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Abstract: Multiple ducts in the working shaft and main body of tunnels form a combined tee structure.
An efficient and accurate prediction method for the local resistance coefficient is the key to the
design and optimization of the maintenance ventilation scheme. However, most existing studies use
numerical simulations and model experiments to analyze the local resistance characteristics of specific
structures and calculate the local resistance coefficient under specific ventilation conditions. Therefore,
there are shortcomings of low efficiency and high cost in the ventilation scheme optimization when
considering the influence of the local resistance. This paper proposes a hybrid prediction model
for the local resistance coefficient of water transmission tunnel maintenance ventilation based on
machine learning. The hybrid prediction model introduces the hybrid kernel into a relevance vector
machine to build the hybrid kernel relevance vector machine model (HKRVM). The improved artificial
jellyfish search algorithm (IAJS), which utilizes Fuch chaotic mapping, lens-imaging reverse learning,
and adaptive hybrid mutation strategies to improve the algorithm performance, is applied to the
kernel parameter optimization of the HKRVM model. The results of a case study show that the
method proposed in this paper can achieve the efficient and accurate prediction of the local resistance
coefficient of maintenance ventilation and improve the prediction accuracy and prediction efficiency
to a certain extent. The method proposed in this paper provides a new concept for the prediction of
the ventilation local resistance coefficient and can further provide an efficient prediction method for
the design and optimization of maintenance ventilation schemes.

Keywords: water transmission tunnel; maintenance ventilation; combined tee structure; local resis-
tance coefficient; improved artificial jellyfish search algorithm; hybrid kernel relevance vector machine

1. Introduction

In order to alleviate the water shortage in some economically developed areas and
meet the increasing demand for economic development, a large number of long-distance
water transfer projects have been built all over the world [1]. With the rapid development
of deep underground tunnel construction technology, in order to reduce damage to the
production processes, life, and ecological environment of the cities along the project, a
deep-buried long-distance water transmission tunnel is utilized as the main water transport
buildings in many water diversion projects, some of which are combined with open
channels, aqueducts, and other water transport structures for water distribution. According
to the literature reports, the hot and humid climate in some areas is suitable for the growth
of shellfish and other aquatic organisms, which often invade water transmission tunnels,
resulting in reduced water transmission efficiency [2,3]. Therefore, in order to ensure the
normal operation of long-distance water transmission projects, it is necessary to carry out
regular maintenance.
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A number of working shafts are arranged along deep-buried long-distance water
transmission tunnels, and water stop valves are arranged in the working shafts. During
operation, the water stop valves are closed, and the pipeline is in a state of full pressure
flow and isolated from the external natural environment. During maintenance, the water
stop valves in the working shaft along the tunnel will be opened to drain water, and
the ventilation equipment will be arranged in the working shaft for ventilation during
maintenance [4]. The working shafts along the tunnel form a complete ventilation circuit
with the main body of tunnels to provide fresh air for maintenance workers, and exhaust
the harmful gases released by the biological death and decay in the tunnel and the exhaust
fumes from the maintenance machinery, so as to improve the maintenance working envi-
ronment in the tunnel. Therefore, it is of great significance to scientifically and reasonably
design ventilation schemes for long-distance water transmission tunnels during mainte-
nance to ensure the safety of maintenance work. The combined tee structure composed of
multiple air ducts in the working shaft and the main body of the tunnel is quite different
from the local tee structure in traffic tunnels, mine roadways, and other underground
structures. After the high-speed airflow from the air ducts in the working shafts enters
the tunnel, the air particles collide with each other in the local area due to the sudden
change in the flow direction and the overflow section, resulting in a large local resistance
loss. Therefore, the local resistance characteristics and an accurate calculation of the local
resistance coefficient of the combined tee structure are the key problems to be solved in the
design of maintenance ventilation schemes for long-distance water transmission tunnels.

The essence of local resistance loss is that due to the change in the flow direction
and cross-section, fluid particles collide and friction in the local area, forming local eddy
currents, resulting in local resistance loss. In hydraulics, the water flow has a large local
head loss at the bend, reducer, and tee structures in pipelines, and many scholars have
carried out significant amounts of research on local head loss [5,6]. In order to ensure the
ventilation effect and reduce energy consumption, scholars have carried out a lot of research
on the resistance characteristics of local components in urban traffic tunnels, mine laneways,
utility tunnels, and other underground structures and air-conditioning ventilation systems.
Wang et al. [7] analyzed the influence of the area ratio, bifurcation angle, flow ratio, and
bending radius on the local resistance coefficient of highway tunnel components such as
the tee, variable diameter, and bending structure using a numerical simulation method.
Wang et al. [8] established a 1:50 bifurcated tunnel scale model based on the prototype
of Xiamen Haicang Submarine Tunnel, carried out model experiments to analyze and
study the airflow characteristics, and obtained the influence law of the split ratio and the
length-to-height ratio of the bifurcation structure on the local loss coefficient. Liang et al. [9]
analyzed the influence rules of five traffic parameters, including the distribution of lanes,
vehicle distance, blockage ratio, vehicle speed, and proportion of large-scale vehicles, on
the vehicle air-resistance coefficient, targeting the influence rules of traffic conditions on
the ventilation and pollutant discharge effect of urban traffic tunnels. Wang et al. [10]
used a numerical simulation to analyze the local flow field characteristics of a louvered
windshield in mine roadways at different opening angles, and derived the local resistance
coefficient relation of a louvered windshield. Li et al. [11] established a 1:5 utility tunnel
scale model and conducted model experiments under different conditions of the air volume,
pipe diameter, and pipe layout to obtain the variation rule of the local resistance at the inlet
and outlet of an integrated corridor ventilation system. A two-factor analysis of variance
was used to analyze the significance of the influence of the Reynolds number, air volume,
and the proportion of the pipeline area ratio. Wang et al. [12] studied the law of influence of
the guide vane on the local pressure loss of an air duct elbow through a model experiment
and numerical simulation and carried out optimization research on an elbow guide vane.

It can be seen from the above studies that numerical simulations and model exper-
iments are the main methods used to study the ventilation local resistance. However,
numerical simulations and model experiments have disadvantages such as a low calcula-
tion accuracy, low efficiency, and high cost of human and material resources, and numerical
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simulation methods also largely depend on grid division, the selection of the turbulence
model, and governing equation-solving methods. Moreover, measurement and human
operation errors are unavoidable in the model experiment. Therefore, there are many schol-
ars in the field of fluid mechanics using machine-learning methods to carry out relevant
research [13–15], using the black box model of machine learning to replace complex physi-
cal mechanisms in fluid mechanics, to overcome the shortcomings of numerical simulations
and model-testing methods. Li et al. [16] used ridge regression, decision tree, random
forest, gradient boosting regression tree, and other machine-learning methods to predict the
average wind pressure and fluctuating wind pressure of high-rise buildings. Zhu et al. [17]
conducted research on the surface wind pressure of low-rise buildings, obtained the sur-
face wind pressure under different wind forces by using numerical simulation methods,
established a surrogate model based on machine learning, and applied it to optimize the
placement of building surface pressure sensors. Hu et al. [18] used adaptive neural-fuzzy
inference system, support vector machine, M5 model tree, least-squares support vector
machine, and other intelligent prediction models to predict the overflow coefficient of
curved pipelines, establishing the mapping relationship between the upstream water head,
overflow ratio, curvature, and overflow coefficient. Wakes et al. [19] used machine-learning
algorithms to predict dune movement patterns under different wind conditions, providing
a technical reference for predicting sediment migration paths. Rushd et al. [20] used artifi-
cial neural networks to predict the pressure loss of crude oil transport pipelines, taking the
pipe diameter, average flow rate, oil–water density, oil–water viscosity, and water content
as the input parameters. In the field of mine roadways, some scholars have also carried
out research on ventilation resistance coefficient prediction. Liu et al. [21] established a
BP neural network prediction model for the roadway ventilation resistance coefficient
and applied the prediction results to the mine ventilation network model. Based on the
least-square method, Gao et al. [22] proposed a mathematical model to determine the
ventilation resistance coefficient of mines using the inversion of the air volume and node
pressure data, and adopted a genetic algorithm and particle swarm algorithm to solve the
ventilation resistance coefficient inversion optimization problem.

The main idea of the application of machine learning in the field of fluid mechanics
is to establish a high-dimensional mapping relationship between the input parameters
and output targets through machine-learning algorithms, replacing the complex physical
mechanism of fluid mechanics. The most critical part is obtaining the training sample set.
In order to ensure the accuracy and efficiency of the prediction, accurate predictions of
the ventilation local resistance coefficient should be obtained by using as few numerical
simulation or model test results as possible. In addition, the ventilation local resistance
coefficient is related to complex turbulent motion in the local area and has strong nonlinear
fluctuation characteristics due to the comprehensive influence of both structural and venti-
lation parameters. Therefore, the prediction of the ventilation local resistance coefficient
is a typical small sample nonlinear prediction problem. Relevance vector machine (RVM)
is a sparse kernel method based on the Bayesian framework proposed by Tipping [23].
Its structure is similar to that of support vector machine (SVM), but its training speed
is faster, and it has a strong advantage in nonlinear small sample prediction problems.
Therefore, the RVM model has been widely used in engineering fields such as mechanical
service-life prediction [24], slope deformation probability prediction [25], short-term power
coincidence prediction [26], industrial fault classification [27], and pollutant concentration
prediction [28]. However, a single-kernel RVM model cannot accurately excavate the deep
nonlinear fluctuation characteristics of engineering data. Therefore, the hybrid kernel
function is introduced into the RVM model to balance the global generalization ability and
local learning ability and improve the prediction accuracy and generalization performance
of the model. At the same time, the choice of kernel parameters for the HKRVM model
will affect the prediction accuracy of the model. Scholars use swarm intelligent optimiza-
tion algorithms such as the grey wolf optimization algorithm [29], grasshopper optimiza-
tion algorithm [30,31], particle swarm optimization algorithm [32], whale optimization
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algorithm [33], and bat optimization algorithm [34] to optimize the kernel function of the
HKRVM model. The artificial jellyfish search algorithm (AJS) [35], as a swarm intelligent
optimization algorithm proposed in recent years, has fewer adjustment parameters and a
simple search process. It has been successfully applied in the fields of power grid energy
scheduling [36,37], medical image segmentation [38], civil structure engineering [39], and
construction engineering image recognition [40]. The application results show that the
AJS algorithm has a better optimization accuracy and optimization efficiency than other
swarm intelligent optimization algorithms, but the AJS algorithm suffers from premature
convergence and can easily fall into local optimal problems when solving high-dimensional
nonlinear optimization problems.

In summary, the local resistance coefficient of water transmission tunnel maintenance
ventilation is one of the key parameters to be considered in the design of ventilation
schemes, and it is related to the complex turbulent movement of fluid. In order to achieve
the efficient and accurate prediction of the ventilation local resistance coefficient, this paper
proposes a hybrid prediction model for the local resistance coefficient of water transmis-
sion tunnel maintenance ventilation, and establishes a mapping relationship between the
structural parameters, ventilation parameters, and ventilation local resistance coefficient,
in place of a complex fluid mechanics mechanism. It also provides a theoretical basis
and technical reference for the optimization of long-distance water transmission tunnel
maintenance ventilation schemes.

The remainder of this paper is organized as follows: In Section 2, the research frame-
work of this paper is put forward. In Section 3, a detailed description of the hybrid predic-
tion model for the local resistance coefficient of water transmission tunnel maintenance
ventilation based on machine learning is presented. In Section 4, combined with a water
transmission project, a case study is presented to verify the applicability of the method
proposed in this paper. In Section 5, the effectiveness and superiority of the proposed
method are verified by a comparison of the model prediction performance. In Section 6,
the conclusion and prospects of the research results in this paper are presented.

2. Research Framework

In this work, a hybrid prediction model for the local resistance coefficient of water
transmission tunnel maintenance ventilation based on machine learning is proposed. The
research framework is composed of three steps: the construction of a training sample set,
building the IAJS-HKRVM prediction model, and a case study, as shown in Figure 1.

Step 1: Construction of training sample set. Sample points are selected in the input
parameter design space, and the cross-section mean speed and pressure under different
working conditions are calculated based on the three-dimensional numerical model of
the local resistance of water transmission tunnel maintenance ventilation, and then, the
local resistance coefficient of maintenance ventilation under different working conditions
is obtained. The numerical simulation results are verified to construct the training sample
set of the prediction model for the local resistance coefficient of water transmission tunnel
maintenance ventilation.

Step 2: IAJS-HKRVM prediction model build. Firstly, a Gaussian kernel function
with excellent local learning ability and Sigmoid kernel function with excellent global
generalization ability are combined by the weighted method and are introduced into the
RVM model to establish the HKRVM model, to accurately excavate the deep nonlinear
characteristics of the local resistance coefficient of maintenance ventilation. Secondly, in
order to determine the optimal kernel parameters of the HKRVM model, the IAJS algorithm
is used to optimize the kernel parameters. Fuch chaotic mapping, lens-imaging reverse
learning, and adaptive hybrid mutation strategies are introduced to improve the population
initialization and location update methods of the AJS algorithm, so as to overcome the
shortcomings of local optimal and premature convergence, to improve the optimization
accuracy and efficiency of the algorithm. The performance of the IAJS algorithm is com-
pared with other swarm intelligent optimization algorithms on the benchmark test function.
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Finally, the hybrid prediction model for the local resistance coefficient of the combined tee
structure of water transmission tunnel maintenance ventilation based on machine learning
is established.
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Step 3: Case study. The method proposed in this paper is applied to a long-distance
water transmission project and a case study is carried out. Firstly, the results of the nu-
merical simulation and prediction are compared to verify the applicability of the proposed
method in this paper. Then, the error indexes such as the relative coefficient square (R2),
mean absolute error (MAE), and root mean square error (RMSE) are selected to compare the
prediction performance of the proposed method in this paper with different kernel RVM
models and different prediction models to verify the superiority of the proposed method.

3. Methodology
3.1. IAJS-HKRVM Model
3.1.1. Hybrid Kernel Relevance Vector Machine

The RVM model is a supervised learning method based on a sparse Bayesian frame-
work. Compared with SVM, the RVM model has stronger sparsity and can ensure a good
generalization performance with fewer training samples, and its kernel function does
not need to meet Mercer conditions. The principle of the RVM model is as follows: the
sample dataset obtained by numerical simulation is S = {xn, tn| n = 1, 2, . . ., N}, where N
is the number of samples in the dataset, xn is the input vector, and tn is the output vector.
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Assuming that the prediction target is an independently distributed data sample containing
noise, the prediction target is shown in Equation (1).

tn = y(xn; ω) + ξn

y(x; ω) =
N
∑

n=1
ωnK(x, xn) + ω0

(1)

where ω = {ωn}N
n=0 is the model weights vector, ξn is the independent Gaussian noise that

satisfies distribution N (0, σ2), and K(x, xn) is the kernel function.
The training process of the RVM model is described as follows: the initial values of

the hyperparameters α and σ2 are set in advance and calculated through several iterations
until all parameters meet the convergence conditions. After the iteration is terminated, the
hyperparameters are updated to αMP and σ2

MP [23]. When the sample to be predicted is x*,
the distribution of the prediction result is shown in Equation (2).

p
(

t∗|t, αMP , σ2
MP

)
=
∫

p
(

t∗
∣∣∣ω, σ2

MP

)
p
(

ω
∣∣∣t, αMP, σ2

MP

)
dω = N

(
t∗
∣∣∣y∗, (σ∗)2

)
(2)

where y* = µT ϕ(x*), (σ*)2= σ2
MP + ϕ(x*)TΣϕ(x*), µ is the mean of the Gaussian distribution,

Σ is the variance of the Gaussian distribution, ϕ is the matrix of the kernel function,
αMP and σ2

MP are the hyperparameter estimate value corresponding to the maximum
marginal likelihood function obtained by the maximum likelihood method, and y* is the
prediction value.

The choice of kernel function and kernel parameter of the RVM model will affect the
prediction accuracy. When the sample data features are related to physical laws with deep
nonlinear fluctuation characteristics, it is difficult for the single-kernel RVM model to obtain
the deep nonlinear fluctuation features of the sample. The local resistance characteristics of
water transmission tunnel maintenance ventilation are complicated, which are affected by
the structural parameters, ventilation parameters, and other parameters, and are related
to complex turbulent movement in the local area and have strong nonlinear fluctuation
characteristics. Therefore, the single-kernel RVM model is difficult to be able to achieve
the efficient and accurate prediction of the local resistance coefficient of maintenance
ventilation. In this paper, a Gaussian kernel function with strong local learning ability
and Sigmoid kernel function with strong global generalization ability are combined in a
weighted way to establish the HKRVM model for predicting the local resistance coefficient
of water transmission tunnel maintenance ventilation. The expression of the hybrid kernel
function is shown in Equation (3).

k
(

xi, xj
)
= λ exp

(
−
∥∥xi − xj

∥∥2

2γ2

)
+ (1− λ)tanh

(
η
〈

xi, xj
〉)

(3)

where λ is the weight coefficient of the kernel function, γ and η are the parameters of the
Gaussian kernel function and Sigmoid kernel function.

3.1.2. Improved Artificial Jellyfish Search Algorithm

The AJS algorithm is a new swarm intelligence optimization algorithm proposed in
2021 [35]. The algorithm solves the optimization problem by simulating the natural laws
of jellyfish movement and foraging behavior in the ocean and swarm. The algorithm-
solving process is shown in Equation (4), and the algorithm’s schematic diagram is shown
in Figure 2. The algorithm determines the motion form of the jellyfish through the time
control mechanism and updates the position of the jellyfish according to the food content
of the location of the jellyfish. The motion form of the jellyfish includes the movement
of the jellyfish following the ocean current, active movement, and passive movement in
the jellyfish swarm. When the time control function c(t) ≥ 0.5, the position of the jellyfish
population changes with the direction of the ocean current movement. When the time
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control function c(t) < 0.5, the jellyfish move in the jellyfish swarm to update their position.
When rand (0, 1) > 1 − c(t), the jellyfish update their positions randomly in the jellyfish
swarm according to their spatial range. When rand (0, 1)≤ 1− c(t), the jellyfish update their
positions according to the food content of different jellyfish locations in the swarm [35].

Time control : c(t) =
∣∣(1− t

T
)
× (2× rand(0, 1)− 1)

∣∣
Ocean motion


−−−−→
trend = X∗ − β× rand(0, 1)× µ

Xi(t + 1) = Xi(t) + rand(0, 1)×
−−−−→
trend

, c(t) ≥ 0.5

Passive motion : Xi(t + 1) = Xi(t) + γ× rand(0, 1)× (Ub − Lb), rand(0, 1) > 1− c(t)

Active motion


Xi(t + 1) = Xi(t) + rand(0, 1)×

−−−−−→
Direction

−−−−−→
Direction =

{
Xj(t)− Xi(t), f (Xi) ≥ f

(
Xj
)

Xi(t)− Xj(t), f (Xi) < f
(
Xj
) , rand(0, 1) ≤ 1− c(t)

(4)

where t is the current iteration, T is the maximum number of iterations,
−−−−→
trend is the

ocean trend, X* is the optimal jellyfish location in the current iteration, β is the distribution

coefficient that is related to the length of
−−−−→
trend , and its value is 3, µ is the mean location of

all jellyfishes, γ is the motion coefficient that is related to the length of motion around the
locations of jellyfishes, and its value is 0.1, Ub and Lb are, respectively, the upper and lower
bounds of the search space, Xi(t) and Xj(t) are, respectively, the i and j jellyfish locations in
the current iteration, and f (Xi) and f (Xj) are, respectively, the food content of the location of
the i and j jellyfish, that is, the fitness value.
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In order to overcome the shortcomings of the AJS algorithm, such as premature
convergence and local optimization, this paper introduces Fuch chaotic mapping,
lens-imaging reverse learning, and adaptive hybrid mutation strategy to improve the
AJS algorithm.

The AJS algorithm uses logistic chaotic mapping to generate the initial population, but
the initial population generated by logistic chaotic mapping is concentrated in the edge of
the space, which makes it difficult to search for the optimal solution quickly and reduces
the optimization efficiency of the algorithm. Fuch chaotic mapping is an infinite folding
chaotic mapping, which has a better ergodic, dynamic, and convergence than finite folding
chaotic mapping such as logistic mapping and tent mapping [41]. The initial population
generated by Fuch chaotic mapping is concentrated in several local areas, which enables a
rapid population search. In this paper, Fuch chaotic mapping is used to generate chaotic
sequences, and then the chaotic sequences are mapped into the design parameter space to
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generate the initial jellyfish population. The Fuch chaotic mapping expression is shown in
Equation (5).

x(t + 1) = cos
[
1/x(t)2

]
(5)

where x(t) 6= 0, x ∈ Z+, t = 1, 2, · · · , T.
In order to further illustrate the differences between the two chaotic mapping meth-

ods, the scatterplot and histogram of the two chaotic mapping sequences are compared,
respectively. Figure 3 shows the histogram and scatter diagram of logistic chaotic mapping
and Fuch chaotic mapping. As shown in Figure 3, variables generated by logistic chaotic
mapping are distributed centrally in the edge region of the design space, while variables
generated by Fuch chaotic mapping are distributed centrally in a small range and dispersed
in a large range. Therefore, using Fuch chaotic mapping to generate the initial population
can make the population quickly concentrate in the optimal solution region, reduce the
number of algorithm iterations, and improve the optimization efficiency of the population.
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Lens-imaging reverse learning is a reverse-learning strategy inspired by the principle
of convex lens imaging. Its scaling factor changes nonlinearly and dynamically with the
number of iterations. The equations are as follows:

x′∗j =
Ub j + Lb j

2
+

Ub j + Lb j

2k
−

x∗j
k

(6)

k = kmax − (kmax − kmin) · (t/T)2 (7)

where k is the scaling factor, Ubj and Lbj are, respectively, the upper and lower bounds of
the j-dimensional components in the search space, x∗j is the j-dimensional component of the
jellyfish, x′∗j is the j-dimensional component of the jellyfish by lens-imaging reverse learning,
kmax and kmin are the maximum scaling factor and minimum scaling factor, respectively,
and their values are 10 and 1, respectively.
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In this paper, an adaptive hybrid mutation strategy is adopted to mutate the position
of the optimal jellyfish obtained in each iteration, and its parameters are dynamically
updated with the number of iterations to better balance the ability of the global exploration
and local development of the algorithm. The equation for the adaptive hybrid mutation is
shown in Equation (8).

ut
best = xt

best(1 + λ1Cauchy(0, 1) + λ2Gauss(0, 1)) (8)

where ut
best is the location of the current optimal jellyfish after mutation, xt

best is the location
of the current optimal jellyfish, Cauchy(0, 1) is the random variable that satisfies the Cauchy
distribution, Gauss(0, 1) is the random variable that satisfies the Gauss distribution, and
λ1 = 1 − (t/T)2 and λ2 = (t/T)2 are the dynamic parameters that change adaptively with
the number of iterations.

In order to validate the performance of the improved artificial jellyfish search algo-
rithm, four benchmark test functions are chosen to compare the optimization performance
of the IAJS algorithm, the AJS algorithm, Grey wolf optimization algorithm (GWO), Whale
optimization algorithm (WOA), and Harris hawks optimization algorithm (HHO). Among
them, F1 and F2 are unimodal functions, F3 is a multimodal function, and F4 is a fixed-
dimensional multimodal function. The basic parameter settings of each algorithm are
shown in Table 1. The other parameters remain the same, the optimization dimension
is 30, the population size is 30, and the maximum number of iterations is 500. Table 2
shows the statistical results of the 30 independent tests of each algorithm on the benchmark
test functions, where the bold part represents the algorithm with the best optimization
performance. Figure 4 shows the average iterative convergence curves on the benchmark
test functions.

Table 1. The basic parameter settings of each algorithm.

Algorithm Name Parameters

IAJS β = 3, γ = 0.1, kmax = 10, kmin = 1
AJS β = 3, γ = 0.1

GWO amax = 2, amin = 0, r1, r2 ∈ [0, 1]
WOA a ∈ [0, 2], r1, r2 ∈ [0, 1], p = 0.5, b = 1, l ∈ [−1, 1]
HHO p = 0.5, J ∈ [0, 2]

Table 2. The test results of each algorithm on the benchmark test functions.

Function Statistics
Algorithm

IAJS AJS GWO WOA HHO

F1: Sphere
Optimal 0.0000 × 10−00 2.9132 × 10−19 4.4427 × 10−29 3.0818 × 10−86 3.4871 × 10−111

Mean 0.0000 × 10−00 1.5817 × 10−17 1.9413 × 10−27 2.2725 × 10−74 6.6443 × 10−96

Standard 0.0000 × 10−00 1.8679 × 10−17 2.8171 × 10−27 1.0694 × 10−73 3.5842 × 10−95

F2: Schewefel 1.2
Optimal 0.0000 × 10−00 1.9518 × 10−18 7.6909 × 10−09 2.1240 × 10−01 2.4287 × 10−97

Mean 0.0000 × 10−00 7.2734 × 10−17 1.1714 × 10−05 8.1110 × 10−01 1.2096 × 10−79

Standard 0.0000 × 10−00 8.7846 × 10−17 2.4667 × 10−05 3.6620 × 10−01 3.6922 × 10−79

F3: Ackley
Optimal 8.8818 × 10−16 1.0691 × 10−10 7.5495 × 10−14 8.8818 × 10−16 8.8818 × 10−16

Mean 8.8818 × 10−16 4.6871 × 10−10 1.0640 × 10−13 3.9672 × 10−15 8.8818 × 10−16

Standard 0.0000 × 10−00 2.0870 × 10−10 1.5810 × 10−14 2.0298 × 10−15 1.0029 × 10−31

F4: Six-Hump
Camel-Back

Optimal −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00

Mean −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00 −1.0316 × 10−00

Standard 0.0000 × 10−00 6.4600 × 10−16 1.6814 × 10−08 1.0060 × 10−09 3.5641 × 10−10
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As shown in Table 2, the optimization results of the IAJS are superior to the AJS, WOA,
GWO, and HHO. The optimal value and average value of the IAJS test results on F1~F2
and F4 can reach the theoretical optimal value, and the standard deviation is 0, but the
theoretical optimal value is not reached on F3, because there are many local optimal values
in F3, making it easy to fall into the local optimal value. However, the standard deviation
of the experiment is 0. Therefore, the optimization performance of the IAJS algorithm has
been greatly improved. In addition, it can be seen from Figure 4 that the IAJS algorithm
converges faster than the other algorithms, indicating that the IAJS algorithm can jump out
of the local optimal faster. Meanwhile, it can be seen from Figure 4a,b that compared with
the other four algorithms, the convergence speed and accuracy of the IAJS algorithm are
significantly improved. Additionally, it can be seen from Table 2 and Figure 4d that all five
algorithms have reached the theoretical optimal solution, but from the convergence curves,
the convergence speed of the IAJS algorithm is faster than that of the other four algorithms.
Therefore, the AJS algorithm improved by Fuch chaotic mapping, lens-imaging reverse
learning, and adaptive hybrid mutation strategy can effectively improve the optimization
accuracy and efficiency. Thus, it will be applied to the kernel parameter optimization of the
HKRVM model.

3.2. Establishment Process of the Hybrid Prediction Model for Local Resistance Coefficient of Water
Transmission Tunnel Maintenance Ventilation Based on Machine Learning

In this section, a hybrid prediction model for the local resistance coefficient of water
transmission tunnel maintenance ventilation based on machine learning is proposed, and
the model establishment process is shown in Figure 5. The specific steps are as follows:
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(1) The sample set is normalized and the training set and test set are divided according
to the ratio of 3:1;

(2) The population size, maximum number of iterations, and kernel parameters the
search space, the initial jellyfish population is generated based on Fuch chaotic mapping,
the HKRVM model is built based on the jellyfish population, the mean absolute error of
prediction is selected as the fitness function and the corresponding fitness value is obtained;

(3) Start iteration. The fitness value of each jellyfish is compared to update the
jellyfish location, the optimal jellyfish location Xgbest and optimal fitness value fitnessbest
of the jellyfish are determined, and lens-imaging reverse learning and adaptive hybrid
variation are carried out on the updated jellyfish population and the current optimal
jellyfish, respectively;

(4) Enter the next iteration. The position and fitness value of the optimal individual
jellyfish are updated successively until the iteration termination condition is met and then
output the optimal jellyfish, that is, the optimal kernel parameters;

(5) The IAJS-HKRVM model is established using the optimal kernel parameters, and
the IAJS-HKRVM model is trained. After the model training, the test samples are used
for testing and verification, and the prediction results of the local resistance coefficient are
obtained, the error index is calculated, and the prediction performance is evaluated.

4. Case Study

The long-distance water transfer project is located in southern China’s Guangzhou
Province. The total length of the water transmission line is 113.1 km, a deep-buried TBM
tunnel is the main water transmission structure, accounting for 75% of the total water
transmission line, and the tunnel is buried at a depth of 30 to 60 m. The location of the
project and the layout of the TBM tunnel are shown in Figure 6a,b. The TBM tunnel of the
project starts from the reservoir and ends at the water pond, with a total length of 28.3 km.
Ten working shafts are arranged along the tunnel, numbered 1#~10#, and the tunnel is
correspondingly divided into ten parts by working shafts, numbered ¬~µ.

The three-dimensional model of the tunnel and working shafts and maintenance
ventilation process are shown in Figure 6c. During the operation of the water transmission
tunnel, the water stop valves in the working shaft are closed and in a state of pressure, and
the inside of the tunnel is full of water. During maintenance, the water stop valves are
opened to discharge the water flow inside the pipeline, and the pipe is kept dry. Ventilation
equipment such as axial flow fans and air ducts are arranged in the working shaft for
maintenance ventilation, supplying fresh air from the outside into the tunnel (as shown by
the solid green line with an arrow in Figure 6c) to ensure maintenance work safety and the
working comfort of maintenance personnel.
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4.1. Analysis of Ventilation Local Resistance Characteristics

In this section, a three-dimensional numerical simulation method is used to analyze
the ventilation local resistance characteristics of the combined tee structure, and the RNG
k-ε turbulence model is used to simulate the complex turbulent motion in the local region
of the combined tee structure. The RNG k-ε turbulence model transport equation is based
on the standard k-ε turbulence model with an added corresponding source term, which
can accurately simulate the complex flow phenomena such as local vortex, jet collision, and
high-speed strain flow [42]. In this paper, the outlet of the air duct is set as the velocity inlet
boundary, and it is assumed that the airflow distribution of the outlet is uniform and the
airflow direction is perpendicular to the section of the outlet. The left and right sides of the
tunnel are set as the pressure outlet boundary, and the gauge pressure at the outlet is set
to 0. The wall of the tunnel and the wall of the air duct are set as the solid wall boundary
without slip [4].

In order to verify the reliability and accuracy of the numerical simulation results,
the model experiment results of the local loss coefficient of the bifurcated tunnel under
different bifurcation angles in the paper of Zhang et al. [43] are quoted in this paper for
comparison and verification, and the local loss coefficient under different bifurcation angles
and flow diversion ratios is simulated. The comparison between the numerical simulation
and model experiment value is shown in Figure 7. As can be seen from Figure 7, when
the bifurcation angle is 5◦, the error range of the local loss coefficient is 6.0~13.5% and
the average error is 8.9%; when the bifurcation angle is 10◦, the error range of the local
loss coefficient is 5.3~12.2% and the average error is 8.4%; and when the bifurcation angle
is 15◦, the error range of the local loss coefficient is 4.2~12.9% and the average error is
7.8%. The error comparison results show that the numerical simulation results are in good
agreement with the model test results in the reference [43]. Therefore, the three-dimensional
numerical model of the ventilation local resistance of the combined tee structure of the water
transmission tunnel can be used to solve the sample point calculation of the prediction
model of the ventilation local resistance coefficient based on the IAJS-HKRVM.
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Figure 7. Comparison of local loss coefficient simulation and test value under different bifurcation
angles and flow diversion ratios ((a)—5◦; (b)—10◦; (c)—15◦).

In order to analyze the ventilation local resistance characteristics of the combined tee
structure, the numerical simulation results with the parameters of an air pipe diameter
of 1.2 m, number of air pipes of 4, a tunnel diameter of 8 m, and a wind speed of the
outlet of 10 m/s are selected for analysis. Figure 8 shows the wind velocity distribution
cloud map and vector map of the central longitudinal section of the combined tee structure
under this working condition. After the high-speed airflow emitted from the top air duct
outlet enters the tunnel, the flow direction changes sharply under the obstruction of the
tunnel wall, and moves and diffuses to both ends, forming the wall-attached flow and
collision wall-attached jet, as shown in Figure 8b 1© and 2©. After the high-speed airflow
emitted by the adjacent air pipe enters the tunnel, the overflow section suddenly expands,
the turbulent edge develops and diffuses, the airflow reaching the bottom of the tunnel is
diverted by the obstructing wall, and the adjacent jets collide with each other to form the
local vortex region, as shown in Figure 8b 3©. At the same time, after the airflow enters the
tunnel, it diffuses to both ends of the tunnel, collides with the airflow in the upper space of
the tunnel, and forms the vortex region, as shown in Figure 8b 4©. In summary, the local
resistance loss is caused by the obstructing wall in the tunnel and the collision of adjacent
high-speed jets, which forms many local vortices in the local area.
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4.2. Analysis of Prediction Results for Ventilation Local Resistance Coefficient

Considering the engineering layout, maintenance ventilation characteristics, and local
resistance characteristics, the diameter of the tunnel, the diameter of the air duct, the
number of the air duct, and the airflow speed of the outlet are selected in this paper as the
input variables of the IAJS-HKRVM prediction model, and the local resistance coefficient
is selected as the output variable. The values or ranges of each input variable are shown
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in Table 3. A total of 68 groups of samples are obtained by random sampling, and the
response values of each group of samples are calculated based on the three-dimensional
numerical model of maintenance ventilation in Section 4.1. In the numerical simulation
process of the 68 groups of samples, their main difference lies in the physical model and
the settings of the boundary conditions. Changes in the number of air ducts, the diameter
of the air ducts, and the diameter of the tunnel will lead to changes in the physical model,
and changes in the airflow speed of the outlet will lead to changes in the setting of the
boundary conditions.

Table 3. The values or ranges of each input variable.

Input Variable Unit The Values or Ranges

Diameter of air duct m 1~2
Number of air duct / 1, 2, 3, 4
Diameter of tunnel m 5~8

Airflow speed of outlet m/s 3~10

Among the 68 groups of samples obtained based on the three-dimensional numeri-
cal simulation model, 50 groups are randomly selected as the training set, and the other
18 groups are selected as the test set. The local resistance coefficient of water transmission
tunnel maintenance ventilation is predicted by the IAJS-HKRVM prediction model estab-
lished in this paper. The learning curves of the fitness of the train set and test set are shown
in Figure 9. The comparison between the prediction results and the numerical simulation
results is shown in Figure 10.
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It can be seen from Figure 9 that the fitness function value of the training set is smaller
than that of the test set. Moreover, when the model is trained for about 60 iterations,
the fitness curves of the training set and the test set begin to converge and there is little
difference between the fitness values of the training set and the test set. Therefore, the
model has a good generalization ability. As shown in Figure 10, the ventilation local
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resistance coefficient of the combined tee structure predicted by the IAJS-HKRVM model
has a high consistency with the numerical simulation results, and the residual difference
between the predicted value and the simulated value at each test sample point is within the
allowable range. Therefore, the hybrid prediction model for the local resistance coefficient
of water transmission tunnel maintenance ventilation proposed in this paper can efficiently
and accurately predict the local resistance coefficient under different working conditions
and can be used to predict the local resistance coefficient of the combined tee structure of
the water transmission tunnel.

5. Discussion

In this section, in order to further verify the effectiveness and superiority of the IAJS-
HKRVM hybrid prediction model for the local resistance coefficient of water transmission
tunnel maintenance ventilation proposed in this paper, the prediction performances of
different kernel RVM models and other conventional prediction models are compared
by using the residual distribution of each sample point, R2, MAE, RMSE, and other error
indicators and their improvement rates. The calculation formulas of R2, MAE, and RMSE
are shown in Equation (9).

R2 = 1−
n
∑

i=1
(yi − ŷi)

2/
n
∑

i=1
(yi − yi)

2

MAE = 1
n

n
∑

i=1
|yi − ŷi|

RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

(9)

where yi is the ventilation local resistance coefficient numerical simulation value, yi is the
average value of the ventilation local resistance coefficient numerical simulation value,
ŷi is the prediction value of the ventilation local resistance coefficient, and n is the sample
number of the test set.

5.1. Comparison with Conventional RVM Models

In order to verify the advantages of the Gaussian and Sigmoid hybrid kernel functions
adopted in this paper in balancing the global generalization and local learning abilities,
Gaussian kernel (g-RVM), polynomial kernel (p-RVM), Sigmoid kernel (s-RVM), Gaus-
sian and polynomial hybrid kernel (g-p-RVM), and Gaussian and Sigmoid hybrid kernel
(g-s-RVM) models are selected to predict the local resistance coefficient, respectively. The
boxplot of the prediction residual error of different kernel relevance vector machine models
is shown in Figure 11, the prediction error index comparison of the different kernel RVM
models is shown in Table 4, and the improvement rate of the prediction error index of the
IAJS-HKRVM model compared with different kernel RVM models is shown in Figure 12.
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Table 4. Comparison of different kernel RVM model prediction error indexes.

Model R2 MAE RMSE

g-RVM 0.9702 0.0021 0.0027
p-RVM 0.7264 0.0067 0.0081
s-RVM 0.7598 0.0069 0.0076

g-p-RVM 0.9662 0.0023 0.0029
g-s-RVM 0.9384 0.0033 0.0039

IAJS-HKRVM 0.9903 0.0013 0.0015
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As can be seen from Figure 11, among the single-kernel RVM models, the Gaussian
kernel RVM model has the most concentrated prediction residual error distribution, and
the median value is close to zero, which is close to the IAJS-HKRVM model, while the
polynomial kernel RVM and Sigmoid kernel RVM model have a scattered prediction
residual error distribution. In the hybrid kernel RVM model, the residual error distributions
of the Gaussian + polynomial hybrid kernel RVM and Gaussian + Sigmoid hybrid kernel
RVM are close, but the prediction accuracy is lower than that of the Gaussian kernel
RVM model because the kernel parameters are determined according to experience, which
agrees with the error indexes presented in Table 4. Therefore, the IAJS algorithm is used
to optimize the kernel parameters of the HKRVM model, which further improves the
prediction accuracy. As can be seen from Table 4, the error indexes of the IAJS-HKRVM
prediction model are superior to other RVM models with different kernels, and the error
indexes of the IAJS-HKRVM prediction model are R2 (0.9903), MAE (0.0013), and RMSE
(0.0015), respectively.

As can be seen from Figure 12, the numbers marked in red in Figure 12 show the
highest improvement rate of each error index of the IAJS-HKRVM model compared with
other RVM models with different kernel. The R2 of the IAJS-HKRVM model has the
highest increase of 36.3% compared with the polynomial kernel RVM model, and the
lowest increase of 2.1% compared with the Gaussian kernel RVM model. The MAE has
the largest decrease of 81.0% compared with the polynomial kernel RVM model, and the
lowest decrease of 38.1% compared with the Gaussian kernel RVM model. The RMSE
has the largest decrease of 81.2% compared with the polynomial kernel RVM model, and
the lowest decrease of 42.9% compared with the Gaussian kernel RVM model, which
agrees with the data presented in Table 4. According to the comparative analysis results,
it can be seen that single-kernel RVM models such as the Gaussian kernel, polynomial
kernel, and Sigmoid kernel are difficult to be able to effectively mine complex nonlinear
motion features. At the same time, it is difficult to guarantee the prediction accuracy and
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generalization performance of the model by determining the kernel parameters based on
experience. Therefore, the global generalization ability and local learning ability of the
Gaussian + Sigmoid hybrid kernel effective equilibrium model adopted in this paper can
better explore the nonlinear fluctuation characteristics of the local resistance coefficient of
the combined tee structure.

5.2. Comparison with Other Prediction Models

In order to further verify the superiority of the prediction performance of the IAJS-
HKRVM model, SVM, backpropagating neural network (BPNN), and the AJS-HKRVM
model are selected to predict the ventilation local resistance coefficient, respectively, and
are compared with the prediction results of the IAJS-HKRVM model. Among them, the
radial basis kernel function is used in the SVM model, and the kernel parameters and
penalty factor are determined by grid search. The learning rate of the BPNN is 0.001,
and the hyperparameters are determined by Bayesian optimization. The boxplot of the
residual error of the prediction results of each model is shown in Figure 13, the prediction
error index comparison of each model is shown in Table 5, and the prediction error index
improvement rate of the IAJS-HKRVM model compared with other models is shown in
Figure 14.
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Table 5. Comparison of other model prediction error indexes.

Model R2 MAE RMSE

SVM 0.8505 0.0050 0.0060
BPNN 0.8339 0.0051 0.0063

AJS-HKRVM 0.9857 0.0014 0.0019
IAJS-HKRVM 0.9903 0.0013 0.0015

As shown in Figure 13, the maximum and minimum values of the prediction residual
error of the IAJS-HKRVM model are lower than those of the other prediction models, and
its prediction residual error distribution is the most concentrated, and the median is the
closest to 0. The residual error distribution concentration of the AJS-HKRVM model is close
to that of the IAJS-HKRVM model, but its maximum residual is slightly larger. The SVM
has the second highest degree of prediction residual error distribution concentration, while
the BPNN has the lowest degree of prediction residual error distribution concentration,
which is consistent with the prediction error indicators of each model in Table 5. As can be
seen from Table 5, the error indexes of the IAJS-HKRVM model are better than those of the
AJS-HKRVM, SVM, and BPNN. As can be seen from Figure 14, the numbers marked in red
in Figure 14 show the highest improvement rate of each error index of the IAJS-HKRVM
model compared with other conventional prediction models. The R2 of the IAJS-HKRVM
model has the highest increase of 18.8% compared with the BPNN, and the lowest increase
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of 0.5% compared with the AJS-HKRVM model. The MAE has the largest decrease of 75.2%
compared with the BPNN, and lowest decrease of 11.6% compared with the AJS-HKRVM
model. The RMSE has the largest decrease of 75.8% compared with the BPNN, and the
lowest decrease of 17.7% compared with the AJS-HKRVM model. Therefore, the prediction
performance of the IAJS-HKRVM model has been greatly improved compared with other
conventional prediction models.
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As shown in Figures 13 and 14, the prediction accuracy of the IAJS-HKRVM model
is only slightly improved compared with the AJS-HKRVM model. Figure 15 shows the
comparison of the convergence curves of the AJS-HKRVM and IAJS-HKRVM model. As
can be seen from Figure 15, during the first iteration, the average optimal fitness values of
the AJS-HKRVM and IAJS-HKRVM model are 0.0424 and 0.0308, respectively. In addition,
by the 38th iteration of the IAJS-HKRVM, the jellyfish population has been concentrated in
the region near the optimal solution, while the AJS-HKRVM arrived at the region near the
optimal solution at the 46th iteration. The running time of each iteration is the same, so the
optimization efficiency of the IAJS-HKRVM model is improved by about 17.4% compared
with the AJS-HKRVM. Therefore, the artificial jellyfish search algorithm improved by
the Fuch chaotic mapping, lens-imaging reverse learning, and adaptive hybrid mutation
strategy enables the initial population to quickly concentrate in the optimal solution region,
balances the global and local search capabilities, and can quickly jump out of the local
optimal, effectively improving the optimization efficiency of the AJS algorithm. Therefore,
using the IAJS algorithm to optimize the kernel parameters of the HKRVM model improves
the prediction accuracy and generalization ability of the model, and realizes the efficient
and accurate prediction of the ventilation local resistance coefficient of the combined
tee structure.
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6. Conclusions

The local resistance characteristics of water transmission tunnel maintenance ven-
tilation are complicated, which is related to the complex nonlinear turbulent motion in
the local region. In order to calculate the efficiency and accuracy of the ventilation local
resistance coefficient, this paper proposed a hybrid prediction model for the local resistance
coefficient of water transmission tunnel maintenance ventilation based on an intelligent
optimization algorithm and a small-sample machine-learning method, and established the
nonlinear mapping relationship between the structural parameters, ventilation parameters,
and local resistance coefficient, so as to replace the complex physical mechanism of fluid
mechanics. The main research achievements are as follows:

(1) Research on numerical simulations of the local resistance characteristics of the
combined tee structure of water transmission tunnel maintenance ventilation was carried
out. As a result, the local resistance characteristics of the combined tee structure were
analyzed, determining that the local resistance is mainly caused by the collision and friction
of the airflow in the local area and the formation of multiple local eddy currents due to the
sudden change in the cross-section and flow direction.

(2) The IAJS-HKRVM hybrid model was proposed. The IAJS algorithm was used to
automatically optimize the kernel parameters of the HKRVM model, which effectively
improved the prediction accuracy and generalization performance, and the optimization
performance of the IAJS algorithm was verified based on the benchmark test function.

(3) Combined with an actual project, the local resistance coefficient of the combined
tee structure of water transmission tunnel maintenance was predicted. The results showed
that the IAJS-HKRVM model has a good prediction performance and can better excavate
the deep nonlinear fluctuation characteristics of the ventilation local resistance coefficient.

(4) The effectiveness and superiority of the proposed method in the prediction of
the ventilation local resistance coefficient were verified by comparing and analyzing the
prediction performance of different models. In terms of the prediction accuracy, the IAJS-
HKRVM model has the highest improvement of 36.3% compared with different kernel
RVM models, and the highest improvement of 18.8% compared with other conventional
models. In terms of the prediction efficiency, it has improved by about 17.4% compared
with the AJS-HKRVM.

In future studies, the local resistance coefficient prediction method for water trans-
mission tunnel maintenance ventilation proposed in this paper will be combined with a
multi-objective optimization study of the maintenance ventilation scheme of a long-distance
water transmission tunnel, to provide a theoretical basis and technical parameters for the
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design and optimization of the maintenance ventilation scheme of a long-distance water
transmission tunnel.
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HKRVM Hybrid kernel relevance vector machine
IAJS Improved artificial jellyfish search algorithm
RVM Relevance vector machine
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SVM Support vector machine
BPNN Backpropagating neural network
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WOA Whale optimization algorithm
HHO Harris hawks optimization algorithm

References
1. Zhang, C.; Nong, X.Z.; Shao, D.G.; Zhong, H.; Shang, Y.M.; Liang, J.K. Multivariate water environmental risk analysis in

long-distance water supply project: A case study in China. Ecol. Indic. 2021, 125, 70–82. [CrossRef]
2. Liu, D.M.; Hong, J.; Wang, R.; Cui, F.Y. Current solution to Limnoperna fortunei problem in water and pipelines. In Proceedings

of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC),
Dengfeng, China, 8–10 August 2011.

3. Zhang, C.D.; Xu, M.Z.; Wang, Z.Y.; Liu, W.; Yu, D.D. Experimental study on the effect of turbulence in pipelines on the mortality
of Limnoperna fortunei veligers. Ecol. Eng. 2017, 109, 101–118. [CrossRef]

4. Liu, C.X.; Wang, X.L.; Tong, D.W.; Liu, Z.; Yang, C.; Chen, S.; Wang, R.N.; Ding, C.Y. Impact of various multishaft combined
ventilation modes on the removal of harmful gases released from mussel decay in a long-distance water conveyance tunnel. Tunn.
Undergr. Space Technol. 2022, 128, 104633. [CrossRef]

5. Crapper, M.; Motta, D.; Sinclair, C.; Cole, D.; Monteleone, M.; Cosheril, A.; Tree, J.; Parkin, A. The hydraulic characteristics of
Roman lead water pipes: An experimental investigation. Int. J. Hist. Eng. Technol. 2022, 91, 119–134. [CrossRef]

6. Baselt, I.; Malcherek, A. Determining the Flow Resistance of Racks and the Resulting Flow Dynamics in the Channel by Using the
Saint-Venant Equations. Water 2022, 14, 2469. [CrossRef]

7. Wang, X.; Tan, W.; Ma, J.; Wang, L. Study on local structural resistance of ventilation system in highway tunnels. Mod. Tunn.
Technol. 2019, 56, 104–113. (In Chinese)

8. Wang, X.; Wang, M.N.; Qin, P.C.; Yan, T.; Chen, J.; Deng, T.; Yu, L.; Yan, G.F. An experimental study on the influence of local loss
on ventilation characteristic of dividing flow in urban traffic link tunnel. Build. Sci. 2020, 174, 106793. [CrossRef]

9. Liang, C.J.; Nan, S.; Shao, X.L.; Li, X.T. Calculation method for air resistance coefficient of vehicles in tunnel with different traffic
conditions. J. Build. Eng. 2021, 44, 102971. [CrossRef]

https://doi.org/10.1016/j.ecolind.2021.107577
https://doi.org/10.1016/j.ecoleng.2017.08.024
https://doi.org/10.1016/j.tust.2022.104633
https://doi.org/10.1080/17581206.2022.2054395
https://doi.org/10.3390/w14162469
https://doi.org/10.1016/j.buildenv.2020.106793
https://doi.org/10.1016/j.jobe.2021.102971


Appl. Sci. 2023, 13, 9135 21 of 22

10. Wang, N.; Li, Y.C.; Zhang, H.; Zhang, J.; Li, B.L. Study on flow distribution and local resistance characteristics of louvered
windshield. J. Saf. Sci. Technol. 2022, 18, 118–123. (In Chinese)

11. Li, S.; Liu, X.F.; Wang, J.X.; Zheng, Y.L.; Deng, S.M. Experimental reduced-scale study on the resistance characteristics of the
ventilation system of a utility tunnel under different pipeline layouts. Tunn. Undergr. Space Technol. 2019, 90, 131–143. [CrossRef]

12. Wang, H.D.; Li, X.H.; Tang, Y.; Chen, X.W.; Shen, H.H.; Cao, X.C.; Gao, H.M. Simulation and experimental study on the elbow
pressure loss of large air duct with different internal guide vanes. Build Serv. Eng. Res. Technol. 2022, 43, 725–739. [CrossRef]

13. Li, Y.F.; Chang, J.T.; Kong, C.; Bao, W. Recent progress of machine learning in flow modeling and active flow control. Chin. J.
Aeronaut. 2022, 35, 14–44. [CrossRef]

14. Hammond, J.; Pepper, N.; Montomoli, F.; Michelassi, V. Machine Learning Methods in CFD for Turbomachinery: A review. Int. J.
Turbomach. Propuls. Power 2022, 7, 16. [CrossRef]

15. Mostafa, K.; Zisis, I.; Moustafa, M.A. Machine learning Techniques in Structural Wind Engineering: A state-of-the-art review.
Appl. Sci. 2022, 12, 5232. [CrossRef]

16. Li, Y.; Huang, X.; Li, Y.G.; Chen, F.B.; Li, Q.S. Machine learning based algorithms for wind pressure prediction of high-rise
buildings. Adv. Struct. Eng. 2022, 25, 2222–2233. [CrossRef]

17. Zhu, Q.M.; Zhao, Z.; Yan, J.H. Physics-informed machine learning for surrogate modeling of wind pressure and optimization of
pressure sensor placement. Comput. Mech. 2022, 71, 481–491. [CrossRef]

18. Hu, Z.L.; Karami, H.; Rezaei, A.; DadrasAjirlou, Y.; Piran, M.J.; Band, S.S.; Chau, K.W.; Mosavi, A. Using soft computing and
machine learning algorithms to predict the discharge coefficient of curved labyrinth overflows. Eng. Appl. Comp. Fluid Mech.
2021, 15, 1002–1015. [CrossRef]

19. Wakes, S.J.; Bauer, B.O.; Mayo, M. A preliminary assessment of machine learning algorithms for predicting CFD-simulated wind
flow patterns over idealized foredunes. J. R. Soc. N. Z. 2021, 51, 290–306. [CrossRef]

20. Rush, S.; Rahman, M.; Arifuzzaman, M.; Ali, S.A.; Shalabi, F.; Aktaruzzaman, M. Predicting pressure losses in the water-assisted
flow of unconventional crude with machine learning. Pet. Sci. Technol. 2021, 39, 926–943. [CrossRef]

21. Liu, Y.Q. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance
coefficient in roadway. Min. Saf. Environ. Prot. 2021, 48, 101–106. (In Chinese)

22. Gao, K.; Deng, L.J.; Liu, J.; Wen, L.X.; Wong, D.; Liu, Z.Y. Study on mine ventilation resistance coefficient inversion based on
genetic algorithm. Arch. Min. Sci. 2018, 63, 813–826.

23. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
24. Guo, R.X.; Wang, Y.G. Remaining useful life prognostics for the rolling bearing based on a hybrid data-driven method. Proc. Inst.

Mech. Eng. Part I–J Syst. Control Eng. 2021, 235, 517–531. [CrossRef]
25. Pan, Q.J.; Leung, Y.F.; Hsu, S.C. Stochastic seismic slope stability assessment using polynomial chaos expansions combined with

relevance vector machine. Geosci. Front. 2021, 12, 405–414. [CrossRef]
26. Ding, J.; Wang, M.L.; Ping, Z.W.; Fu, D.F.; Vassiliadis, V.S. An integrated method based on relevance vector machine for short-term

load forecasting. Eur. J. Oper. Res. 2020, 287, 497–510. [CrossRef]
27. Huang, J.; Yang, X.; Shardt, Y.A.W.; Yan, X.F. Fault Classification in Dynamic Process Using Multiclass Relevance Vector Machine

and Slow Feature Analysis. IEEE Access 2020, 8, 9115–9123. [CrossRef]
28. Pham, Q.B.; Sammen, S.S.; Abba, S.I.; Mohammadi, B.; Shahid, S.; Abdulkadir, R.A. A new hybrid model based on relevance

vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environ. Sci. Pollut. Res.
2021, 28, 32564–32579. [CrossRef]

29. Qiu, J.S.; Fan, Y.C.; Wang, S.L.; Yang, X.; Qiao, J.L.; Liu, D.L. Research on the remaining useful life prediction method of lithium-ion
batteries based on aging feature extraction and multi-kernel relevance vector machine optimization model. Int. J. Energy Res.
2022, 46, 13931–13946. [CrossRef]

30. Tao, H.; Al-Bedyry, N.K.; Khedher, K.M.; Shahid, S.; Yaseen, Z.M. River water level prediction in coastal catchment using
hybridized relevance vector machine model with improved grasshopper optimization. J. Hydrol. 2021, 598, 126477. [CrossRef]

31. Song, W.S.; Guan, T.; Ren, B.Y.; Yu, J.; Wang, J.J.; Wu, B.P. Real-Time Construction Simulation Coupling a Concrete Temperature
Field Interval Prediction Model with Optimized Hybrid-Kernel RVM for Arch Dams. Energies 2020, 13, 4487. [CrossRef]

32. Zhao, Y.; Li, Z.Q. Import and Export Trade Prediction Algorithm of Belt and Road Countries Based on Hybrid RVM Model. Math.
Probl. Eng. 2022, 2022, 6467326. [CrossRef]

33. Wang, S.; Zhang, X.C.; Chen, W.X.; Han, W.; Zhou, S.B.; Pecht, M. State of health prediction based on multi-kernel relevance
vector machine and whale optimization algorithm for lithium-ion battery. Trans. Inst. Meas. Control, 2021, ahead of print. [CrossRef]

34. Bui, D.T.; Hoang, N.D.; Nguyen, H.; Tran, X.L. Spatial prediction of shallow landslide using Bat algorithm optimized machine
learning approach: A case study in Lang Son Province, Vietnam. Adv. Eng. Inform. 2019, 42, 100978.

35. Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,
389, 125535. [CrossRef]

36. Shaheen, A.M.; El-Sehiemy, R.A.; Alharthi, M.M.; Ghoneim, S.S.M.; Ginidi, A.R. Multi-objective jellyfish search optimizer for
efficient power system operation based on multi-dimensional OPF framework. Energy 2021, 237, 121478. [CrossRef]

37. Farhat, M.; Kamel, S.; Atallah, A.M.; Khan, B. Optimal Power Flow Solution Based on Jellyfish Search Optimization Considering
Uncertainty of Renewable Energy Sources. IEEE Access 2021, 9, 100911–100933. [CrossRef]

https://doi.org/10.1016/j.tust.2019.04.021
https://doi.org/10.1177/01436244221107058
https://doi.org/10.1016/j.cja.2021.07.027
https://doi.org/10.3390/ijtpp7020016
https://doi.org/10.3390/app12105232
https://doi.org/10.1177/13694332221092671
https://doi.org/10.1007/s00466-022-02251-1
https://doi.org/10.1080/19942060.2021.1934546
https://doi.org/10.1080/03036758.2020.1868541
https://doi.org/10.1080/10916466.2021.1980012
https://doi.org/10.1177/0959651820948284
https://doi.org/10.1016/j.gsf.2020.03.016
https://doi.org/10.1016/j.ejor.2020.04.007
https://doi.org/10.1109/ACCESS.2019.2962008
https://doi.org/10.1007/s11356-021-12792-2
https://doi.org/10.1002/er.8110
https://doi.org/10.1016/j.jhydrol.2021.126477
https://doi.org/10.3390/en13174487
https://doi.org/10.1155/2022/6467326
https://doi.org/10.1177/01423312211042009
https://doi.org/10.1016/j.amc.2020.125535
https://doi.org/10.1016/j.energy.2021.121478
https://doi.org/10.1109/ACCESS.2021.3097006


Appl. Sci. 2023, 13, 9135 22 of 22

38. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J.; Nam, Y. An improved jellyfish algorithm
for multilevel thresholding of magnetic resonance brain image segmentations. CMC-Comput. Mat. Contin. 2021, 68, 2961–2977.
[CrossRef]

39. Chou, J.S.; Liu, C.Y.; Prayogo, H.; Khasani, R.R.; Gho, D.; Lalitan, G.G. Predicting nominal shear capacity of reinforced concrete
wall in building by metaheuristics-optimized machine learning. J. Build. Eng. 2022, 61, 105046. [CrossRef]

40. Chou, J.S.; Karundeng, M.A.; Truong, D.N.; Cheng, M.Y. Identifying deflections of reinforced concrete beams under seismic loads
by bio-inspired optimization of deep residual learning. Struct. Control Health Monit. 2022, 29, e2918. [CrossRef]

41. Fu, W.Y.; Ling, C.D. An adaptive iterative chaos optimization method. J. Xi’an Jiaotong Univ. 2013, 47, 33–38. (In Chinese)
42. ANSYS Inc. ANSYS FLUENT Theory Guide; ANSYS Inc.: Canonsburgp, PA, USA, 2013.
43. Zhang, X.; Zhang, T.H.; Huang, Z.Y.; Zhang, C.; Kang, C.; Wu, K. Local loss and flow characteristic of dividing flow bifurcated

tunnel. J. Zhejiang Univ. 2018, 52, 440–445. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.32604/cmc.2021.016956
https://doi.org/10.1016/j.jobe.2022.105046
https://doi.org/10.1002/stc.2918

	Introduction 
	Research Framework 
	Methodology 
	IAJS-HKRVM Model 
	Hybrid Kernel Relevance Vector Machine 
	Improved Artificial Jellyfish Search Algorithm 

	Establishment Process of the Hybrid Prediction Model for Local Resistance Coefficient of Water Transmission Tunnel Maintenance Ventilation Based on Machine Learning 

	Case Study 
	Analysis of Ventilation Local Resistance Characteristics 
	Analysis of Prediction Results for Ventilation Local Resistance Coefficient 

	Discussion 
	Comparison with Conventional RVM Models 
	Comparison with Other Prediction Models 

	Conclusions 
	References

