaic
power and load power. Secondly, the distributions of the forecasting objects are obtained based on
forecasting errors and the error statistics method. Finally, the forecasting distributions of wind power,
photovoltaic power and load are set as the parameters of a power system, and then probabilistic
ALSC is calculated using Latin hypercube sampling (LHS) and repeated power flow (RPF). In order
to simulate a more realistic power system, multiple slack buses are introduced to conduct two types
of power imbalance allocations with novel allocation principles during the RPF calculation, which
makes the ALSC evaluation results more reasonable and accurate. The results of probabilistic ALSC
forecasting can provide a reference for the load power supply capacity of a power system in the
future, and they can also provide an early warning for the risk of ALSC threshold overlimit. Case
studies carried out on the modified IEEE 39-bus system verify the feasibility and effectiveness of the
proposed methods.

Keywords: stacking ensemble learning model; probabilistic forecasting; repeated power flow;
multi-slack buses; Latin hypercube sampling

1. Introduction

Renewable energy, such as solar energy and wind energy, is clean and sustainable,
and can relieve human dependence on fossil fuels. Therefore, it is necessary to study
how renewable energy impacts the power system operation. As power grids continue
expanding, uncertainties from load growth and massive integration of renewable energy
have increased the randomness in power systems [1], which can deteriorate the security
of the power system [2]. Therefore, against the background of large-scale integration
of new energy generation into the grid, the security of the power system encounters
serious challenges. The available load supply capability (ALSC) of the power system is an
important indicator to measure the security of the power system. The power system must
maintain sufficient ALSC to meet power demand, support socio-economic development,
and overcome challenges such as extreme weather conditions. Consequently, it is critical to
calculate accurately the available load supply capability (ALSC) of the power system, since
an adequate load supply capability works as the foundation for guaranteeing the security of
the power system, and accurate evaluation of ALSC can provide quantitative references for
the load supply capability of the power system, and hence assist system operators develop
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grid operation plans. The definition of ALSC is the maximum load growing percentage
without violating any electrical constraint. ALSC evaluation can quantify the flexibility
about the load growth and security margin of the power system. This information is
important and can be helpful for reactive power compensation device placement, network
reconfiguration, network planning, etc. [3].

There are some studies with regard to the calculation methods of the supply capability
of power system. References [4,5] use the continuation power flow (CPF) to calculate
the available transfer capability of power systems. References [6,7] evaluate the transfer
capability by optimal power flow (OPF). CPF has a fast computing speed but lacks flexi-
bility, and it is difficult to handle constraints and control strategies. OPF can consider the
effects of various uncertainties of renewable energy but suffers from high computational
complexity [8]. Therefore, in order to remain a good balance between the accuracy and
feasibility for the ALSC of renewable-energy-based power systems, this paper adopts the
repeated power flow (RPF) method [9,10], which is has the advantages of simple calculation
procedure and high flexibility.

RPF calculation is based on the multiple normal power flow calculations. In normal
power flow calculation, only one slack bus is set up, and all power imbalance of the
network is handled by this slack bus. When the power imbalance of the system is small,
the power flow calculation model with a single slack bus will not affect the calculation
results. However, when the power imbalance becomes large, it is not suitable to use the
power flow calculation model with a single slack bus to calculate the power flow. Due to
the limitation of the maximum output of generators, it is difficult for a single slack bus
to bear all the power imbalance of the system. The continuously increasing load in RPF
calculation process will bring a significant power imbalance. Therefore, a single slack bus
is not suitable for the RPF calculation. The power flow calculation model considering
multiple slack buses can make up for the above deficiencies [11,12]. It sets up multiple
slack buses to share the power imbalance of the power system together, which can make
the results of the power flow calculation fit the practical situation better. But according
to the best knowledge of the authors, in existing studies on the RPF method for solving
ALSC problem, some studies do not consider multi-slack buses [3]. In the studies that
consider multi-slack buses, power imbalance allocation is only conducted once to share the
power imbalance caused by load increment and the allocation principle is the ratio of the
current power of the generators [13]. To simulate a more realistic power system operation,
this paper proposes an RPF method with multi-slack buses that includes two types of
power imbalance allocations and considers the economy of generators in the second power
imbalance allocation, which is a novel principle of power imbalance allocation.

With wind power, photovoltaic power and other renewable energy generation in-
tegrated to the grid, the uncertainty factors in the power system have greatly increased.
Therefore, the deterministic power flow is not suitable for solving the problem of prob-
abilistic ALSC evaluation. Probabilistic power flow (PPF) can be introduced to address
this issue. PPF can be generally divided into three methods: the Monte Carlo simulation
(MCS) method [14], analytical method [15] and approximation method [16]. The analytical
method has a high dependence on complicated theory. The approximate method has the
disadvantage of low accuracy on the probability distribution. Therefore, the MCS method,
with simple calculation and relatively high accuracy, is selected herein. The traditional
random-sample Monte Carlo simulation (RS-MCS) achieves a high computational accuracy
when the sample size is large enough, but it takes a long time and suffers from low compu-
tational efficiency. Therefore, it is usually used as a benchmark for verifying the accuracy of
other methods. Latin hypercube sampling (LHS) can efficiently cover the entire distribution
range of random input variables. It is advantageous at high sampling efficiency, good
robustness and simple implementation. Thus, it has been widely applied in probabilistic
power flow calculation and probabilistic ALSC analysis [3,13].

In the existing studies about probabilistic ALSC evaluation, the probability distribu-
tions of uncertainty sources, such as loads, wind power generators and photovoltaic power
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generators are artificially preset as normal. This does not conform to the actual situation
and cannot reflect the operating conditions of the future power grid. If the forecasting
techniques are used to predict the probability distributions of these uncertainty sources
in advance, based on which the ALSC analysis is conducted, then the forecasting result
of ALSC can be obtained. The predicted ALSC can help power grid operators assess the
security risk of future power systems, which brings an important guiding significance.
Therefore, this is a meaningful, but neglected, problem.

In recent years, with the improvement in computing power and big data technol-
ogy [17], artificial intelligence methods have been widely applied in the field of forecasting.
Reference [18] proposes a sliding-window-based LightGBM model for the short-term load
forecasting. Reference [19] applies XGBoost to predict photovoltaic production. However,
the generalization ability and application scope of a single algorithm are quite limited. In
order to further improve the forecasting accuracy and stability, some studies adopt the
ensemble learning methods, which refer to the method of combining several different
machine learning techniques into one forecasting model. Reference [20] combines the
decomposition method and stacking-ensemble learning method to forecast wind power
generation. Reference [21] proposes a feature-selective ensemble learning model for long-
term regional PV generation forecasting. In addition, reference [22] points out that selecting
the optimal model input features is also a critical step in the forecasting problem. Therefore,
it is necessary to study a method to identify the critical inputs of the model.

Correspondingly, the main contributions of this paper are as follows:

(1) The maximal information coefficient (MIC) is used to select appropriate model input
features, and the stacking ensemble learning model is used to predict the wind power,
photovoltaic power and load power. Both the MIC feature selection method and stack-
ing ensemble learning model are beneficial for forecasting accuracy improvement.

(2) An RPF method considering multi-slack buses is proposed to solve the ALSC evalu-
ation problem. In the RPF process, multi-slack buses are applied for the two power
imbalance allocations with novel allocation principles, which can make the RPF cal-
culation match better with the actual situation, and hence obtain more accurate and
reasonable ALSC evaluation results.

(3) LHS is combined with the RPF to solve the probabilistic evaluation problem of ALSC.
The probability distributions of uncertainty sources are determined by the forecasting
results of renewable energy and load, so the probabilistic ALSC forecasting can be
accomplished. Based on the probabilistic forecasting result of ALSC, the risk of ALSC
for exceeding the threshold can be calculated, thus providing a reference for the
security of power system in the future.

The framework of this paper is as follows. Section 2 introduces the model for wind
power forecasting, photovoltaic power forecasting and load power forecasting, including
feature selection method, stacking ensemble learning model and probabilistic forecasting
method. Section 3 firstly introduces the definition of ALSC and the RPF method, con-
sidering the multi-slack buses, and secondly introduces the basic theories of LHS, which
are fundamental for probabilistic ALSC analysis and the procedure of probabilistic ALSC
forecasting. In Section 4, the performance of the proposed methods is verified through the
use of real data sets and the modified IEEE 39-bus system.

2. Wind Power, Photovoltaic Power and Load Power Forecasting Model
2.1. Maximal Information Coefficient

The MIC can measure the degree of correlation between any two random variables. In
this study, MIC is used to quantify the correlation between the input features and the true
value of the target output. The core idea is that if two variables are correlated, dividing
their scatter plot into grids allows calculating their mutual information (MI) based on the
approximate probability distributions within each grid. The normalized MI can quantify
the correlation between any two variables.



Appl. Sci. 2023, 13, 8860 4 of 31

Given two random variables X and Y and their sample pairs D = {(xi, yi),i = 1, . . . ,N},
where N is the number of samples, the calculation steps of MIC are as follows [22].

First, the sample space is divided into an m × n grid G. Second, the empirical joint
probability density function p(x,y) and empirical marginal probability density function p(x)
and p(y) are estimated. Then, the MI is calculated as

MI(X, Y|D, G) = ∑
x∈X

∑
y∈Y

p(x, y) log2(
p(x, y)

p(x)p(y)
) (1)

where MI(X,Y|D,G) denotes the MI between X and Y with sample set D and grid G. There
are various partitioning methods for the same grid size m × n. Among all possible grids,
the maximal MI is defined as

MI∗(D, m, n) = max
G

MI(X, Y|D, G) (2)

where MI∗(D,m,n) denotes the maximal MI.
Normalize the maximum MI into an interval [0, 1], as follows:

NMI∗(D, m, n) =
MI∗(D, m, n)

log min{m, n} (3)

where NMI∗(D,m,n) represents the normalized maximal MI.
Among all the grids satisfying m × n < k(N), the NMI∗(D,m,n) can be calculated. Then

the MIC is the maximal NMI∗(D,m,n) over all possible grids, as follows:

MIC(X, Y) = max
m×n<k(N)

{NMI∗(D, m, n)} (4)

where k(N) is normally set at k(N) = N0.6 [23].
The value of MIC is between 0 and 1. The larger the MIC, the stronger the correlation

between the two random variables.

2.2. Stacking Ensemble Learning Model

Stacking is an ensemble learning framework. Ensemble learning combines multiple
learners to leverage their complementary strengths. It aggregates the outputs from multiple
learners to achieve enhanced learning performance. The stacking ensemble learning model
has a two-layer structure, as shown in Figure 1. The first layer uses multiple base learners
to make predictions and obtains multiple sets of forecasting results. The second layer
model is a meta-learner, which takes the outputs of the base learners as inputs and makes
predictions again to obtain the final forecasting power. The base learners and meta-learner
refer to different regression learning algorithms. As shown in Table 1, the base learners
used in this study include the gradient boosting decision tree (GBDT) [24], XGBoost [25],
the light gradient boosting machine (LGBM) [26], ridge regression (RR) [27], support vector
regression (SVR) [28], and K-nearest neighbor (KNN) [29]. The meta-learner is linear
regression (LR) [30]. The following subsections will briefly introduce the techniques used
for the base learners and meta-learner, individually.
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Figure 1. The structure of stacking ensemble learning model used for power prediction.
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Table 1. The technique of the first and second layer of forecasting.

The first layer of forecasting (base learners) GBDT XGBoost LGBM RR SVR KNN

The second layer of forecasting (meta-learner) LR

Due to the higher forecasting accuracy of the stacking ensemble learning model
compared to the single algorithm model, this paper selects the stacking ensemble learning
model to predict wind power, photovoltaic power and load power. In addition, it is
noteworthy that the base learners and meta-learner adopted in stacking ensemble learning
may be different depending on different forecasting objects.

2.2.1. GBDT

GBDT is a boosting algorithm. Specifically, the residuals from prior decision trees are
fed into succeeding ones, which are then combined progressively for the final forecasting
results. Since GBDT makes good use of multiple weak learners in cascade, it has decent
accuracy. But at the same time, due to the cascade relationship between weak learners,
GBDT is difficult to train data in parallel. The calculation procedure of GBDT is as follows:

(1) Given a sample set {(xi, yi)|xi ∈ Rn, yi ∈ R}N
i , initialize the weak learner as follows:

f0(x) = argmin
c

N

∑
i=1
L(yi, c) (5)

where L(·) is the loss function.
(2) Calculate the negative gradient, namely the residual, which is defined as

rm
i = −

[
∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

, i = 1, 2, . . . , N; m = 1, 2, . . . , M (6)

where m denotes the number of iterations and M denotes the number of decision trees.
(3) Take the residuals obtained in step 2 as the new sample labels, and take the dataset

{(xi, rm
i )|xi ∈ Rm,rm

i ∈ R}N
i as the training data for the next decision tree, where Rm

j is
the jth leaf node region of the mth decision tree. Then the value of the jth leaf node
region of the mth decision tree is as follows:

Rm
j = argmin

R
∑

xi∈Rm
j

L(yi, fm−1(xi) +R), m = 1, 2, . . . , M; j = 1, 2, . . . , J (7)

where J is the number of leaf node.
(4) Update the strong learner as follows:

fm(x) = fm−1(x) +
J

∑
j=1
Rm

j I(xi ∈ Rm
j ) (8)

where I(·) represents the indicator function.
(5) Obtain the final learner f (xi) as follows:

f (xi) = fM(xi) = f0(xi) +
M

∑
m=1

J

∑
j=1
Rm

j I(xi ∈ Rm
j ) (9)

2.2.2. XGBoost

XGBoost is a variant of the GBDT. Differently from GBDT, XGBoost performs a second-
order Taylor expansion on the objective function, with both first-order and second-order
derivatives, thus improving the forecasting accuracy. In addition, XGBoost adds a regular-
ization term in the objective function to control the complexity of the model, which can
effectively prevent overfitting. However, XGBoost needs to traverse to select the optimal
split point for decision trees. When the data volume is high, it occupies much memory and
takes a long time. The objective function of XGBoost is defined as
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L(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (10)

where T is the number of leaf node; Ij = {i|q(xi) = j} denotes the instance set of leaf j; λ
and γ are the L1 and L2 regularization parameters, respectively; and gi and hi are the first-
and second-order gradient statistics on the loss function, respectively.

2.2.3. LGBM

LGBM is another variant of the GBDT, which can solve the problems encountered
by GDBT in massive data. First, the histogram algorithm is introduced into the LGBM,
which can effectively reduce the memory consumption and improve calculation speed.
Second, LGBM uses a leaf-wise growth strategy with depth limitations, which can ensure
high efficiency while preventing overfitting. In summary, compared with XGBoost and
GBDT, LGBM has faster training speed and lower memory usage; therefore, it can be better
applied in industrial practice.

2.2.4. SVR

SVR applies support vector machine (SVM) to regression problems. Its main idea is
to find a nonlinear mapping from the input space to the output space, that is, an optimal
hyperplane, which has at most ε deviation from the target yi. The above can be described
mathematically as follows:

f (x) = [w, Φ(x)] + b
with Φ : Rn → F, w ∈ F

(11)

where Φ(·) represents the nonlinear mapping; F represents a high-dimensional space; w is
the weights and b is the bias. Equation (11) can be further transformed into an optimization
problem, as shown in Reference [28].

The advantages of SVR lie in that it has good efficiency and robustness, so it is often
applied to small datasets. However, when encountering large-scale datasets, SVR will
suffer from problems like sensitivity to hyper-parameters, low accuracy, and low speed.

2.2.5. KNN

The main idea of KNN is that each sample can be represented by its K nearest neigh-
bors. When performing regression tasks, KNN selects the K data points closest to each
sample from the training data set, takes the average of their label values, and uses this
average as the forecasting value for corresponding sample. This paper uses the most
commonly used Euclidean distance [31] to measure the distance between each sample in
what follows:

d =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2 (12)
where (x1,x2,. . ., xd) and (y1,y2,. . .,yd) denote the coordinates of any two points in n dimen-
sional space.

KNN is an algorithm with simple principles and is easy to implement and understand.
It also has the advantage of being insensitive to outliers. However, since KNN needs
to calculate the distances from one sample point to all other sample points, it has large
computational overhead and high space complexity, and often suffers from decreased
accuracy when dealing with high-dimensional data.

2.2.6. LR and RR

LR is a statistical analysis method to determine the quantitative relationship between
two or more variables. The general form of the linear regression equation [32] is

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (13)

Write (13) in terms of matrices as follows:

y = WTX + ε (14)
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where W = [β0, β1, . . . , βk]
T is the regression coefficient matrix; X = [1, x1, x2, . . . , xk]

T is
the independent variable matrix; y represents the dependent variable; and ε is white noise.
The least square method is used to obtain the solution of W as follows:

W = (XTX)
−1

XTy (15)

Linear regression modeling is simple and has strong interpretability but is only suitable
for linear problems. It is sensitive to outliers and multicollinearity and has limited fitting
and predicting performance. Therefore, LR is more suitable as a meta-learner to integrate
the information learned by base learners, rather than as a base learner to extract the features
of original data.

RR is an improved method of least squares estimation. It obtains regression coefficients
that are more realistic and reliable at the cost of losing some information and reducing
accuracy. Specifically, the ridge regression adds a matrix λI in (15), so the result of ridge
estimation is

W = (XTX + λI)
−1

XTy (16)
Ridge regression prevents overfitting by shrinking the regression coefficients, and is

suitable for multicollinearity problems. But there is also a risk of underfitting the model if
the parameters are not selected properly.

2.3. Probabilistic Forecasting Model Based on Error Statistics

In power forecasting, given a set of pairs {(xi, ti)}, the measured value of power can be
defined as [33]

ti = f (xi) + ε(xi) = ŷ(xi) + ε(xi) (17)
where ti is the ith measured value; xi is the input variables including numerical weather
prediction (NWP) data and historical power data; ŷ(xi) = f (xi) denotes the regression value
of stacking ensemble learning model; and ε(xi) is the forecasting error which is the noise
with a zero mean.

According to (17), the forecasting error ε(xi) moves the regression value of the forecast-
ing model away from the true measured value. The ε(xi) is assumed to obey a Gaussian
distribution, as follows:

ε(xi) ∼ N(0, σ2
ε (xi)) (18)

where σ2
ε (xi) can be estimated from the forecasting errors of test set as follows:

σ2
ε (xi) =

1
N − 1

N

∑
i=1

(ti − ŷ(xi)−
1
N

N

∑
i=1

ti − ŷ(xi))

2

(19)

Many studies have proven that using a Gaussian distribution to model the forecasting
error is reasonable and effective [34,35]. Actually, reference [33] points out that though the
actual error distribution may be non-Gaussian, the time series models under an assumption
of Gaussian distribution can still work well.

After obtaining the probability distribution of forecasting errors ε(xi), superimpos-
ing this probability distribution on the point forecasting value can yield the probability
distribution of prediction for renewable energy generation and load.

3. Probabilistic Forecasting of ALSC
3.1. Deterministic ALSC Problem

The maximum load growing percentage λ can be used to quantify the ALSC. The λ is
obtained by gradually increasing load until encountering an electrical constraint violation.
The deterministic ALSC problem can be described mathematically as follows [3]:

Objective:
max λ (20)
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Subject to: 
f (x) + λb = 0

Uimin ≤ Ui ≤ Uimax
Sij ≤ Sijmax

PGi ≤ PGimax

(21)

where f (x) denotes the power flow equation under basic load; b denotes load growing
vector; Ui is the voltage amplitude of bus i; Uimin and Uimax are the minimum and the
maximum voltage amplitude limitation of bus i, respectively; Sij is the apparent power of
the branch between bus i and bus j; Sij max is the maximum apparent power the branch
can be transferred; PGi is the active power of the generator at bus i; and PGimax denotes the
maximum power limitation of the generator at bus i.

3.2. The Repeated Power Flow Considering Multi-Slack Buses

RPF is a common method for solving the deterministic ALSC problem, whose basic
principle is that, starting from the basic condition, the load is gradually increased according
to the given load growing pattern and power flow is calculated repeatedly until any
electrical constraint is violated. The maximum load growing percentage λ is defined as

λ =
SLi − SLi0

SLi0
(22)

where SLi is the increased load of bus i and SLi0 is the basic load of bus i.
In the process of RPF, the load will continue to increase. If all the growing load is borne

solely by the slack bus, the generator at the slack bus have a high probability of exceeding
its maximum output capacity, which does not conform to the actual situation and affects
the accurate evaluation of ALSC. Therefore, it is necessary to set multi-slack buses during
the RPF calculation. The main task of multi-slack buses is to allocate the power imbalance
of the system. In this study, apart from the growing load, the forecasting errors of wind
power, photovoltaic power and load power in the basic condition are another source of
power imbalance. For two different power imbalance sources, two types of allocations are
proposed and performed amongst multiple slack buses herein.

(1) The first power imbalance allocation: the power imbalance source is the power
forecasting errors. More specifically, the power forecasting errors are modeled as
having a Gaussian distribution in Section 2.3. When LHS is used to sample from the
distribution of random variables, each sampling value is different, which corresponds
to the fluctuation of renewable energy generation and load power. This will lead
to the power imbalance, which is relatively small. Therefore, the generator power
adjustment process is similar to the secondary frequency regulation in the power
system. For this kind of power imbalance, power allocation is performed according to
the ratio of the remaining capacity of each generator amongst multi-slack buses.

(2) The second power imbalance allocation: the power imbalance source arises from
the growing load power. During the RPF calculation, loads need to be increased
continuously to find the maximum load point, which can cause a significant power
imbalance. This part of the power imbalance is relatively large and the load change is
regular. Therefore, the generator power adjustment process is similar to the tertiary
frequency regulation. The tertiary frequency regulation is essentially a problem of
economic dispatch. Therefore, the allocation principle of power imbalance is selected
according to the ratio of generator economy, which can be represented by the reciprocal
of the cost of each generator.

The calculation steps of solving the deterministic ALSC problem by RPF are introduced
as follows:

(1) Obtain the reference value of power system loss Ploss by a power flow calculation
under the mean value of all random input variables. The active power equation of
power flow equations is as follows:
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PGi − PDi −Ui

N

∑
j=1

Uj(Gij cos δij + Bij sin δij) = 0 (23)

where N is the number of buses; PGi is the active power of generator at bus i; PDi is the
active power of load at bus i; Ui is the voltage amplitude of bus i; δij is the phase angle
difference between bus i and bus j; and Gij and Bij are the real part and imaginary
parts of the bus admittance matrix, respectively.

(2) Sample from the forecasting distribution of load, wind power and photovoltaic power
at the current moment t and get the sampling points. Given a system with N buses,
multi-slack bus set B, traditional generator bus set T (B∈T), and renewable energy
generator bus set N, the first part of the power imbalance ∆P1 is

∆P1 = ∑
i∈R

PGi + ∑
i∈T

PGi −∑ PDi − Ploss (24)

where ∑
i∈R

PGi represents the power of all traditional generators and ∑
i∈T

PGi represents

the power of all renewable energy generators.
(3) According to the ratio of remaining capacity of each generator, determine the alloca-

tion ratio k1,i of the power imbalance ∆P1 amongst slack buses as

k1,i =
Pr,i

∑ Pr,i
, i ∈ B (25)

where Pr,i is the remaining power of the generator at bus i.
(4) Change the active power equation of the slack buses into

PGi − k1,i∆P1 − PDi −Ui

N

∑
j=1

Uj(Gij cos δij + Bij sin δij) = 0, i ∈ B (26)

then perform the power flow calculation.
(5) Make an increase of the load, SLi = SLi + hbi and the second part of power imbalance

∆P2 is
∆P2 =

Nl

∑
i

hbi (27)

where Nl is the number of loads and bi is the element of load growing vector b.
(6) According to the ratio of reciprocal of cost of each generator, determine the allocation

ratio k2,i of power imbalance ∆P2 amongst slack buses as

k2,i =
1
Ci

∑ 1
Ci

, i ∈ B (28)

Ci(PGi) = 0.01PGi
2 + 0.3PGi + 0.2 (29)

where Ci is the cost of the generator of bus i.
(7) Change the active power equation of the slack buses into

PGi − k1,i∆P1 − k2,i∆P2 − PDi −Ui

N

∑
j=1

Uj(Gij cos δij + Bij sin δij) = 0, i ∈ B (30)

and then perform the power flow calculation.
(8) Check whether some constraints have been violated. If there is any constraint violation,

SLi = SLi − hbi and the generators of slack buses minus the corresponding allocation
power, then go to step 9. Otherwise, go to step 5.

(9) Check whether h is smaller than the convergence condition ε. If yes, go to step 10.
Otherwise, cut the step h in half, i.e., h = h/2, and go to step 5.

(10) Calculate the ALSC as shown in (22).
(11) Go to step 2 and calculate the ALSC at the next moment t + 1.

In order to intuitively illustrate the two power imbalance allocations amongst the
multi-slack buses, a schematic diagram is drawn, as shown in Figure 2.
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3.3. The Basic Theories of LHS

The sampling method is crucial for Monte Carlo simulation (MCS). Traditional random
sampling (RS) requires numerous samples to characterize random variables accurately but
reduces computational efficiency. Evidently, a smaller sample size is expected to decrease
calculation time while maintaining accuracy. Latin hypercube sampling (LHS), which is
a typical stratified sampling method, can cover more space of random variables than RS
with the same sample size.

With the same sample size N, RS and LHS achieve different joint coverage of two
independent random variables. The expected values of joint coverage space for RS ERS and
LHS ELHS are shown as (31) and (32), respectively [36].

ERS =

(
N − 1
N + 1

)2
× 100% (31)

ELHS =

(
N − 1

N

)2
× 100% (32)

When N ≥ 2, ELHS is always larger than ERS. Therefore, LHS always covers more
space of random input variables than RS with the same sample size.

3.3.1. The Sampling

The calculation procedure of sampling is as follows. Given M random input variables
X1,X2,. . ., XM, the cumulative distribution function (CDF) of XM is defined as

Ym = Fm(Xm), m = 1, 2, . . . , M (33)

First, divide the interval [0, 1] into N nonoverlapping subintervals of equal length.
Then choose one value randomly from each subinterval. In the end, the sampling values of
random input variables are calculated as

xmn = F−1
m (

n− rand
N

), m = 1, 2, . . . , M, n = 1, 2, . . . , N (34)

where F−1
m (·) denotes the inverse cumulative distribution function and rand represents the

random number changing from 0 to 1.
Then organize the N sample values of XM into a vector [xk1, xk2, . . ., xkN]. Once the

samples of all random input variables are drawn, an M × N initial sampling matrix S can
be formulated correspondingly.

The above sampling process is shown in the Figure 3.
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3.3.2. The Permutation

For a probabilistic problem, the random input variables often have certain correlations.
However, the correlations between random variables after sampling are uncontrollable,
which can negatively impact the results. Therefore, it is necessary to reorder the sampling
values to adjust the correlations to the expected level. There are several permutation
methods, such as ranked Gram–Schmidt orthogonalization [37], simulated annealing [38],
the genetic algorithm [39], and Cholesky decomposition [40]. Among them, Cholesky
decomposition is the most popular method due to its efficiency and accuracy.

The detailed computational steps of Cholesky decomposition method for permutation
are as follows.

(1) According to the procedure of sampling, obtain the initial sampling matrix S;
(2) Randomly permute 1 to N in every row to obtain an M × N ranking matrix R;
(3) Calculate the Spearman rank correlation coefficient matrix ρR of R as shown in (35)

and (36)

ρR =


1 ρ12 . . . ρ1M

ρ21 1 . . . ρ2M
...

...
. . .

...
ρM1 ρM2 . . . 1

 (35)

ρij =
cov(Ri, Rj)

σiσj
= 1−

6
N
∑

n=1
(rin − rjn)

2

N(N − 1)(N + 1)
(36)

where ρij denotes the Spearman rank correlation coefficient between the ith row and
the jth row of R; cov(Ri,Rj) denotes the covariance between the ith row and the jth
row of R; σi and σj are the standard deviations of the ith row and the jth row of R,
respectively; rin represents the nth element in the ith row of R; and rjn represents the
nth element in the jth row of R;

(4) Perform Cholesky decomposition on ρR as shown in (37)

ρR = DDT (37)

where D is the lower triangular matrix from the decomposition.
(5) Multiply the inverse of D with R, and then obtain an identity correlation matrix G as

follows:
G = D−1R (38)

(6) Conduct Cholesky decomposition on the expected Spearman rank correlation coeffi-
cient matrix ρexp of random input variables as follows:

ρexp = DexpDexp
T (39)

(7) Multiply G to Dexp, then obtain a matrix Gnew whose Spearman rank correlation
coefficient is approximately equal to the ρexp as follows:
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Gnew = DexpG (40)

(8) According to the amplitude order of elements in each row of matrix G, reorder the
corresponding rows of R to obtain a new permutation matrix Rnew;

(9) According to the order in each row of Rnew, reorder the rows of the initial sampling
matrix S to obtain the final sampling matrix Snew.

3.4. The Procedure of Probabilistic Forecasting of ALSC

The calculation steps of probabilistic ALSC forecasting can be summarized as: First,
the stacking ensemble learning model is used to forecast wind power, photovoltaic power
and load power. Secondly, the forecasting distribution is obtained based on the point
forecasting results. Then, the LHS method is used to sample the forecasting distribution,
and the sampling values are input into the RPF considering multi-slack buses to calculate
the ALSC, and finally the probabilistic prediction results of the ALSC are obtained. The
whole calculation process is shown in Figure 4.
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3.5. Probabilistic Indices for ALSC

In order to accurately evaluate ALSC under uncertainties, five probabilistic evaluation
indices are defined as follows.

(1) Expectation of ALSC:

EALSC =
1

NM

N

∑
i=1

λi (41)

where NM is the number of the Monte Carlo simulation and λi denotes the ALSC
value of the ith Monte Carlo simulation.

(2) Standard deviation of ALSC:

SALSC =

√√√√ 1
NM

N

∑
i=1

(λi − EALSC)
2 (42)

(3) Variation coefficient of ALSC:

βALSC =
SALSC

EALSC
(43)
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(4) Probability of exceeding threshold for ALSC:

PET =
MALSC<λ

NM
(44)

where MALSC<λ denotes the number at which ALSC is less than the given threshold λ.
(5) Probability of ALSC equal to zero:

PEZ =
MALSC=0

NM
(45)

where MALSC<λ denotes the number at which ALSC is equal to zero.

EALSC gives a general estimation of the ALSC. SALSC and βALSC represent the fluctua-
tion of the ALSC. PET and PEZ are the risk indices of power system.

4. Case Studies
4.1. Wind Power, Photovoltaic Power and Load Power Forecasting
4.1.1. Data Description

Three real datasets are used to conduct wind power forecasting, photovoltaic power
forecasting and load power forecasting [41]. The wind power data comes from a certain
wind power station in Inner Mongolia, China. The photovoltaic power prediction data
comes from a photovoltaic power station in the same area. The load data comes from a
substation connected to a distribution network and transmission network. There are a total
of 7788 data in the wind power dataset. The first 5500 data are used as the training set, and
the remaining data are used as the test set. There are a total of 8688 data in the photovoltaic
power dataset. The first 6500 data are used as the training set, and the remaining data
are used as the test set. There are a total of 9432 data in the load power dataset. The
first 7000 data are used as the training set, and the remaining data are used as the test set.
Feature engineering is performed on the basis of the original dataset, as shown in Table 2.
The original features refer to the features contained in the original dataset, and the added
features refer to the features constructed from the original features. The number of features
after the feature engineering are 14, 44 and 44, respectively, for wind power forecasting,
photovoltaic power forecasting and load power forecasting.

Table 2. Feature engineering in different prediction models.

Features Wind Power Forecasting Photovoltaic Power Forecasting Load Power Forecasting

Original features

Forecasting wind speed Forecasting illuminance Forecasting temperature

Forecasting wind direction Forecasting temperature Forecasting humidity

Forecasting humidity Forecasting air pressure Forecasting wind speed

Forecasting temperature Forecasting humidity Forecasting precipitation

Forecasting air pressure Historical power at same moment. Historical load at same moment.

Added features

Square of forecasting wind speed Average power at the same moment
in previous three days

Average load at the same moment
in previous three days

Cube of forecasting wind speed Power at the same moment in
previous three days

Load at the same moment in
previous three days

Product of wind speed
and humidity

Power of previous 24 time
points in one day

Load of previous 24 time
points in one day

Historical wind speed for
previous four hours

Difference between predicted and
previous meteorological data

Difference between predicted and
previous meteorological data

. . . . . . . . .
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4.1.2. Evaluation Index for Forecasting

Mean absolute error (MAE) [42], root mean square error (RMSE) [43] and mean
absolute percentage error (MAPE) [44] are employed for evaluating the forecasting results;
the formulas are as follows:

MAE =
1
N

N

∑
t=1
|ŷ(t)− y(t)| (46)

RMSE =

√√√√ 1
N

N

∑
t=1

[ŷ(t)− y(t)]2 (47)

MAPE =
1
N

N

∑
t=1

∣∣∣∣ ŷ(t)− y(t)
y(t)

∣∣∣∣ (48)

where N denotes the number of samples; ŷ(t) is the forecasting value; and y(t) is the
real value.

4.1.3. Model Parameter Settings

In stacking ensemble learning, there are many options of learners. Through the experi-
ments, we can find the best combination of learners and the optimal hyper-parameters for
each forecasting problem, as shown in Tables 3–5.

Table 3. Learners and hyper-parameters of wind power forecasting.

Type of
Learners Algorithm Hyper-Parameters Setting

base
learners

LGBM Boosting tree is GBDT, number of leaves is 20, number of trees is
300, tree depth is 6, learning rate is 0.1, training data ratio is 0.8,

feature column sampling rate is 0.9.XGBoost

RR The regularization term coefficient is 1.

SVR The distance error is 0.15.

KNN The number of neighbors is 5.

meta-
learner LR /

Table 4. Learners and hyper-parameters of photovoltaic power forecasting.

Type of
Learners Algorithm Hyper-Parameters Setting

base
learners

LGBM Boosting tree is GBDT, number of leaves is 100, number of trees is
100, tree depth is 2, learning rate is 0.1, training data ratio is 0.8,

feature column sampling rate is 0.9.XGBoost

RR The regularization term coefficient is 1.

KNN The number of neighbors is 100.

LR /

meta-
learner LR /

As shown from Tables 3–5, the best forecasting effects of different forecasting problems
require different combinations of learners. Through experiments on combinations of
learners, it is found that the base learners for wind power forecasting are LGBM, XGB, RR,
SVR and KNN. The base learners for photovoltaic power forecasting are LGBM, XGB, RR,
KNN and LR. The base learners for load power forecasting are LGBM, XGB and KNN. The
meta-learner for all three forecasting objects is LR.
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Table 5. Learners and hyper-parameters of load power forecasting.

Type of
Learners Algorithm Hyper-Parameters Setting

base
learners

LGBM Boosting tree is GBDT, number of leaves is 100, number of trees is
100, tree depth is 7, learning rate is 0.1, training data ratio is 0.8,

feature column sampling rate is 0.9.XGBoost

KNN The number of Neighbors is 10.

meta-
learner LR /

4.1.4. The Results of Feature Selection

For wind power forecasting, photovoltaic power forecasting and load power forecast-
ing, MICs between features and true value are calculated respectively, and the features
with larger MICs are selected as the input features. The optimal number of input features is
determined by an exhaustive search.

It can be seen from Figure 5 that different numbers of input features will lead to
different forecasting results. For wind power forecasting, photovoltaic power forecasting
and load power forecasting separately select the number of input features that can minimize
the RMSE, which are 13, 8 and 33 respectively, as shown by the red dot in Figure 5.
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4.1.5. The Results of Forecasting

In order to illustrate the effectiveness of the MIC feature selection method, the results
of the forecasting model with feature selection and those of the forecasting model without
feature selection are compared, as shown in Table 6. In addition, in order to illustrate the
improvement of stacking ensemble learning on the forecasting accuracy of a single model,
for each power forecasting problem, this study compares the MAE, RMSE and MAPE of the
stacking ensemble learning model with the MAE, RMSE and MAPE of a single algorithm.
At the same time, this study is also compared to the forecasting results of a long-short term
memory (LSTM) network, a representative method in the forecasting field, to reflect the
accuracy of the model. The results of the comparative experiment are as shown in Table 7.

Table 6. Forecasting results comparison of with and without feature selection.

Index
Without Feature Selection With Feature Selection

Wind Photovoltaic Load Wind Photovoltaic Load

MAE (MW) 0.650 0.118 0.192 0.597 0.108 0.178
RMSE (MW) 0.826 0.220 0.301 0.779 0.207 0.284
MAPE (%) 35.369 10.394 3.923 27.418 9.977 3.005
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Table 7. Forecasting results comparison of stacking and different algorithms.

Model
MAE (MW) RMSE (MW) MAPE (%)

Wind Photovoltaic Load Wind Photovoltaic Load Wind Photovoltaic Load

LGBM [26] 0.621 0.109 0.183 0.798 0.226 0.297 29.123 10.640 3.079
XGBoost [25] 0.624 0.122 0.185 0.813 0.238 0.289 27.712 11.348 3.120

RR [27] 0.857 0.123 0.254 * 1.055 0.228 0.347 * 44.474 12.986 4.385 *
SVR [28] 0.846 0.155 * 0.216 * 1.060 0.216 * 0.346 * 40.634 11.275 * 3.542 *
KNN [29] 0.756 0.127 0.255 0.977 0.260 0.369 35.309 13.491 4.317

LR [30] 0.835 0.123 0.278 1.040 0.228 0.369 41.702 10.372 4.805
LSTM [45] 0.611 * 0.115 * 0.189 * 0.828 * 0.213 * 0.288 * 28.187 * 11.161 * 3.248 *
Stacking 0.597 0.108 0.178 0.779 0.207 0.284 27.462 9.977 3.005

The results in Table 6 prove the effectiveness of MIC feature selection method, because
the MAE, RMSE and MAPE of the forecasting model with feature selection are all lower
than those without feature selection. In Table 7, data with * indicate that the corresponding
algorithm is not used in the stacking ensemble model of this forecasting problem. The
results show that even if the accuracy of some algorithms is not high when predicting
independently, the accuracy of the ensemble model can be improved after they join the
stacking model. Therefore, they will be also included in the stacking model. For example,
the RMSE of the KNN algorithm in photovoltaic and load power forecasting is relatively
high, but it is still integrated into the stacking model. At the same time, although the LSTM
model can achieve a good forecasting accuracy, its accuracy is still inferior to that of the
stacking model.

To further understand the forecasting accuracy of the stacking ensemble learning
model, 96 time points (4 days) are selected herein to display the forecasting value of
the stacking ensemble models of the three forecasting problems and the actual value,
respectively.

As shown in Figure 6, the forecasting model based on the stacking ensemble learning
model achieves a good accuracy in wind power forecasting, photovoltaic power forecasting
and load power forecasting, which can provide the accurate wind power, photovoltaic
power and load data for RPF calculation.
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It has been mentioned in Section 2.3 that the forecasting errors of the test set can
be statistically obtained to get the probability distribution of the forecasting errors. The
forecasting errors of wind power, photovoltaic power and load power follow the Gaussian
distribution as follows:

εwind ∼ N(0, 0.779) (49)

εpv ∼ N(0, 0.207) (50)

ε load ∼ N(0, 0.284) (51)
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where εwind, εpv and ε load represent the forecasting errors of wind power, photovoltaic
power and load power, respectively.

The forecasting probability distribution can be obtained by superimposing the distribu-
tion of forecasting errors on the point forecasting value. For example, if the point forecasting
value of wind power at the next moment is 5, its forecasting probability distribution is
N(5,0.779), correspondingly.

4.2. Probabilistic Forecasting of ALSC

In the ALSC calculation, the probability distributions of uncertainty sources are de-
termined by the forecasting results of wind power, photovoltaic power and load power
herein. To avoid confusion, it is necessary to explain how to use the forecasting results in
the following subsections. Sections 4.2.2–4.2.4 and 4.2.6 do not involve time series data,
so the power probabilistic forecasting results at a certain time point can be represented as
the final distribution of renewable energy and load in the modified IEEE 39-bus system.
Section 4.2.5 shows the probabilistic forecasting results of ALSC varying along with time.
Therefore, the probabilistic power forecasting results over a period of time are investigated
in Section 4.2.5.

4.2.1. Modified IEEE 39-Bus System

To evaluate the performance of the proposed methods, a modified IEEE 39-bus system
is designed. The base power is 100 MVA. Bus 31, bus 35, bus 36, bus 37, bus 38 and bus
39 are selected as the slack buses, and bus 31 is assigned as the reference bus. A wind
farm is connected at bus 34. The power of the wind farm is determined by 100 times of the
predicted wind power. The photovoltaic power plant is connected at bus 30. The power
of the photovoltaic power plant is determined by 70 times of the predicted photovoltaic
power. The active power of loads is determined by integer multiples of the forecasting
load power, as shown in Table 8. The reactive power of loads is determined by keeping the
power factor of the load constant. In the RPF calculation, it is assumed that loads grow in
accordance with the original power factor. There are a total of 23 uncertainty sources. The
allowed bus voltage range is 0.94–1.06 p.u. The active power capacity of each branch is
specified as in Table 9 and the maximum active power of each generator is set as shown in
Table 10. The figure of modified IEEE 39-bus system is as shown in Figure 7.

Table 8. The active power of loads of each bus.

Load of Bus Multiple of Forecasting Load

Bus 9, 12, 31 1
Bus 1, 18, 26 20

Bus 7, 23, 25, 28 35
Bus 3, 15, 16, 21, 24, 27, 29 45

Bus 4, 8 85
Bus 20 110
Bus 39 185

Correlations always exist among loads, among renewable generation, and between
loads and renewable generation in the power system. The wind power data, photovoltaic
power data and load power data are used to calculate the correlation amongst each type
of the random input variables. The correlation coefficient between the wind power and
photovoltaic power is calculated as −0.0419; the correlation coefficient between the wind
power and loads is calculated as −0.1203; the correlation coefficient between the photo-
voltaic power and photovoltaic power is calculated as 0.3755; and the correlation coefficient
among loads is set as 0.7 according to [3].



Appl. Sci. 2023, 13, 8860 18 of 31

Table 9. The active power capacity of each branch.

Branch 1–2 1–39 2–3 2–25 2–30 3–4 3–18 4–5 4–14 5–6 5–8 6–7 6–11

Sijmax/p.u. 3.75 3 6 6 6 3 3 4.5 4.5 9 6 7.5 6

Branch 6–31 7–8 8–9 9–39 10–11 10–13 10–32 12–11 12–13 13–14 14–15 15–16 16–17

Sijmax/p.u. 12 4.5 3 3 6 6 10.5 1.5 1.5 6 1.5 6 5.25

Branch 16–19 16–21 16–24 17–18 17–27 19–20 19–33 20–34 21–22 22–23 22–35 23–24 23–36

Sijmax/p.u. 7.5 6.75 3 4.5 1.5 4.5 10.5 9 10.5 1.5 12 6 10.5

Branch 25–26 25–37 26–27 26–28 26–29 28–29 29–38

Sijmax/p.u. 1.5 9.75 4.5 3 4.5 6.75 15

Table 10. The maximum active power of each generator.

Generator 30 31 32 33 34 35 36 37 38 39

PGimax/MW 1040 969 725 652 508 1030.5 870 846 1297.5 1650
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4.2.2. The Effectiveness of LHS-MCS

In order to evaluate the performance of LHS-MCS, the results of the probabilistic
indices for ALSC (expectation, standard deviation and variation coefficient) of RS-MCS are
taken, with a sample size of 20,000 as the benchmark, the results of which are expressed
as Iaccurate. Likewise, the results of probabilistic indices obtained from the test sample size
of LHS-MCS and RS-MCS are expressed as Isimulate. The error of indices is introduced to
evaluate the accuracy of the probabilistic methods, as follows:

ε I =

∣∣∣∣ Isimulate − Iaccurate

Iaccurate

∣∣∣∣× 100% (52)

Due to the random factors in the probabilistic evaluation of ALSC, the error of proba-
bilistic indices of both methods are obtained by the results of 50 simulations with the given
sample size. The mean error of 50 simulations, which is expressed as εmean

I,50 , is taken to
demonstrate the accuracy of the tested method. In addition, to explain the robustness of
the tested method, the standard deviation of the error of 50 simulations is taken, which can
be expressed as εstd

I,50.
The curves of εmean

EALSC,50, εmean
SALSC,50, εmean

βALSC,50 and εstd
EALSC,50, εstd

SALSC,50, and εstd
βALSC,50 with

different sample sizes are shown in Figures 8 and 9, respectively. It can be seen that the
mean and standard deviation of the error of LHS-MCS are smaller than those of RS-MCS



Appl. Sci. 2023, 13, 8860 19 of 31

under different sample sizes, demonstrating that LHS-MCS is more accurate and stable than
RS-MCS. In addition, the mean and standard deviation of the error of LHS-MCS converge
faster, indicating that LHS-MCS needs a smaller sample size to achieve good accuracy. In
contrast, RS-MCS requires a large sample size to achieve an acceptable accuracy.
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4.2.3. The Impact of Multi-Slack Buses on Probabilistic ALSC

In this study, two types of power imbalance allocations are performed at multi-slack
buses. In order to study the impact of multi-slack bused on probabilistic ALSC, according to
the different number of times and principles of power imbalance allocation, four different
methods are considered, which are shown in Table 11. Probabilistic evaluations of ALSC
are performed with four different methods, and the results are shown in Table 12. More
specifically, the influence of multi-slack buses on probabilistic ALSC is analyzed from two
perspectives: (1) the impact of the principle of the first power imbalance allocation; (2) the
impact of the principle of the second power imbalance allocation.

First, the influence of the first power imbalance allocation on the results of probabilistic
ALSC is discussed. By comparing the results of Method 1 and Method 3 (i.e., the first and
the third rows in Table 12) and the results of Method 2 and Method 4 (i.e., the second and
the fourth rows in Table 12), it can be found that the probabilistic results of ALSC of Method
3 and Method 4 containing the first power imbalance allocation are different from those
of Method 1 and Method 2 without the first power imbalance allocation, demonstrating
the first part of power imbalance caused by forecasting errors can affect the probabilistic
results of ALSC. The formation mechanism of the first power imbalance is as follows. Due
to the forecasting errors, wind power, photovoltaic power and load power are all random
variables. Probabilistic ALSC calculation needs samples from these random variables and
then performs deterministic ALSC calculation. The sampling values are different each time,
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resulting in the first part of power imbalance according to (24). The first power imbalance
affects the results of probabilistic ALSC in two ways. First, with different sampling values,
generators at each slack bus change their productions to share this power imbalance.
Secondly, the first power imbalance allocation determines the starting point of the second
power allocation; in other words, it determines the growth direction of generator power
in the subsequent power imbalance allocation. Figure 10 shows the change of power of
generators at each slack bus under different sampling values of random variables in the
process of ALSC probabilistic evaluation (the sample size is 1000, but only 40 of them are
shown in this figure). It can be seen that the power of each generator is adjusted with
the different sampling values. In addition, since the allocation principle of this power
imbalance is formed based on the ratio of remaining capacity, the power of each generator
has a similar changing trend.

Table 11. Introduction of four different methods.

Method Description

Method
1 [13]

Only the second power imbalance allocation is conducted; the allocation principle is
the ratio of the current power of the generators

Method 2 Only the second power imbalance allocation is conducted; the allocation principle is
the ratio of reciprocal of each generator cost

Method 3 Both power imbalance allocations are conducted; the allocation principle of the
second power imbalance allocation is the ratio of the current power of the generators

Method 4 Both power imbalance allocations are conducted; the allocation principle of the
second power imbalance allocation is the ratio of reciprocal of each generator cost

Table 12. Probabilistic results of ALSC with different methods.

Method EALSC SALSC βALSC

Method 1 0.3255 0.0375 0.1152
Method 2 0.2282 0.0226 0.0990
Method 3 0.4042 0.0482 0.1193
Method 4 0.2351 0.0366 0.1557

Appl. Sci. 2023, 13, 8860 21 of 32 
 

Table 12. Probabilistic results of ALSC with different methods. 

Method EALSC SALSC βALSC 

Method 1 0.3255 0.0375 0.1152 
Method 2 0.2282 0.0226 0.0990 
Method 3 0.4042 0.0482 0.1193 
Method 4 0.2351 0.0366 0.1557 

First, the influence of the first power imbalance allocation on the results of 
probabilistic ALSC is discussed. By comparing the results of Method 1 and Method 3 (i.e., 
the first and the third rows in Table 12) and the results of Method 2 and Method 4 (i.e., the 
second and the fourth rows in Table 12), it can be found that the probabilistic results of 
ALSC of Method 3 and Method 4 containing the first power imbalance allocation are 
different from those of Method 1 and Method 2 without the first power imbalance 
allocation, demonstrating the first part of power imbalance caused by forecasting errors 
can affect the probabilistic results of ALSC. The formation mechanism of the first power 
imbalance is as follows. Due to the forecasting errors, wind power, photovoltaic power 
and load power are all random variables. Probabilistic ALSC calculation needs samples 
from these random variables and then performs deterministic ALSC calculation. The 
sampling values are different each time, resulting in the first part of power imbalance 
according to (24). The first power imbalance affects the results of probabilistic ALSC in 
two ways. First, with different sampling values, generators at each slack bus change their 
productions to share this power imbalance. Secondly, the first power imbalance allocation 
determines the starting point of the second power allocation; in other words, it determines 
the growth direction of generator power in the subsequent power imbalance allocation. 
Figure 10 shows the change of power of generators at each slack bus under different 
sampling values of random variables in the process of ALSC probabilistic evaluation (the 
sample size is 1000, but only 40 of them are shown in this figure). It can be seen that the 
power of each generator is adjusted with the different sampling values. In addition, since 
the allocation principle of this power imbalance is formed based on the ratio of remaining 
capacity, the power of each generator has a similar changing trend. 

 
Figure 10. The power change of generators at slack buses with different sampling values of random 
variables based on modified IEEE 39-bus system. 
Figure 10. The power change of generators at slack buses with different sampling values of random
variables based on modified IEEE 39-bus system.



Appl. Sci. 2023, 13, 8860 21 of 31

Furthermore, it can be seen that the SALSC of Method 3 is larger than that of Method 1
and the SALSC of Method 4 is larger than that of Method 2, indicating that the consideration
of the first power imbalance allocation increases the SALSC. The reason lies in that the first
power imbalance allocation brings a larger difference of ALSC calculation results with
different sampling values. To be more specific, the cause of the SALSC is that the different
sampling values of wind power, photovoltaic power and load power lead to different
results of deterministic ALSC calculation. When the sampling values of wind power and
photovoltaic power are large and the sampling value of load power is small (i.e., the first
part of power imbalance ∆P1 >0), the first power imbalance allocation will decrease the
power of traditional generators at slack buses, while when the sampling values of wind
power and photovoltaic power are small and the sampling value of load power is large
(i.e., the first part of power imbalance ∆P1 <0), the first power imbalance allocation will
increase the power of traditional generators at slack buses. If the first power imbalance
allocation is not required, the initial power (i.e., the power before the load growth and the
second power imbalance allocation) of the traditional generator is constant. With the first
power imbalance allocation, different sampling values of wind power and photovoltaic
power and load power will cause the initial power of the traditional generators to change,
which magnifies the difference between the different sampling values and hence increases
the SALSC.

Next, the influence of the principles of the second power imbalance allocation on
the results of probabilistic ALSC is discussed. Two different allocation principles of the
second power imbalance allocation are considered herein: (1) Method 1 and Method 3
with the ratio of the current power of the generators; (2) Method 2 and Method 4 with
the ratio of reciprocal of each generator cost. According to the results in Table 11, it is
obvious that the EALSC calculated by the method with the second allocation principle is
smaller. Taking Method 3 and Method 4 as an example, Figure 11 shows the power changes
of each generator during the increase of load under different allocation principles. From
Figure 11, it can be found that Method 3 makes fuller use of the capacity of each generator,
so the EALSC calculated in Method 3 is greater than that in Method 4. This is because the
principle of the second power imbalance allocation in Method 4 works according to the
ratio of reciprocal of cost of each generator. The cost of generators is positively correlated
with the power, as shown in (29). Therefore, generators with higher capacity, such as P38
and P39 have higher cost and get a smaller share in power allocation during the whole
load increase process. Generators with lower capacity, such as P36 and P37, have lower
cost and have a larger allocation ratio more quickly reach their output limits. On the
contrary, the allocation principle of Method 3 is the ratio of the current power of generators.
Therefore, P38 and P39, which have higher capacity, have a larger allocation ratio, while
P36 and P37 with lower capacity have a smaller allocation ratio. Since the output limit of
the high-capacity generator is correspondingly larger, this allocation principle can make
full use of the capacity of each generator and obtain a larger EALSC. However, it should be
emphasized that although the EALSC of method with the first allocation principle is larger,
the second allocation principle is more reasonable, because considering the economics in
the face of sustained regular load growth is a common and indispensable practice in actual
operation. Therefore, the evaluation results of the load supply capability obtained by the
first allocation principle are more optimistic than the actual situation, which amplifies the
risk of encountering security issues.
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4.2.4. The Impact of Power Forecasting on Probabilistic ALSC

In addition to the fact that two types of power imbalance allocations affect the results
of probabilistic ALSC, the forecasting accuracy of wind power, photovoltaic power and load
power are influential as well. In order to study the impact, eight different forecasting models
mentioned in Table 6 (LGBM, XGB, RR, SVR, KNN, LR, LSTM and Stacking ensemble
learning model) are used to predict the wind power, photovoltaic power and load power at
the same time point, respectively. The probabilistic forecasting results are used to calculate
the probabilistic ALSC. Correspondingly, the probability density functions (PDFs) of ALSC
obtained by different forecasting models are shown in Figure 12.

From Figure 12, it can be seen that the PDFs of ALSC with different forecasting
models are evidently different, thus demonstrating that the different prediction accuracy of
forecasting models have significant influence on the results of probabilistic ALSC. More
specifically, in Figure 12a, the PDF of XGB is most similar to the PDF of Stacking. Compared
with the PDF of stacking, the PDFs of LGBM and RR have lower sharpness, and the tail
of the PDF of RR is thicker. In Figure 12b, the PDF of LSTM is most similar to the PDF
of Stacking. The sharpness of the PDFs of SVR, LR is apparently lower and the PDF of
KNN is more right-skewed. In addition, according to Table 6, it can be found that the two
models with the highest accuracy closest to the stacking ensemble learning model in the
wind power, photovoltaic power and load power forecasting: XGB and LSTM can also
obtain the PDFs closest to stacking ensemble learning model.



Appl. Sci. 2023, 13, 8860 24 of 31Appl. Sci. 2023, 13, 8860 25 of 32 
 

  
(a) (b) 

Figure 12. Comparisons on PDF of the ALSC with different forecasting models: (a) Comparisons 
amongst LGBM, XGB, RR and Stacking; (b) Comparisons amongst SVR, KNN, LR, LSTM and 
Stacking. 

From Figure 12, it can be seen that the PDFs of ALSC with different forecasting 
models are evidently different, thus demonstrating that the different prediction accuracy 
of forecasting models have significant influence on the results of probabilistic ALSC. More 
specifically, in Figure 12a, the PDF of XGB is most similar to the PDF of Stacking. 
Compared with the PDF of stacking, the PDFs of LGBM and RR have lower sharpness, 
and the tail of the PDF of RR is thicker. In Figure 12b, the PDF of LSTM is most similar to 
the PDF of Stacking. The sharpness of the PDFs of SVR, LR is apparently lower and the 
PDF of KNN is more right-skewed. In addition, according to Table 6, it can be found that 
the two models with the highest accuracy closest to the stacking ensemble learning model 
in the wind power, photovoltaic power and load power forecasting: XGB and LSTM can 
also obtain the PDFs closest to stacking ensemble learning model. 

4.2.5. The Probabilistic Forecasting Results of ALSC and Risk Analysis 
Using the probabilistic forecasting data of wind power, photovoltaic power and load 

power can predict the probabilistic ALSC results at future moments. Therefore, we can 
have an understanding of the load supply capability of the power grid at future moments. 
More importantly, based on such probabilistic information, we can determine the risk of 
ALSC threshold overlimit PET and the probability that ALSC is equal to 0 PEZ, and, based 
on these indices, an early warning on the operation of power grid in the future can be 
hence achieved. Twenty-four time points (one day) are selected herein to present the 
probabilistic forecasting results of ALSC, as shown in Table 13. 

Table 13. Probabilistic forecasting results of ALSC. 

Time 
Point 

EALSC SALSC βALSC PET  
(λഥ = 0.05) 

PET  
(λഥ = 0.10) 

PET  
(λഥ = 0.15) 

PET  
(λഥ = 0.20) 

PET  
(λഥ = 0.25) 

PET  
(λഥ = 0.30) PEZ  

1 0.377 0.057 0.151 0 0 0 0 0.002 0.059 0 
2 0.400 0.061 0.152 0 0 0 0 0.002 0.025 0 
3 0.431 0.066 0.153 0 0 0 0 0 0.008 0 
4 0.449 0.068 0.152 0 0 0 0 0 0.003 0 
5 0.393 0.059 0.151 0 0 0 0 0 0.037 0 
6 0.336 0.049 0.146 0 0 0 0 0.018 0.23 0 
7 0.176 0.031 0.179 0 0.006 0.209 0.761 0.992 1 0 
8 0.111 0.032 0.289 0.012 0.32 0.872 0.997 1 1 0.012 

Figure 12. Comparisons on PDF of the ALSC with different forecasting models: (a) Compar-
isons amongst LGBM, XGB, RR and Stacking; (b) Comparisons amongst SVR, KNN, LR, LSTM
and Stacking.

4.2.5. The Probabilistic Forecasting Results of ALSC and Risk Analysis

Using the probabilistic forecasting data of wind power, photovoltaic power and load
power can predict the probabilistic ALSC results at future moments. Therefore, we can
have an understanding of the load supply capability of the power grid at future moments.
More importantly, based on such probabilistic information, we can determine the risk of
ALSC threshold overlimit PET and the probability that ALSC is equal to 0 PEZ, and, based
on these indices, an early warning on the operation of power grid in the future can be hence
achieved. Twenty-four time points (one day) are selected herein to present the probabilistic
forecasting results of ALSC, as shown in Table 13.

Table 13 provides the probabilistic forecasting results of ALSC: expectation of ALSC
EALSC; standard deviation of ALSC SALSC; variation coefficient of βALSC; the results of risk:
probability of exceeding threshold for ALSC PET under different thresholds (0.05, 0.10, 0.15,
0.20, 0.25, 0.30); and the probability of ALSC equal to zero PEZ. It can be seen that the
fluctuation of renewable energy generation and load over time poses a significant influence
on the ALSC. As the forecasting values of wind power Pwind, photovoltaic power Ppv and
load power Pload change, the results of probabilistic ALSC evaluation are different for each
moment. According to the forecasting results, we can estimate and warn the load supply
capacity of the power grid at future moments. For example, from the 1st time point to the
6th time point, the EALSC is relatively high, the PET with threshold less than 0.2 equal to 0,
and even the PET with threshold higher than 0.2 are relatively low and the PEZ all equal to
0, illustrating that in this period, the load power supply capacity of the power system is
sufficient. But from the 13th to the 18th time point, the EALSC is low, the PET almost equal
to 1 and the PEZ is high, illustrating that in this period, the load power supply capacity of
the power system is seriously inadequate. Therefore, during this period, corresponding
measures should be taken to increase the load supply capacity of power system to enhance
the security and stability of the power grid. For example, the energy storage facilities
such as pumped storage and large-scale battery energy storage systems are influential,
and can change the probabilistic distribution of the generation and load power through
their charging/discharging characteristics and can also provide power when generation is
insufficient, so as to increase ALSC. Specifically, the impact of energy storage facilities on
the probabilistic ALSC will be discussed in the next subsection.



Appl. Sci. 2023, 13, 8860 25 of 31

Table 13. Probabilistic forecasting results of ALSC.

Time
Point EALSC SALSC βALSC

PET
(λ̄ = 0.05)

PET
(λ̄ = 0.10)

PET
(λ̄ = 0.15)

PET
(λ̄ = 0.20)

PET
(λ̄ = 0.25)

PET
(λ̄ = 0.30) PEZ

1 0.377 0.057 0.151 0 0 0 0 0.002 0.059 0
2 0.400 0.061 0.152 0 0 0 0 0.002 0.025 0
3 0.431 0.066 0.153 0 0 0 0 0 0.008 0
4 0.449 0.068 0.152 0 0 0 0 0 0.003 0
5 0.393 0.059 0.151 0 0 0 0 0 0.037 0
6 0.336 0.049 0.146 0 0 0 0 0.018 0.23 0
7 0.176 0.031 0.179 0 0.006 0.209 0.761 0.992 1 0
8 0.111 0.032 0.289 0.012 0.32 0.872 0.997 1 1 0.012
9 0.010 0.024 2.428 0.859 0.997 1 1 1 1 0.843

10 0.063 0.040 0.633 0.24 0.824 0.993 1 1 1 0.229
11 0.180 0.034 0.187 0 0.007 0.18 0.7 0.977 0.999 0
12 0.130 0.034 0.263 0.006 0.168 0.694 0.977 1 1 0.006
13 0.002 0.012 5.014 0.975 1 1 1 1 1 0.95
14 0.001 0.007 6.060 0.992 1 1 1 1 1 0.961
15 0.001 0.008 5.426 0.989 1 1 1 1 1 0.95
16 0.002 0.011 4.718 0.976 1 1 1 1 1 0.943
17 0.008 0.022 2.798 0.892 0.995 1 1 1 1 0.877
18 0.025 0.035 1.416 0.656 0.975 1 1 1 1 0.649
19 0.067 0.042 0.622 0.228 0.776 0.986 1 1 1 0.221
20 0.108 0.036 0.338 0.034 0.375 0.87 0.998 1 1 0.032
21 0.171 0.035 0.203 0 0.022 0.259 0.796 0.991 1 0
22 0.237 0.037 0.158 0 0 0.006 0.141 0.628 0.935 0
23 0.302 0.045 0.149 0 0 0 0.005 0.096 0.502 0
24 0.342 0.051 0.149 0 0 0 0 0.015 0.21 0

To illustrate the results of probabilistic ALSC forecasting more intuitively, Figure 13
provides the prediction intervals (PIs) of ALSC at different confidence levels (10%, 20%, . . .,
90%). The PI is an interval range constructed around the predicted value of the model given
a confidence level, used to indicate the probability that the true target value of a new sample
will fall within this interval. The upper and lower bounds of the PIs are obtained through
two quantiles. For example, the upper bound of the PI with 90% confidence level is the
0.95 quantile, and the lower bound is the 0.05 quantile. From Figure 13, it can be seen that
as the confidence level increases, the PI gradually becomes narrow. In practical applications,
the appropriate confidence level should be chosen according to the requirements to guide
the operation of power systems.

4.2.6. The Impact of Energy Storage on Probabilistic ALSC

Energy storage systems (ESS) refer to various devices or systems used for keeping the
power balance. ESS in power systems can be usually divided into three types according
to their installation locations: (1) installed on the generation side, (2) installed on the load
side, (3) installed on the grid side. For ESS installed on the generation side, considering
the smoothing effect of ESS on the uncertainty of wind turbine and photovoltaic cell
outputs [46], it can be assumed that the ESS can reduce the standard deviation of the
probability distribution of renewable energy generation. In addition, some energy storage
elements such as superconducting magnetic energy storage can discharge instantly and
increase power output [47]. Therefore, ESS can also increase the mean of the probability
distribution of power output in a short period of time. Both of these effects aim at improving
the ALSC. Similarly, for ESS installed on the load side, it can also reduce the expectation
and standard deviation of the probability distribution of the load to enhance the ALSC.
For ESS installed on the grid side, its charging and discharging characteristics are set to be
determined by the power imbalance in the whole system [48]. Specifically, when the power
generation is greater than the load demand in the power system, the ESS charges; when
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the power generation is less than the load demand, the ESS discharges. The mathematical
expression is shown in (53):

PESS,i =
1

NESS
(∑ PGi −∑ PDi) (53)

where PESS is the power of the ESS and NESS is the number of ESS. As shown in (53), each
ESS shares the total power imbalance equally. When the power generation is greater
than the load demand, the ESS charges and is treated as a positive load; when the
power generation is less than the load demand, the ESS discharges and is treated as a
negative load.
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In order to study the impact of different installation quantities and locations of the
ESS on probabilistic ALSC, take the time 9 in Table 13 as an example; the experimental
design is shown in Table 14. All cases are modified based on the base value at time 9. Cases
1~4 only study the case where ESS is installed together with wind turbines. Specifically, in
Case 1 and Case 2, ESS only changes the mean of wind power output, checking the impact
on ALSC of ESS with the mean changed to different extents. In Case 3, ESS only changes
the standard deviation of wind power output, which can study the impact brought by ESS
changing different characteristics of the probability distribution of wind power output. In
Case 4, ESS changes both the mean and standard deviation, while Case 5 increases the
number of ESS, with ESS installed on both wind power generators and photovoltaic power
farms. Case 6 and 7 study the case where ESS is installed on the load side. Case 6 focuses
on the three loads with close distances, and Case 7 covers the three loads which are far
away with one another. It is worth noting that, in order to study the impact of different
locations of energy storage on ALSC, the capacities of loads in Case 6 and Case 7 are close
to each other, which implies that the energy storage facilities also have similar capacities.
Case 8 studies the case where ESS is installed on the grid side.
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Table 14. Introduction of eight different cases.

Cases Description

Case 1 ESS is installed at bus 34, increasing the expectation of wind power to 1.5 times.

Case 2 ESS is installed at bus 34, increasing the expectation of wind power to 2 times.

Case 3 ESS is installed at bus 34, decreasing the standard deviation of wind power to 0.5 times.

Case 4 ESS is installed at bus 34, increasing the expectation of wind power to 2 times and
decreasing the standard deviation of wind power to 0.5 times.

Case 5 ESS are installed at bus 30 and 34, increasing the mean of wind power and photovoltaic
power to 2 times and decreasing the standard deviations to 0.5 times.

Case 6 ESS are installed at bus 1, 3, 4, decreasing the mean of load to 0.5 times and decreasing
the standard deviations to 0.5 times.

Case 7 ESS are installed at bus 1, 15, 28, decreasing the mean of load to 0.5 times and decreasing
the standard deviations to 0.5 times.

Case 8 ESS are installed at bus 5, 6, 13, 14 and 19.

Table 15 shows the experimental results on the impact of energy storage on ALSC.
Through the results of Case 1 and Case 2, it can be seen that when ESS increases the mean
value of wind power output, the expectation of ALSC also becomes larger. Accordingly, the
risk index decreases, indicating that ESS plays a role in increasing the load supply capability
of the power system. In addition, it can be seen that the more ESS increases the mean value
of wind power output, the greater the increase on the expectation of ALSC and the smaller
the risk index. This shows that ESS with larger capacity has a stronger regulation capability
for integrating new energy generation and can more effectively ensure an adequate load
supply capability. Moreover, as the expectation of ALSC rises, the standard deviation of
ALSC also increases. This is because the larger mean value of wind power output makes
more sample values nonzero, which is also reflected in the PEZ index, thus resulting in a
larger standard deviation of ALSC. But in fact, the ALSC in Cases 1 and 2 has a smaller
degree of dispersion compared to the original case (Time 9), because they have smaller
variation coefficient βALSC. By comparing Case 3 with the original case and comparing Case
4 with Case 2, it can be found that reducing the standard deviation of wind power output
with ESS decreases the degree of dispersion of ALSC; that is, a smaller standard deviation
and coefficient of variation. The results of Case 5 indicate that after installing ESS on both
the wind power and PV generation side, the level of ALSC will be further improved. The
results of Case 6 and Case 7 indicate that installing ESS at three distant loads improves
ALSC more significantly. This is probably because the three distant ESSs can cover a
larger area in the grid, while the three close ESSs concentrate in one region and impose
limited impact on the other buses. Therefore, in practical operation, the most suitable ESS
installation location should be selected for improvement of ALSC to the greatest extent. In
the end, from the results of Case 8, it can be seen that under reasonable control strategies,
ESS installed on the grid side can effectively improve the expectation of ALSC and reduce
the degree of dispersion of ALSC. This is because when there is power imbalance in
the power system, ESS can be effective at depressing such imbalance very well, thus
improving ALSC.

In general, whether ESS is installed on the generation side, load side or grid side, it
can always effectively improve ALSC. This is reflected from increasing the expected value
of ALSC on one hand, and reducing the degree of dispersion of ALSC on the other hand.
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Table 15. Probabilistic results of ALSC under different cases.

Cases EALSC SALSC βALSC
PET

(λ̄ = 0.05)
PET

(λ̄ = 0.10)
PET

(λ̄ = 0.15)
PET

(λ̄ = 0.20)
PET

(λ̄ = 0.25)
PET

(λ̄ = 0.30) PEZ

Time 9 0.010 0.024 2.428 0.859 0.997 1 1 1 1 0.843
Case 1 0.018 0.031 1.735 0.748 0.987 1 1 1 1 0.736
Case 2 0.029 0.037 1.271 0.604 0.959 1 1 1 1 0.597
Case 3 0.010 0.020 2.188 0.865 0.996 1 1 1 1 0.845
Case 4 0.029 0.036 1.253 0.602 0.972 1 1 1 1 0.590
Case 5 0.071 0.038 0.544 0.181 0.773 0.989 1 1 1 0.174
Case 6 0.065 0.043 0.658 0.260 0.775 0.982 1 1 1 0.097
Case 7 0.124 0.032 0.260 0.012 0.177 0.772 0.990 1 1 0.008
Case 8 0.159 0.057 0.360 0.079 0.213 0.213 0.99 1 1 0

5. Conclusions

Firstly, the forecasting models of wind power, photovoltaic power and load are intro-
duced. By adopting the stacking ensemble learning model, the results of multiple base
learners are integrated and outputted, which effectively improves the forecasting accuracy.
In addition, MIC is used for feature selection to select the optimal set of input variables.
Secondly, the forecasting power data is used to predict the probability of ALSC. Specifically,
the RPF method considering multi-slack buses is used to calculate the deterministic ALSC
problem, and the LHS-MCS method is used to generate probabilistic results. The distribu-
tions of wind power, photovoltaic power and load power are determined by the forecasting
distributions generated by point forecasting value and error statistics. Consideration of
the multi-slack buses makes the RPF calculation more in line with the actual situation,
and hence can obtain more accurate and reasonable ALSC evaluation results. Finally, the
modified IEEE 39-bused system is used to verify the effectiveness of the proposed method.

The results demonstrate that both the stacking ensemble learning model and the MIC
feature selection method can improve the forecasting accuracy. Besides the influence from
the prediction of renewable energy and load, the multi-slack buses and the power imbalance
allocation principles of multi-slack buses both have an impact on the calculation results
of ALSC. Finally, the forecasting results of ALSC probabilistic evaluation can provide a
reference for the load power supply capacity of power system in the future and can also
provide an early warning for the risk of ALSC threshold overlimit.

There are also some limitations in the research of this paper. For example, the accuracy
of ALSC probabilistic forecasting significantly relies on the accuracy of wind power, photo-
voltaic power and load power forecasting. Therefore, some more advanced algorithms can
be adopted in power forecasting to obtain more accurate power predictions.
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Abbreviations

ALSC available load supply capability
MIC maximal information coefficient
LHS Latin hypercube sampling
RPF repeated power flow
CPF continuation power flow
OPF optimal power flow
PPF probabilistic power flow
MCS Monte Carlo simulation
GBDT gradient boosting decision tree
LGBM light gradient boosting machine
RR ridge regression
SVR support vector regression
SVM support vector machine
KNN K-nearest neighbor
LR linear regression
MAE mean absolute error
RMSE root mean square error
MAPE mean absolute percentage error
PDF probability density function
PI prediction interval
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