
Citation: Abd-Elkawy, E.H.; Ahmed,

R. Empirical Comparison of

Higher-Order Mutation Testing and

Data-Flow Testing of C# with the Aid

of Genetic Algorithm. Appl. Sci. 2023,

13, 9170. https://doi.org/10.3390/

app13169170

Academic Editor: Christos Bouras

Received: 6 June 2023

Revised: 5 August 2023

Accepted: 9 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Empirical Comparison of Higher-Order Mutation Testing and
Data-Flow Testing of C# with the Aid of Genetic Algorithm
Eman H. Abd-Elkawy 1,2 and Rabie Ahmed 1,2,*

1 Department of Computer Science, Faculty of Computing & IT, Northern Border University,
Arar 73213, Saudi Arabia; eman.hassan@nbu.edu.sa

2 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University,
Beni-Suef 62521, Egypt

* Correspondence: rabie.ahmed@nbu.edu.sa

Abstract: Data-Flow and Higher-Order Mutation are white-box testing techniques. To our knowledge,
no work has been proposed to compare data flow and Higher-Order Mutation. This paper compares
all def-uses Data-Flow and second-order mutation criteria. The comparison will support the testing
decision-making, especially when choosing a suitable criterion. This compassion investigates the
subsumption relation between these two criteria and evaluates the effectiveness of test data developed
for each. To compare the two criteria, a set of test data satisfying each criterion is generated using
genetic algorithms; the set is then used to explore whether one criterion subsumes the other criterion
and assess the effectiveness of the test set that was developed for one methodology in terms of the
other. The results showed that the mean mutation coverage ratio of the all du-pairs adequate test
cover is 80.9%, and the mean data flow coverage ratio of the second-order mutant adequate test
cover is 98.7%. Consequently, second-order mutation “ProbSubsumes” the all du-pairs data flow.
The failure detection efficiency of the mutation (98%) is significantly better than the failure detection
efficiency of data flow (86%). Consequently, second-order mutation testing is “ProbBetter” than all
du-pairs data flow testing. In contrast, the size of the test suite of second-order mutation is more
significant than the size of the test suite of all du-pairs.

Keywords: data-flow testing; higher-order mutation testing; “ProbSubsumes”; “ProbBetter”

1. Introduction

Data flow and mutation testing are two standard white-box testing methodologies [1].
The two methodologies are more effective and widespread than the other white testing
criteria, such as statement and branch coverage [2]. Additionally, data flow and mutation
coverage criteria subsume statement and branch coverage requirements [2].

There are only a few studies have been presented to compare and evaluate the dif-
ferences between data flow and mutation testing concerning (1) effectiveness: number
of faults detected by each approach; and (2) efficiency: number of test cases needed by
each approach for creating an adequate test suite [2–5]. Some of the previous studies have
analytically compared mutation and data flow [5,6], and other studies have empirically
compared them [2–4,7].

To the best of our knowledge, the key study for comparing data flow and mutation
testing techniques was proposed by Mathur and Wong in 1994 [3]. Mathur and Wong [3,8]
manually designed test data to meet all-uses and mutation criteria and compare the scores
to check the “ProbSubsumes” relationship between the two criteria. The experiment
consisted of four programs and thirty groups of test data for each program. The results
showed that mutation-cover was closer to satisfying data flow than data flow-cover was to
mutation. In their study, Mathur and Wong compared two test adequacy criteria, called
data flow-based all-uses criterion and mutation-based criterion. This research compared

Appl. Sci. 2023, 13, 9170. https://doi.org/10.3390/app13169170 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169170
https://doi.org/10.3390/app13169170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1533-644X
https://doi.org/10.3390/app13169170
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169170?type=check_update&version=1

Appl. Sci. 2023, 13, 9170 2 of 13

the hardness of fulfilling the two criteria and the cost of each of them. They showed that
satisfying the mutation criterion was more challenging than all du-pairs.

Offutt and Voas [4] presented a comparison of mutation with all-defs data flow testing.
They concluded that mutation cover subsumes all-defs cover (i.e., “any set of test cases that
satisfies mutation will also satisfy all-defs”). The experiment consisted of ten programs
and five groups of test data for each program generated using different methods. They also
studied the fault detection ability of the generated tests.

Tewary and Harrold [9] developed techniques for seeding faults into the code under
test utilizing the “program dependence graph.” Then, they compared the fault-revealing
capability of mutation and data flow. The results showed that the sufficient test sets for
mutation and data flow were nearly equally successful in revealing the faults.

Offutt and Voas [4] concluded that no experiment could prove that one test approach
is superior to another. Still, additional and dissimilar programs and studies can improve
confidence in the validity of the relationship between the testing criteria.

Therefore, this paper introduces a new comparison between mutation and data flow
testing. The significant contribution of this comparison is utilizing search-based algorithms
to generate the test sets. In addition to the new test-data generation approach, this study
uses a new set of C# programs different from the related work.

This paper is organized as follows. Section 2 presents some essential concepts about
data flow and higher-order mutation testing for understanding this article. Section 3
introduces in detail the proposed empirical comparison. Section 4 gives the experiments
and results. Finally, the conclusions and future work are given in Section 5.

2. Data Flow and Mutation Testing

Below are the basic concepts of data flow testing and higher-order mutation testing.
Additionally, the expected relationships between the testing criteria are introduced.

2.1. Data Flow Testing

In any program, a limited number of actions can happen to a variable with the
following events:

Definition: A statement loading a value in the memory space of the “variable” makes
a definition (def) of that “variable”.

Use: A statement reading a value from the memory slot of the “variable” is a use of
the currently active definition of the “variable”.

Data flow analysis [10] uses the control flow graph of the program to find the
def-use pairs.

A program may be represented by a graph with “a set of nodes” and “a set of edges”,
called the control flow graph (CFG). Each “node” represents a statement, and each edge is
a possible control flow between the nodes.

Defs and c-uses are associated with nodes, but p-uses are associated with edges. Def-
use associations are represented by triples (v, s, u), where the value of variable v defined in
statement s is used in statement or edge u.

In Figure 1, the triples (X, 4, 7) and (A, 2, (5,6)) represent def-use associations.
In order to determine the set of paths that satisfy the all-uses criterion, it is necessary

to determine the defs of every variable in the program and the uses that might be affected
by these defs [11].

Appl. Sci. 2023, 13, 9170 3 of 13

Figure 1. Def-c-uses for the variable X and def-p-uses for the variable A.

2.2. Higher-Order Mutation

The mutation testing technique targets finding the test data, evaluating their efficiency,
and simulating the other test coverage criteria [12,13]. The mechanism of mutation testing
depends on injecting the targeted program with an error or more to obtain faulty versions
called mutants [12]. A mutant is killed if the output of executing the program against a test
datum differs from the output of the mutant. A mutant is alive if the output of executing
the program and the mutant against all test data are the same in the current test suite. An
alive mutant is “equivalent” if the output of executing the program and the mutant against
all possible test data are the same.

The first-order mutation was suggested by DeMillo and Hamlet [14,15] via seeding a
single error inside the program. Jia and Harman [12] proposed the Higher-Order Mutation
via seeding double errors or more in the program. Table 1 introduces an example of the
original code and first-, second-, and third-order mutants for this code.

Table 1. FOM and HOM examples.

Original
Code

Mutated Version

First-Order
Higher Order Mutant

Second-Order Third-Order

double n, m
double d = n ×m
double d = n/m

double n, m
double d = n + m
double d = n/m

double n, m
double d = n + m
double d = n −m

double n, m
double d = n + m

double d = n −m++

The quality of data to detect errors is calculated using the mutation score (Equation (1)).

Mutation Score =
No. of killed mutants

(Total no. of mutants−No. of equivalent mutants)
× 100 (1)

2.3. Relationship between Testing Criteria

Weyuker, Weiss, and Hamlet [16] proposed a relationship between any two testing
criteria called “ProbBetter”. According to this relationship, “a testing criterion c1 is “Prob-
Better” than c2 for a program P if a randomly selected test set T that satisfies c1 is more
“likely” to detect a failure than a randomly selected test set that satisfies c2”.

Mathur and Wong [3] proposed another relationship between any two testing criteria
called “ProbSubsumes”. According to this relationship, “a testing criterion c1 “ProbSub-
sumes” c2 for a program P if a test set T that is adequate with respect to c1 is “likely” to be
adequate with respect to c2”.

Appl. Sci. 2023, 13, 9170 4 of 13

3. The Proposed Approach

In this section, we describe the phases that comprise the proposed approach. The
system is written in C# and consists of the following modules:

1. Program analyzer.
2. Mutant generator.
3. Test data generator.

Figure 2 shows the architecture of the proposed approach. In the following, we will
discuss these modules in detail.

Figure 2. Overall chart of the proposed approach.

3.1. Program Analyzer Module

This module accepts the original program P in C# programming language as input.
Then it analyses the original program to collect vital information to find the def-use associa-
tions. In addition, it instruments the original program with probes to identify the executed
parts of the original program.

The output of this phase includes:

• An Instrumented version (P’) of the given original program. The system instruments
the assigned programs with software probes. During program execution, these probes
cause the number of each traversed line to be recorded to keep track of the path
traveled during the execution.

• The static analysis reports contain information about the components of each program:
classes, objects, statements, variables, and functions.

• The control flow graph for the tested program.
• The list of variables def-use pairs for the tested program.

Appl. Sci. 2023, 13, 9170 5 of 13

3.2. Mutant Generator Module

This module accepts the original program P in C# programming language as input.
Then it passes the tested program into CREAM, which applies a set mutation operator to
create a set of mutants. CREAM (Creator of Mutants) is a tool that introduces minor faults
called mutations into C# programs. It is helpful to investigate the quality of a mutated
program and the effectiveness of a prepared test suite. The CREAM system generates
several object-oriented types of faults, puts them into the code of the original program
according to its parsed trees, and compiles the modified sources. Obtained assemblies can
be tested by measuring the number of revealed modifications. The output of this phase is a
set of mutants.

3.3. Test Data Generator Module

Test-data generation in software testing identifies a set of program input data that
satisfy a given test-coverage criterion. This phase uses the GA algorithm [17] to generate
test cases to cover all def-use pairs of the given program or its mutant. Then, the tested
program is executed with the test cases generated by the GA.

To apply the concepts of GAs to the problem of test-data creation, the GAs-based
test-data generation techniques perform the following tasks:

• Consider the population to be sets of test data (test suite). Each set of test data is
represented by a binary string called a chromosome.

• Find the sets of test data that represent the initial population. These sets can be
randomly generated according to the format and type of data used by the program
under test, or they may be input to the GAs.

• Determine the fitness of each individual in the population, which is based on a fitness
function that is problem dependent.

• Select two individuals that will be combined in some way to contribute to the next
generation.

• Apply the crossover and mutation processes.
• The input to this phase includes:
• Instrumented version of the program to be tested.
• List of def-use paths to be covered.
• Number of program input variables.
• Domain and precision of input data.
• Population size.
• Maximum no. of generations.
• Probabilities of crossover and mutation.

The output of this phase includes:

• A dynamic analysis report that shows the traversed path(s) and list of covered and un-
covered def-use pairs after executing the given program with the test cases generated
by the GA.

• Set of test cases (du pairs cover) that cover the def-use paths of the given program, if
possible. The GA may fail to find test cases to cover some of the specified def-use paths
when they are infeasible (i.e., no test data can be found by the GA to cover them).

• Set of test cases (mutants cover) that cover the mutant.

The algorithm evaluates each test case by executing the program with it as input and
recording the def-use pairs in the program that are covered by this test case. The ratio
between the number of covered def-use pairs by this test case to the total number of def-use
pairs as a fitness function.

fitness_value (vi) =
no. of def− use pairs covered by vi

total no. of def− use pairs
(2)

Appl. Sci. 2023, 13, 9170 6 of 13

GA uses a binary vector as a chromosome to represent values of the program input
variables x. The length of the vector depends on the required precision and the domain
length for each input variable.

Suppose we wish to generate test cases for a program of k input variables x1, . . ., xk,
and each variable xi can take values from a domain Di = [ai, bi]. Suppose further that di
decimal places are desirable for the values of each variable xi. To achieve such precision,
each domain Di should be cut into (bi − ai) ·10di equal size ranges. Let us denote by mi
the smallest integer such that (bi − ai) · 10di ≤ 2mi − 1. Then, a representation having
each variable xi coded as a binary string stringi of length mi clearly satisfies the precision
requirement. The mapping from the binary string stringi into a real number xi from the
range [ai, bi] is performed by the following formula:

xi = ai + xi
′· bi − ai

2mi − 1
, (3)

where xi
′ represents the decimal value of the binary string stringi [17]. It should be noted

that the above method can be applied for representing values of integer input variables by
setting di to 0, and using the following formula instead of the formula in Equation (3):

xi = ai + int(xi
′· bi − ai

2mi − 1
), (4)

Now, each chromosome (as a test case) is represented by a binary string of length
m = ∑k

i=1 mi; the first m1 bits map into a value from the range [a1, b1] of variable x1, the
next group of m2 bits map into a value from the range [a2, b2] of variable x2, and so on; the
last group of mk bits map into a value from the range [ak, bk] of variable xk.

For example, let a program have two input variables, x and y, where –3.0 ≤ x ≤ 12.1
and 4.1 ≤ y ≤ 5.8, and the required precision is four decimal places for each variable. The
domain of variable x has a length of 15.1; the precision requirement implies that the range
[−3.0, 12.1] should be divided into at least 15.1 · 10,000 equal size ranges. This means that
18 bits are required as the first part of the chromosome: 217 < 151,000 ≤ 218. The domain
of variable y has a length of 1.7; the precision requirement implies that the range [4.1, 5.8]
should be divided into at least 1.7 · 10,000 equal size ranges. This means that 15 bits are re-
quired as the second part of the chromosome: 214 < 17,000 ≤ 215. The total length of a chro-
mosome (test case) is then m = 18 + 15 = 33 bits; the first 18 bits code x and remaining 15 bits
code y. Let us consider an example chromosome: 010001001011010000111110010100010.

By using the formula in Equation (3), the first 18 bits, 010001001011010000, represents
x = 1.0524, and the next 15 bits, 111110010100010, represents y = 5.7553. So, the given
chromosome corresponds to the data values 1.0524 and 5.7553 for the variables x and y,
respectively.

4. The Experiments and Results

This section presents the experiment to assess the efficiency of the two testing criteria
and their relationship. The investigation studies the “ProbBetter” and “ProbSubsumes”
relationships of the two criteria: mutation and def-use. We run the proposed method (given
in Figure 2) for the original codes of a selected set of C# programs.

4.1. Subject Programs

The subject programs were designated as a group of C# programs utilized in the ex-
periments in numerous types of research [18,19]. Table 2 briefly describes the specifications
of the subject programs.

Appl. Sci. 2023, 13, 9170 7 of 13

Table 2. The subject programs.

Title Description Scale Using LOC
(Lines of Codes)

Triangle find the type of triangle according to its sides’ lengths. 52 LOC

Sort arrange a group of items 40 LOC

Stack using push method to enter a group of elements and using
pop method to delete element from stack. 51 LOC

Reversed returns the array after inverting the elements 44 LOC

Clock return the time in hours, minutes, and seconds 63 LOC

Quotient return the quotient and the remainder of the division
between two numbers 43 LOC

Product find the summation, multiplication, and subtraction of
three numbers. 54 LOC

Area find the areas of any circle, triangle, or rectangle. 59 LOC

Dist calling variables with more than one object and printing
their dependent values with each call 52 LOC

Middle find the middle value of three numbers. 42 LOC

4.2. Mutant Generator

The current work applied the CREAM [20] tool in the experiment to generate the mu-
tants. Derezińska presented a set of specific C# mutation operators [21,22] and implemented
those operators in a C# tool called CREAM [20].

4.3. GA Parameters Setup

The genetic algorithm parameters were set up after a set of trial runs. The parameters
are experimental-based and determined by executing the genetic algorithm on a subset of
the tested programs. GA settings are adapted to create a test suite of 20 tests (i.e., population
size is 20), and GA iterates itself 100 times (i.e., the maximum number of generations is
100). It has been applied 30 times on the same machine for each subject program. The
proposed GA used the single point crossover with probability = 0.8 and the flip bit mutation
with probability = 0.15. After setting up the parameters of the genetic algorithms and the
configurations of the CREAM tool, the following procedure was applied to each one of the
subject programs given in Table 2.

Each subject program is passed to the analyzer to find the du-pairs and the mutant
generator (the CREAM tool) to find the first-order and the second-order mutants. Table 3
gives:

1. The programs’ titles (in column 1),
2. The number of first-order mutants (in column 2),
3. The number of killable first-order mutants (in column 3),
4. The number of second-order mutants (in column 4),
5. The number of killable second-order mutants (in column 5),
6. The number of killable second-order mutants that affect du-pairs (in column 6), and
7. The number of du-pairs for each subject program (in column 7).

This process is performed for each subject program as follows.

• Apply the CREAM tool to generate first order mutants.
• Generate the second-order mutants for each program by applying the CREAM tool on

all first-order mutants.
• Eliminate the second-order mutants that are stillborn, equivalent, or do not contain a

def or use for any du-pairs.
• Generate the def-uses pairs for each program.

Appl. Sci. 2023, 13, 9170 8 of 13

• Eliminate the stillborn and the equivalent mutants from the first and second-order
mutants.

• Find the killable second-order mutants that affect the du-pairs.

Table 3. No. of first order, no. of second order, and no. of du-pairs.

Tested
Program

All 1st
Order

Killable
1st Order

All 2nd
Order

Killable
2nd Order

Du-Based Killable
2nd Order

Du-
Pairs

Triangle 163 146 30,799 23,799 2459 102

Sort 120 104 15,960 11,547 2333 95

Stack 70 57 5146 3507 354 68

Reversed 98 78 10,444 6620 956 77

Clock 78 74 7638 7036 109 64

Quotient 156 140 27,184 21,338 2597 89

Product 117 101 17,018 12,321 759 71

Area 112 88 15,555 8656 405 64

Dist 83 73 9207 6774 274 64

Middle 74 70 6876 5458 319 70

Total 1071 931 145,827 107,056 10,565 764

4.4. Comparison Hypotheses

The mutation and data flow testing criteria will be compared according to the two
relationships “ProbBetter” [16] and “ProbSubsumes” [3] that have been used to compare
other testing criteria. In this comparison, the following hypotheses are formulated:

Hypothesis 1 (H1). Second-order mutation testing “ProbSubsumes” all du-pairs data flow testing.

Hypothesis 2 (H2). All du-pairs data flow testing “ProbSubsumes” second-order mutation testing.

Hypothesis 3 (H3). Second-order mutation testing “ProbBetter” all du-pairs data flow testing.

Hypothesis 4 (H4). All du-pairs data flow testing “ProbBetter” second-order mutation testing.

4.5. Experimental Results
4.5.1. Coverage Cost

For each subject program, the genetic algorithm finds a test cover to execute all du-
pairs and another test cover to execute the du-based killable second-order mutants. The
genetic algorithm has been applied many times to obtain more accurate results. The genetic
algorithm has been applied three times on each subject program to find an adequate cover
for the du-based mutants. In the same way, the genetic algorithm has been run on each
subject program three times to find a sufficient covering for all du-pairs. The average
number of the obtained test cases was computed for each subject program (given in Table 4).
Table 5 gives the statistical results of the t-Test for the test-covers of the two criteria.

The data given in Table 4 show that all du-pairs testing criterion needs 20.3 test cases
(on average) to cover all the set of du-pairs for each tested program. Furthermore, the
second-order mutation testing criterion requires 59.1 test cases (on average) to kill all
second-order mutants for each tested program. The statistical results of the t-Test (given in
Table 5) show that the size of the test cover of all du-pairs criteria is significantly smaller
than the size of the test cover of the second-order mutation criterion.

Appl. Sci. 2023, 13, 9170 9 of 13

Table 4. Du-pairs and second-order mutants cover size.

Tested Program Cover Size of
2nd Order Mutants

Cover Size of
All Du-Pairs

Triangle 71.3 21.3

Sort 18.3 6.7

Stack 49.3 21.0

Reversed 34.7 15.3

Clock 101.3 32.7

Quotient 34.3 16.3

Product 79.7 21.3

Area 89.3 30.7

Dist 80.7 24.7

Middle 32.3 12.7

Average 59.1 20.3

Table 5. Test: paired two samples for means of cover size.

2nd-Order Mutant Du-Pairs

Mean 59.13 20.27

Variance 824.4 62.96

P(T ≤ t) two-tail 2.77 × 10−4

4.5.2. Coverage Adequacy

To investigate the “ProbSubsumes” relationship between the two testing criteria,
each tested program is executed using the adequate test set concerning the second-order
mutation testing criterion; and the adequacy concerning the all du-pairs testing criterion
is measured. In addition, each tested program is executed using the adequate test set
concerning the all du-pairs testing criterion; and the adequacy concerning the second-order
mutation testing criterion is measured.

The mutants’ coverage of the all du-pairs adequate test cover is given in Table 6, and
the du-pairs coverage of the second-order mutants adequate test cover is given in Table 7.
The coverage ratio for each of the three test suites is presented, as well as the average
mutation and data flow coverages. Table 8 shows the statistical comparison between the
obtained coverages and their significant difference. Figure 3 shows the mutual coverage of
all du-pairs and second-order mutation criteria.

Figure 3. Mutual coverage of all du-pairs and second-order mutation.

Appl. Sci. 2023, 13, 9170 10 of 13

Table 6. Second-order mutant coverage ratio using all du-pairs cover.

Tested Program Suite1 Suite2 Suite3 Average

Triangle 98% 100% 98% 98.7%

Sort 96% 96% 96% 95.6%

Stack 89% 100% 89% 92.6%

Reversed 100% 100% 100% 100%

Clock 100% 100% 100% 100%

Quotient 100% 100% 100% 100%

Product 100% 100% 100% 100%

Area 100% 100% 100% 100%

Dist 100% 100% 100% 100%

Middle 100% 100% 100% 100%

Average 98.3% 99.6% 98.3% 98.7%

Table 7. All du-pairs coverage ratio using second-order mutant cover.

Tested Program Suite1 Suite2 Suite3 Average

Triangle 80% 82% 80% 81%

Sort 85% 85% 85% 85%

Stack 89% 85% 85% 86%

Reversed 75% 80% 75% 77%

Clock 80% 80% 80% 80%

Quotient 70% 73% 70% 71%

Product 78% 80% 75% 78%

Area 80% 83% 88% 84%

Dist 79% 90% 79% 83%

Middle 85% 85% 85% 85%

Average 80.1% 82.3% 80.2% 80.9%

Table 8. t-Test: paired two sample for means of coverage ratio.

Second-Order Mutant Du-Pairs

Mean 98.7% 80.9%

Variance 0.1% 0.2%

P(T ≤ t) two-tail 1.11 × 10−5

The mean mutation coverage ratio of the all du-pairs adequate test cover is 80.9%, and
the mean data flow coverage ratio of the second-order mutant adequate test cover is 98.7%.
Therefore, one can accept H1 and reject H2. Consequently, second-order mutation testing
“ProbSubsumes” the all du-pairs data flow testing.

4.5.3. Failure Detection Efficiency

A set of faults is seeded into each tested program to investigate the “ProbBetter” [16]
relationship between the two testing criteria. Each program is executed using the adequate
test suites of the second-order mutation and all du-pairs criteria. Then, the failure detection
efficiency of each test suite is estimated. The number of faults seeded into each program is
given in the second column of Table 9, while the third and fourth columns give the failure

Appl. Sci. 2023, 13, 9170 11 of 13

detection ratio for the test suite of the two criteria. The total number of faults seeded into
the tested programs is 10,565 faults (1056 faults on average, 2459 faults on maximum, and
109 on minimum).

Table 9. Failure detection ratio of second-order mutation and all du-pairs test suites.

Tested Program No. of Faults
Failure Detection Efficiency

2nd-Order Mutation Du-Pairs

Triangle 2459 98% 91%

Sort 2333 96% 84%

Stack 354 89% 72%

Reversed 956 100% 82%

Clock 109 100% 75%

Quotient 2597 100% 92%

Product 759 100% 93%

Area 405 100% 86%

Dist 274 100% 89%

Middle 319 100% 92%

Total = 10,565 Average = 98% Average = 86%

The failure detection efficiency of the second-order mutation is 98% (on average),
while the failure detection efficiency of the all du-pairs is 86% (on average). In addition, the
second-order mutation criterion detects all the seeded faults in 7 out of 10 tested programs,
while the all du-pairs criterion failed to detect 100% of faults in any tested program. Figure 4
shows the failure detection efficiency of the two criteria.

Figure 4. Failure detection efficiency.

Table 10 shows the statistical comparison between the obtained failure detection
efficiency and their significant difference. According to the results of the t-Test, the
p-value (9.195 × 10−5) is less than 0.05; therefore, the failure detection efficiency of the
mutation (98%) is significantly better than the failure detection efficiency of data flow (86%).
Therefore, one can accept H3 and reject H4. Consequently, second-order mutation testing is
“ProbBetter” than the all du-pairs data flow testing.

Appl. Sci. 2023, 13, 9170 12 of 13

Table 10. t-Test: paired two sample for means of failure detection ratio.

2nd-Order Mutant Du-Pairs

Mean 98.3% 85.7%

Variance 0.1% 0.6%

P(T ≤ t) two-tail 9.195 × 10−5

4.5.4. Threats to Validity

(1) External validity

The key external threat to validity is the subject programs are small-sized programs
and are not large enough to argue that these programs are sufficiently representative of the
overall population of programs. Although these programs are of small size, these programs
have been used in several previous experimental studies, and they have identical construc-
tions as the large-sized programs. Therefore, the suggested method has the capability to
address large-sized or real programs.

(2) Internal validity

The key internal threat to validity is the setup of the parameters of the genetic algo-
rithm. We used a subset of the tested programs to determine these parameters.

5. Conclusions and Future Work

Data flow and Higher-Order Mutation are white-box testing methodologies, and these
two methodologies are the most popular and successful white-box testing techniques.
This paper presented an empirical comparison of all def-uses data flow and second-order
mutation criteria. This compassion investigated the subsumption relation between these
two criteria and evaluated the effectiveness of test data developed for each. The results
showed that the mean mutation coverage ratio of the all du-pairs adequate test cover
is 80.9%, and the mean data flow coverage ratio of the second-order mutant adequate
test cover is 98.7%. Consequently, second-order mutation testing “ProbSubsumes” the
all du-pairs data flow testing. The failure detection efficiency of the mutation (98%) is
significantly better than the failure detection efficiency of data flow (86%). Consequently,
second-order mutation testing is “ProbBetter” than the all du-pairs data flow testing. In
contrast, the size of the test suite of second-order mutation is bigger than the size of the test
suite of all du-pairs. The results showed that the change in the parameters of the genetic
algorithm affects the obtained ratio. In future work, more testing criteria will be compared
with Higher-Order Mutation testing.

Author Contributions: Conceptualization, R.A.; Methodology, E.H.A.-E.; Software, E.H.A.-E.; Vali-
dation, R.A.; Formal analysis, R.A.; Investigation, R.A.; Data curation, E.H.A.-E.; Writing—original
draft, E.H.A.-E.; Writing—review & editing, R.A.; Supervision, R.A.; Project administration, E.H.A.-E.
All authors have read and agreed to the published version of the manuscript.

Funding: This research study is funded by the grant no. CSCR-2022-11-1709 from the Deanship of
Scientific Research at Northern Border University, Arar, K.S.A.

Data Availability Statement: All result data produced from applying testing techniques by the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. White, L.J. Software testing and verification. In Advances in Computers; Yovits, M.C., Ed.; Elsevier: Amsterdam, The Netherlands,

1987; Volume 26, pp. 335–390.
2. Offutt, A.J.; Pan, J.; Tewary, K.; Zhang, T. An Experimental Evaluation of Data Flow and Mutation Testing. J. Softw. Pract. Exp.

1996, 26, 165–176. [CrossRef]
3. Mathur, A.P.; Wong, W.E. An empirical comparison of data flow and mutation-based adequacy criteria. Softw. Test. Verif. Reliab.

1994, 4, 9–31. [CrossRef]

https://doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-SPE5>3.0.CO;2-K
https://doi.org/10.1002/stvr.4370040104

Appl. Sci. 2023, 13, 9170 13 of 13

4. Offutt, A.J.; Voas, J.M. Subsumption of Condition Coverage Techniques by Mutation Testing; Technical Report ISSE-TR-96-01; Informa-
tion and Software Systems Engineering George Mason University: Fairfax, VA, USA, 1996.

5. Frankl, P.G.; Weiss, S.N.; Hu, C. All-uses vs. mutation testing: An experimental comparison of effectiveness. J. Syst. Softw. 1997,
38, 235–253. [CrossRef]

6. Kakarla, S.; Momotaz, S.; Namin, A.S. An Evaluation of Mutation and Data-Flow Testing: A Meta-analysis. In Proceedings of
the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops, Berlin, Germany,
21–25 March 2011.

7. Bluemke, I.; Kulesza, K. A Comparison of Dataflow and Mutation Testing of Java Methods. In Dependable Computer Systems;
Advances in Intelligent and Soft Computing; Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011.

8. Mathur, A.P.; Wong, W.E. Comparing the fault detection effectiveness of mutation and data flow testing: An empirical study.
Softw. Qual. J. 1994, 4, 69–83.

9. Tewary, K.; Harrold, M.J. Fault modeling using the program dependence graph. In Proceedings of the Fifth International
Symposium on Software Reliability Engineering, Monterey, CA, USA, 6–9 November 1994.

10. Aho, A.V.; Sethi, R.; Ullman, J.D. Compilers, Principles, Techniques, and Tools; Addison-Wesley Publishing Company: Boston, MA,
USA, 1986.

11. Frankl, P.G.; Weyuker, E.J. An applicable family of data flow testing criteria. IEEE Trans. Softw. Eng. 1988, 14, 1483–1498. [CrossRef]
12. Jia, Y.; Harman, M. Higher order mutation testing. Inf. Softw. Technol. 2009, 51, 1379–1393. [CrossRef]
13. Ghiduk, A.S.; Girgis, M.R.; Shehata, M.H. Higher-order mutation testing: A systematic literature review. Comput. Sci. Rev. J. 2017,

25, 9–48. [CrossRef]
14. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer. Computer 1978,

11, 4–41. [CrossRef]
15. Hamlet, R.G. Testing programs with the aid of a compiler. IEEE Trans. Softw. Eng. 1977, 3, 279–290. [CrossRef]
16. Weyuker, E.J.; Weiss, S.N.; Hamlet, R.G. Comparison of program testing strategies. In Proceedings of the Fourth Symposium on

Software Testing, Analysis, and Verification, Victoria, BC, Canada, 8–10 October 1991.
17. Michalewicz, Z. Genetic algorithms + Data Structures = Evolution Programs, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1998.
18. Harman, M.; Jia, Y.; Langdon, B. Strong higher order mutation-based test data generation. In Proceedings of the 8th European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
’11), Szeged, Hungary, 5–9 September 2011.

19. Dang, X.; Gong, D.; Yao, X.; Tian, T.; Liu, H. Enhancement of Mutation Testing via Fuzzy Clustering and Multi-population Genetic
Algorithm. IEEE Trans. Softw. Eng. 2021, 48, 2141–2156. [CrossRef]

20. Derezińska, A.; Szustek, A. CREAM—A System for Object-Oriented Mutation of C# Programs; Warsaw University of Technology:
Warszawa, Poland, 2007.

21. Derezińska, A. Advanced Mutation Operators Applicable in C# Programs; Warsaw University of Technology: Warszawa, Poland, 2005.
22. Derezińska, A. Quality assessment of mutation operators dedicated for C# programs. In Proceedings of the 6th International

Conference on Quality Software (QSIC’06), Beijing, China, 27–28 October 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0164-1212(96)00154-9
https://doi.org/10.1109/32.6194
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.cosrev.2017.06.001
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/TSE.2021.3052987

	Introduction
	Data Flow and Mutation Testing
	Data Flow Testing
	Higher-Order Mutation
	Relationship between Testing Criteria

	The Proposed Approach
	Program Analyzer Module
	Mutant Generator Module
	Test Data Generator Module

	The Experiments and Results
	Subject Programs
	Mutant Generator
	GA Parameters Setup
	Comparison Hypotheses
	Experimental Results
	Coverage Cost
	Coverage Adequacy
	Failure Detection Efficiency
	Threats to Validity

	Conclusions and Future Work
	References

