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Abstract: Since supervised learning intrusion detection models rely on manually labeled data, the
process often requires a lot of time and effort. To make full use of unlabeled network traffic data and
improve intrusion detection, this paper proposes an intrusion detection method for industrial control
systems based on improved comparative learning SimCLR. Firstly, a feature extraction network is
trained on SimCLR using unlabeled data; a linear classification layer is added to the trained feature
extraction network model; and a small amount of labeled data is used for supervised training and
fine-tuning of the model parameters. The trained model is simulated on the Secure Water Treatment
(SWaT) dataset and the publicly available industrial control dataset from Mississippi State University,
and the results show that the method has better results in all evaluation metrics compared with
the deep learning algorithm using supervised learning directly, and the comparative learning has
research value in industrial control system intrusion detection.

Keywords: contrast learning; residual networks; industrial control systems; intrusion detection

1. Introduction

The Industrial Control System (ICS) serves as the backbone of the Industrial Internet,
which in turn is the product of the combination of new-generation technologies such as
communication and automation with traditional industrial networks in the 21st century [1].
Industrial control systems are an important part of industrial development, controlling
the operation of different working systems in different industries and building a digital,
networked industrial chain through the connection of field devices, operators, and other
facilities. It is an important cornerstone of Industry 4.0 [2]. Network security has always
been a key concern, and the security of industrial control systems needs to be given the same
high priority [3]. The Purdue model, which is now the reference standard for industrial
control system security, demonstrates the interdependence of all the components of a
typical ICS and is an important reference point for starting to build a typical modern ICS
architecture. The Purdue model is shown in Figure 1. The intrusion detection system is a
very important part of the computer network system; its purpose is to collect key useful
information from different parts of the network system and, by analyzing the collected
data, determine whether there are insecure behaviors in the current network system that
cause damage to the network. Compared with traditional network defense mechanisms
such as firewalls, VNPs, access control, etc., network intrusion detection systems can detect
some unknown means of attack [4,5]. At the same time, intrusion detection systems can
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detect attacks without affecting network performance and achieve real-time protection of
network systems [6,7].
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Figure 1. Purdue Model.

Intrusion detection systems commonly use two analysis methods, anomaly detection
and misuse detection, to detect and analyze abnormal behavior. As deep learning tech-
nology advances, progresses, and evolves, people are gradually combining deep learning
algorithms and industrial control system intrusion detection to find more suitable methods
to protect the system.

Compared with traditional machine learning algorithms, deep learning can mine
more advanced and important features in massive data. Akashdeep Bhardwaj et al. [8]
introduced a pattern recognition algorithm named “Capture the Invisible (CTI)”. Used to
find hidden processes in industrial control device logs and detect behavior-based attacks
executed in real-time. Yongle Chen et al. [9] developed a method to improve the information
transfer link in adversarial domain adaptation (DA). This approach is capable of training the
anomaly detection depth using unbalanced data. Experiments have high detection accuracy
on SCADA network layer-based data. Khan, M.A. [10] creating a deep learning-based
hybrid intrusion detection framework by convolutional recurrent neural network (CRNN)
using convolutional neural network (CNN) to capture local features and recurrent neural
network (RNN) to capture temporal features to improve the performance of the intrusion
detection system, the effectiveness of the model is validated on the CSE-CIC-DS2018
dataset. Yan Hu et al. [11] proposed a new alignment entropy-based method to detect
stealth attacks on ICSs, by which the non-randomness contained in the residuals can be
characterized, thus effectively distinguishing the residuals from random sequences during
stealth attacks. The experiments were synthesized in the Matlab-Simulink environment,
and the results verified excellent detection capabilities. Jie Ling et al. [12] proposed an
intrusion detection method based on bi-directional simple recursive units (BiSRU). It was
also validated on two standard industrial datasets at Mississippi State University, and
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the results showed that the proposed method is more accurate and requires less training
time. Chao Wang et al. [13] proposed a self-encoder-based intrusion detection method for
industrial control systems that simultaneously predicts and reconstructs the input data,
thus overcoming the drawback of using each data individually. Using the errors obtained
from the model, a rate of change is proposed to locate the most likely suspect devices under
attack. Experiments were conducted on the SWaT dataset to verify the high validity of the
method.

The above research is based on the deep learning method of supervised learning;
however, supervised learning requires labeled data to train the model, so a large amount
of data is needed to support the training of the model [14]. In industrial control systems,
communication data is the object of study, and normal or abnormal traffic occurs in the
process of system operation, in which there may be uneven data distribution and unknown
data traffic. Most of these data need to be manually labeled to distinguish, and if these
unlabeled data cannot be used well, it will bring trouble to the intrusion detection system.
Contrast learning belongs to self-supervised learning, which in turn is the category of
unsupervised learning [15]. Contrast learning enables the use of unlabeled data to assist in
training a feature extraction network and improve the accuracy of subsequent classification
detection tasks. The classical algorithms for contrast learning include SimCLR, Momentum
Contrast for Unsupervised Visual Representation Learning (MoCo), Bootstrap Your Own
Latent: A New Approach to Self-Supervised Learning (BYOL), Exploring Simple Siamese
Representation Learning (SimSiam), Swapping Assignments between Multiple Views of
the Same Image (SWaV) [16–20], etc.

In this paper, we propose an intrusion detection model for industrial control systems
based on the improved comparative learning model SimCLR by combining the improved
comparative learning model SimCLR with industrial control system intrusion detection.
Firstly, we need to perform data pre-processing on the obtained industrial control traffic
data, use normalization to map the data to the 0-1 interval to eliminate the adverse effects
caused by odd sample data, and use the principal component analysis (PCA) algorithm
for dimensionality reduction on the normalized data, which can effectively reduce the
data dimensionality, eliminate redundant information, and improve the efficiency of data
processing and data quality. Unlike the supervised model, the contrast learning model
does not require the use of labeled data to train the network model. It is a self-supervised
learning method that allows the model to learn which data points are similar or which data
points are different to learn the general characteristics of the data set without the data being
labeled. The contrast learning model has four main phases: data augmentation, feature
extraction, feature projection, and the calculation of contrast loss. The trained contrast
learning feature extraction network is transferred to the supervised learning training, and
the model is fine-tuned by using only 10% of the labeled data in the simulated experimental
dataset. Finally, the trained model is tested on the test data.

The innovative points of this paper are as follows:

(1) An intrusion detection model for industrial control systems based on improved
comparative learning SimCLR is proposed, and the data enhancement is improved
by adding random noise, sequence inversion, and random sampling of the Synthetic
Minority Over-sampling Technique (SMOTE) algorithm to the original industrial
control traffic data. The other one uses only the SMOTE algorithm. The other one uses
only the SMOTE algorithm to replace the original data with the same multiplicity of
sampling.

(2) The asymmetric network structure is adopted on top of the original model, which
enables different networks to perform feature extraction for different types of data.

(3) The feature projection structure is improved by using feature cross-fusion to cross-fuse
two feature vectors and using a jump join between the first and last linear layer to
add the two vectors before and after the projection, which increases the similarity
between positive and negative examples and makes the similarity between positive
and negative examples more distant.
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The article is structured as follows: Section 2 introduces the SMOTE algorithm and
the deep residual network, ResNet. Section 3 presents the proposed intrusion detection
model based on contrast learning for industrial control systems. Section 4 presents the
datasets used in the experiments, the model evaluation metrics, and the experimental
results. Section 5 summarizes the work of this paper and provides an outlook for the future.

2. Theoretical Basis
2.1. SMOTE Algorithm

The SMOTE algorithm is a commonly used oversampling technique, using which the
number of some specified samples can be increased to solve the problems caused by the
raw data in the experiment, thus achieving the purpose of data enhancement [21]. The
steps of its implementation are shown below:

Step 1. A sample x is selected from a small number of classes of samples; the number of
k-nearest neighbors is set; and this sample is compared with its k-nearest neighbor samples
by using the Euclidean distance calculation method.

Step 2. A sample x̃ is randomly selected from among the obtained k-nearest neighbor
samples.

Step 3. A randomly selected point between the first selected minority class sample x
and the k-nearest neighbor selected sample x̃ is the newly generated

The calculation is shown in Equation (1):

xnew = x + rand(0, 1)× (x̃− x) (1)

where xnew is the sample newly generated by sampling, x is the original sample, rand(0, 1)
is the randomly generated number between 0 and 1 , and x̃ is the k-nearest neighbor sample
calculated with Euclidean distance.

2.2. Residual Network

In the early days, it was widely believed that as the depth of a neural network in-
creased, the performance of the network got better. For example, in the earlier deep
learning model VGG, the number of network layers was 19, but in the later emergence of
the network model GoogleNet, the network depth reached 22 layers. Later, as the depth
gradually increases, problems such as model overfitting and gradient disappearance and
explosion appear, and the experimental results are often not as good as the shallow layer of
the network. In 2015, four scholars from Microsoft Asia Research proposed a new neural
depth network model, the ResNet residual network [22], which solved the problem of
model degradation due to the increase in network depth. The residual network is com-
posed of one residual block, and each residual block can be connected with each other by
using jump connections. The architecture of the deep residual network is illustrated in the
accompanying Figure 2:
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Figure 2. Deep residual network.
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The structure of each residual block is shown in Figure 3:

1x1    conv

3x1    conv

1x1    conv

⊕

identity

relu

relu

( )F x x

( ) ( )H x F x x= +

Figure 3. Residuals Module.

The output of a residual block can be calculated using in Equation (2):

H(x) = F(x) + x (2)

where x is the input term of the residual network, F(x) denotes the residual term, and H(x)
is the output. When the residual term F(x) is 0 , the output result is equal to the input x,
which constitutes a constant mapping H(x) = x.

Conv is the convolution operation, and the calculation procedure is shown in Equation (3):

yc =
l=0

∑
L

m=0

∑
M

wl,m · xl,m + b (3)

where xl,m is the input matrix; wl,m is the parameter of the convolution kernel; l and m are
the width and height of the input matrix and the convolution kernel; b is the bias vector;
and yc is the output of the convolution.

2.3. LayerNorm

LayerNorm is a normalization process. It normalizes different time steps in one-
dimensional data, which largely avoids the gradient disappearance and explosion problem,
and the hidden state transmission is more stable. The layerNorm calculation process is as
follows.

(1) Calculate the expectation µ and standard deviation σ for each stratum. The calcula-
tion is shown in Equations (4) and (5):

µl =
1
H

H

∑
i=1

al
j (4)

σl =

√√√√ 1
H

H

∑
i=1

(
aH

i − µl
)2 (5)

where l denotes the l th hidden layer, H denotes the number of nodes in that layer, and a
denotes the value of a particular node before activation.

(2) The standardized calculation is shown in Equation (6):

a−l
i =

gl

σl ·
(

al
i − µl

)
+ b (6)



Appl. Sci. 2023, 13, 9227 6 of 19

where g and b denote the gain and bias parameters, respectively, which can be included in
the training samples to be trained together.

(3) The output is obtained by adding the activation function, as shown in Equation (7):

h = Relu
(

a−l
i

)
(7)

where Relu is the activation function and the mathematical expression is shown in Equation (8):

Relu(x) =
{

x, x > 0
0, x ≤ 0

(8)

3. Contrastive Learning-Based Intrusion Detection Model for Industrial
Control Systems

We improved the original comparative learning model SimCLR to fit our industrial
control system intrusion detection traffic data, and the differences between the two are
shown in Table 1.

Table 1. Improved comparative learning based on the difference between the intrusion detection
model and the original model for industrial control systems.

Model Data Type Data Enhancement
Methods

Feature Extraction
Network Feature Projection Loss Function

Our Model One-dimensional
sequences

Add Gaussian noise,
sequence inversion,
SMOTE sampling

ResNet LayerNorm InfoNCE

Original Models Two-dimensional
images

Random cropping,
random color

transformation, etc.
ResNet BatchNorm InfoNCE

3.1. Data Pre-Processing
3.1.1. Normalization

The data used in this experiment contains some null values and some infinite data, for
which the processing method is to delete the rows containing these data. After the outliers
are processed, normalization is also required. The data normalization process limits the
data to a range, which can eliminate the adverse effects caused by odd sample data, speed
up the training of the model, and improve the accuracy of the model in some models. The
calculation of data normalization is shown in Equation (9).

x′ =
x− xmin

xmax − xmin
(9)

where x′ is the normalized data, xmax and xmin are the maximum and minimum values of
the same feature attribute in all data, respectively.

3.1.2. PCA Downscaling

Principal Components Analysis (PCA) is often used for data dimensionality reduction.
By using PCA data dimensionality reduction, the data is reduced to lower dimensions,
which can reduce the storage space needed for the data, save time for model training,
remove redundant attributes, and improve the accuracy of detection.

3.2. Training Contrast Learning Models
3.2.1. Data Enhancement

Data enhancement plays a crucial role in contrast learning, and the use of different
data enhancement methods can have different effects on feature extraction. Common
data enhancement methods in the image domain include image flipping and rotation,
cropping and scaling, color dithering, etc. When dealing with sequence data, common data
enhancement methods include dimensional flipping, scaling, window adjustment, window
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cropping, adding noise, etc. And with the development of deep learning, the use of deep
learning algorithms for data enhancement has become more and more widespread, includ-
ing image enhancement using generative adversarial networks and image enhancement
using self-encoders.

In this paper, a new data enhancement approach is proposed for the acquired data of
industrial control intrusion detection. Given the original input set X = {x1, x2, x3, . . . , xn}
and n denotes the number of samples, the SMOTE algorithm is used to sample the acquired
data using the same multiplicity to get X1 =

{
x1

1, x2
1, x3

1, . . . , xn
1
}

. Also add Gaussian noise
to the data to get the new data X2 =

{
x1

2, x2
2, x3

2, . . . , xn
2
}

, and use the sequence inversion
method to invert the sequence of each data xn in the original data to get the new data set
X3 =

{
x1

3, x2
3, x3

3, . . . , xn
3
}

, and fuse the same in the three newly generated data sets The
final enhanced data Xnew =

{
[x1

1, x1
2, x1

3], [x
2
1, x2

2, x2
3], [x

3
1, x3

2, x3
3], . . . , [xn

1 , xn
2 , xn

3 ]
}

is obtained.
where X1 and Xnew are used as inputs to the two feature extraction networks for contrast
learning.

3.2.2. Feature Extraction

Following data augmentation, the next step involves feature extraction from the
augmented data, for which a deep residual network is employed. To account for the
different channels in the two sets of data post-feature enhancement, an asymmetric feature
extraction structure is utilized. Specifically, a one-dimensional deep residual network with
input channel 1 is used to extract features from the data after SMOTE sampling, while
a one-dimensional deep residual network with input channel 3 is employed to extract
features from the data after three rounds of feature enhancement and channel fusion.

This experiment uses a one-dimensional deep residual network, ResNet50, to extract
features from the enhanced data, and the network structure consists of a Conv1 and four
Block_Layer layers, each with 3, 4, 6, and 3 blocks, respectively, and finally connected to
the feature mapping layer using full connectivity.

3.2.3. Feature Projection

The SimCLR model adds a feature projection layer after feature extraction and then
does a nonlinear transformation to reduce the loss of feature information, and this structure
has been widely used in the subsequent comparison learning. After accepting the vector
after feature extraction, this structure first does a linear transformation, followed by batch
normalization using BatchNorm, nonlinear mapping using the activation function, and
finally another linear transformation, as shown in Figure 4:

Linear

LayerNorm

Relu

Linear

Input vector

Linear

LayerNorm

Relu

Linear

Input vector

Figure 4. Feature projection structure.

In this experiment, by improving the original feature projection structure, the two
vectors g1 and g2 after feature extraction is added by using the cross-fusion jump connec-
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tion, and the vector after the summation is used as the new input vector of the feature
projection layer, while this vector is added to the output of the last layer, which makes
it possible to guarantee the loss of important features when calculating the contrast loss.
Since BatchNorm calculates normalized statistics according to the number of samples and
LayerNorm is used to normalize different time steps in one-dimensional data, the gradient
disappearance and explosion problem is largely avoided, and the transmission of hidden
states is more stable. The structure of the improved feature projection layer is shown in
Figure 5:

Linear

LayerNorm

Relu

Linear

输入向量

Linear

LayerNorm

Relu

Linear

输入向量⊕Input vector Input vector

Figure 5. Improved feature projection network.

3.2.4. Contrast Loss Function

The contrast loss function is a loss function with the self-discovery property of difficult
negative samples, which is essential for learning high-quality self-supervised representa-
tions, and a loss function without this property can significantly deteriorate the performance
of self-supervised learning.

The loss function used is InfoNCE Loss, which is calculated as shown in Equation (10):

Li = − log

(
exp

(
S
(
zi, z+i

)
/τ
)
/

K

∑
j=0

exp
(
S
(
zi, zj

)
/τ
))

(10)

where S
(
zi, z+i

)
denotes the similarity of the feature vectors of the same sample after data

enhancement, that is, the degree of similarity between positive examples. S
(
zi, zj

)
denotes

the similarity of the feature vectors of one data-enhanced sample to the feature vectors of
other enhanced samples. τ denotes the temperature coefficient, which is a hyperparam-
eter that controls how well the model discriminates between negative samples. A small
temperature coefficient will make samples that are more similar to this sample separate,
that is, be able to be classified more evenly. S is the calculation of similarity, which is
usually calculated by using the dot product operation after the L2 norm or by using cosine
similarity. The calculation formula is shown in Equation (11):

S
(
zi, z+i

)
= zT

i z+i /
(
‖zi‖2

∥∥z+i
∥∥

2

)
(11)

3.3. Supervised Training of Fine-Tuned Models

After training the contrast learning model using unlabeled data, the feature extraction
network is obtained and retrained using supervised learning to fine-tune the network
parameters. This is completed by using labeled data from the dataset, feeding the data into
the feature extraction network for feature extraction, and then adding a linear classification
layer to classify the data, i.e., to distinguish between normal data and attack data. Thus,
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a comparative learning-based intrusion detection model for industrial control systems is
constructed.

The flowchart of the intrusion detection model for industrial control systems based on
comparative learning SimCLR is shown in Figure 6. The symbols that appear in the model
and their descriptions are shown in Table 2.

1. Data pre-processing

2. Feature 

Extraction

3.Training 4.Testing

Datasets

Normalization

PCA downscaling

Data 

Enhancement 

Ⅰ

Data 

Enhancement 

Ⅱ 

Eigenvector Ⅰ Eigenvector Ⅱ

Feature 

Extraction

Ⅰ

Feature 

Extraction

Ⅱ

Feature 

Projection

Feature 

Projection

Contrast loss 

function

10%Training 

sample

Feature 

extraction 

model

Classifier

Results

Test samples

Feature 

extraction 

model

Classifier

Results

Figure 6. Overall process of the model.

Table 2. Symbols used in the model.

Symbols Description

x′ Data after normalization
x Un-normalized data

xmin The minimum value in a piece of data
xmax The maximum value in a piece of data

X Raw data
X1 Data after SMOTE algorithm enhancement
X2 Add Gaussian noise to the data
X3 Data after sequence inversion

Xnew New data after merging
g1 Feature extraction vector 1
g2 Feature extraction vector 2
Li Contrast loss values

log Logarithmic operations
exp Exponential arithmetic
S Calculate similarity
zi Data without data enhancement
z+i Positive sample after data enhancement
K Number of samples
zj Negative samples after data enhancement

τ
Temperature coefficient: used to adjust the discrimination of difficult

negative samples
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4. Experiments and Results Analysis

The experiments divide the data into unlabeled data for training the feature extraction
network in the contrast learning model and labeled training and test data for supervised
training of the fine-tuned model. Firstly, comparison experiments between different tem-
perature coefficients are conducted to select the best temperature coefficients for contrast
learning. The effectiveness of this method is verified by comparing the experimental results
between different data enhancement methods and this method. A contrast learning feature
extraction network trained with unlabeled data is added with a linear classification layer,
and a small amount of labeled training data is used to compare the classification results
with other deep learning models through model fine-tuning to verify the effectiveness of
this method. Finally, the SWaT dataset was replaced and tested using the present model to
further validate the applicability of the model.

4.1. Experimental Data Set

The intrusion detection dataset for the industrial control system used in this exper-
iment was obtained from Mississippi State University. The researchers examined and
captured the natural gas pipeline control system traffic data through a network data logger
and obtained 97,019 experimental datasets. The data contains pre-processed network trans-
action data with the underlying transport data (TCP, MAC, etc.) removed. Each data entry
contains 26 traffic attributes and one attack category, where the attack category has seven
attack types and one normal type. The attack types and label descriptions are shown in
Table 3. The distribution of sample size is shown in Figure 7.

Normal NMRI CMRI MSCI MPCI MFCI DOS Recon
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

nu
m

be
r o

f s
am
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Figure 7. Distribution of the number of each category in the dataset.

Table 3. Data types in the dataset.

Type of Attacks Abbreviation

Normal Normal
Naïve Malicious Response Injection NMRI

Complex Malicious Response Injection CMRI
Malicious State Command Injection MSCI

Malicious Parameter Command Injection MPCI
Malicious Function Code Injection MFCI

Denial of Service DoS
Reconnaissance Recon
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4.2. Model Evaluation Metrics

In this experiment, four metrics were adopted to evaluate the model: Accuracy,
Precision, Recall, and F1, in which several basic concepts need to be introduced:

TP (True Positive): The prediction is positive, and the actual case is positive.
FP (False Positive): Predicted positive case, actual negative case.
FN (False Negative): Predicted negative case, actual positive case.
TN (True Negative): The predicted case is negative, and the actual case is negative.
Accuracy rate: It indicates the percentage of all correctly classified samples in the total

number of samples. The specific calculation formula is shown in Equation (12):

Acc =
TP + TN

TP + TN + FP + FN
(12)

Precision rate: indicates the percentage of correct predictions that are positive among
all predictions that are positive. The specific calculation formula is shown in Equation (13):

Precision =
TP

TP + FP
(13)

Recall: indicates the percentage of correct predictions that are positive in all actual
positive. The specific calculation formula is shown in Equation (14):

Recall =
TP

TP + FN
(14)

F1: The calculation formula is shown in Equation (15):

F1 =
2

1/ precison + 1/ recall
(15)

4.3. Parameter Setting

The system environment used for this experiment is the Windows 10 operating system;
the CPU model of the computer is I7-11800H; the GPU model is Geforce GTX 2080Ti;
the system running memory is 16 Gb; and the model is built using the deep learning
framework Pytorch 1.10. The experimental part of the model needs to select the appropriate
Batch_size, learning rate, and optimizer, and the most appropriate learning rate, optimizer,
and Batch_size are selected by experimental comparison, and the experimental results are
shown in Figures 8, 9 and 10, respectively.
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Figure 8. Comparison of model training accuracy under six different learning rates.
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Figure 9. The training accuracy of the model obtained by three different optimizers.
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Figure 10. The training accuracy of the model obtained from three different batch sizes.

The experiments use training accuracy as an evaluation metric, and the best learning
rate is 0.001, the best optimizer is Adam, and the best batch size is 256, as derived from
Figures 8–10.

4.4. Experimental Results and Analysis
4.4.1. Comparison of Experimental Results with Different Temperature Coefficients

The temperature coefficient plays an important role in the process of comparison loss
calculation, and by changing the size of the temperature coefficient, the degree of attention
to difficult samples can be adjusted. In general, the smaller the temperature coefficient,
the more attention is paid to separating positive samples from other samples and, thus,
whether better classification can be achieved. The temperature coefficients of 0.5, 0.2, and
0.07 were used to derive the change curves of contrast loss values with an increasing
number of iterations, as shown in Figure 11.
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Figure 11. Contrast loss value curves with increasing number of iterations obtained by using three
different temperature coefficients in the training phase of contrast learning.

As can be seen from Figure 11, the contrast loss is minimized when using a temperature
coefficient of 0.07 and maximized when the temperature coefficient is 0.5. The smaller the
temperature coefficient, the stronger the contrast learning effect, and the more you can
distinguish between positive and negative samples.

Then the feature extraction network was trained using the temperature coefficients
of 0.5, 0.2, and 0.07, respectively, and the accuracy of the model training for 100 batches
is shown in Figure 12 by training the classification behind the network by adding a fully
connected layer.
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Figure 12. Training accuracy for three different temperature coefficients as the number of iterations
increases.

As can be seen from Figure 12, the highest accuracy and best training results are
achieved when the temperature coefficient is chosen to be 0.2. In this case, the negative
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samples that are extremely similar to the positive samples are often likely to be potential
positive samples, and the larger the temperature coefficient, the more there is no difference
for the comparison between positive and negative samples, which tend to be treated equally
and do not pay too much attention to the more difficult negative samples, so too large or
too small temperature coefficients are not conducive to the calculation of contrast loss.

4.4.2. Comparison of Experimental Results of Different Data Enhancement Methods

To validate the efficacy of the data augmentation technique proposed in this paper, the
SMOTE algorithm sampling, adding Gaussian noise, sequence inversion, and the original
data were selected for comparison learning experiments with the data channel fusion
method in this paper, respectively. Firstly, different data enhancements were performed
on the basis of obtaining the original industrial control data traffic, and the sequence
distribution after using different data enhancements is shown in Figure 13.
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Figure 13. Sequence distribution of the three data enhancements for a single sample versus the
original data.

It can be seen from Figure 13 that the feature distribution of the data with Gaussian
noise added and the data sampled with the SMOTE algorithm is not much different from
the original data. The feature distribution of the data after the sequence inversion is
opposite to the original data.

The experimental accuracy of the comparison learning model training after using
different data enhancements is shown in Figure 14.

The experimental results show that the data with channel merging are better than those
with SMOTE sampling, Gaussian noise addition, sequence inversion, and the original data.
The data with sequence inversion differed from the original data in dimensional order, and
the experimental results were worse than the other three. The data after channel merging
incorporates data enhanced by different types of data and has higher-order features of
multiple data types, which can obtain better features after subsequent feature extraction
and improve the classification detection effect.
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Figure 14. Comparison of the four evaluation metrics of the improved data enhancement approach
with the other three enhancement approaches on the test set.

4.4.3. Comparison of Experimental Results of Different Classification Models

On top of the trained contrast learning model, the feature extraction network is
obtained, a linear classification layer is added and retrained using a small amount of
labeled data, and the classification experiment is completed by fine-tuning the model
parameters. CNN and LSTM are commonly used deep learning algorithms. The results of
this model are compared with three algorithms after improvement: ResNet, CNN-LSTM,
and Attention-LSTM, which are deep learning methods without using comparison learning
models for training assistance. The loss values and accuracy curves of the models in the
training phase are shown in Figures 15 and 16, the confusion matrix of the test set results is
shown in Figure 17, and the evaluation metrics of the four models are shown in Table 4.
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Figure 15. Accuracy curves of the four models on the training set as the number of iterations increases.
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Figure 16. Loss curve with increasing number of iterations.
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Figure 17. Natural Gas Pipeline Control System Dataset Confusion Matrix.

Table 4. Four evaluation indicators for the natural gas pipeline control system dataset on four
different models.

Model Acc Precision Recall F1

Our Model 0.957 0.981 0.940 0.960
ResNet 0.932 0.947 0.915 0.930

Attention-LSTM 0.947 0.953 0.923 0.937
CNN-LSTM 0.928 0.939 0.896 0.916

From Figures 15 and 16, it can be seen that the model training on the training set, as the
number of training iterations increases, has the highest accuracy and the smallest loss value.
From the confusion matrix in Figure 17; it can be seen that most of the results are located
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on the diagonal of the matrix, and a small number of results are located on both sides of the
diagonal, indicating that the model is able to detect most of the results. As can be seen from
Table 4, using the test set in the trained model for model testing, the method in this paper
achieves 95.7%, 98.1%, 94.0%, and 96.0% in the four indexes of accuracy, precision, recall,
and F1, respectively. The results are better than ResNet, CNN-LSTM, and Attention-LSTM.
The model training time is shown in Table 5:

Table 5. Model training time.

Model Training Time

Our Model 196.32 s
ResNet 477.73 s

Attention-LSTM 210.83 s
CNN-LSTM 472.13 s

4.4.4. Experimental Results for Different Datasets

To verify the applicability of the model, this section further validates its performance
by replacing it with the SWaT dataset, using the same experimental approach as described
above. Again, the experimental results are compared with three common deep learning
algorithms, and the confusion matrix for the experiments as well as the model evaluation
metrics are shown in Figure 18 and Table 6 below.
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Figure 18. SWaT Dataset Confusion Matrix.

Table 6. Four evaluation indicators for the SWaT dataset on four different models.

Model Acc Precision Recall F1

Our Model 0.989 0.984 0.963 0.973
ResNet 0.978 0.965 0.960 0.962

Attention-LSTM 0.980 0.976 0.961 0.968
CNN-LSTM 0.967 0.962 0.958 0.959

From the confusion matrix Figure 18, we can see that most of the detected results
are located on the diagonal of the matrix, which indicates that this model has a better
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classification effect, and from Table 6, we can see that the four indexes of accuracy, precision,
recall, and F1 in this paper reach 98.9%, 98.4%, 96.3%, and 97.3%, respectively, compared
with the other three common deep learning algorithms.

5. Conclusions

Traditional supervised learning methods are unable to train deep learning models
using unlabeled data and are ineffective at intrusion detection. We propose a contrast
learning SimCLR-based intrusion detection model for industrial control systems, using
the contrast learning model SimCLR to assist in training a feature extraction network
from a large amount of unlabeled industrial control system traffic data, adding a linear
classification layer after the trained feature extraction network, and retraining with a
small number of labeled samples to be able to detect normal and attack samples. Our
improved data augmentation allows for more useful information to be obtained after
feature extraction, improving the accuracy of subsequent classification and detection tasks,
and the cross-jump connection used in the feature-projection stage allows for more useful
feature information to be retained when calculating losses. The experiments are conducted
on two publicly available datasets collected on industrial control systems for model training
and testing, and the results show that the proposed model is effective in detecting both
normal and attack samples, as well as better detection compared with other supervised
learning algorithms that do not use a contrast learning model to assist in training. In future
work, the cost of time will be considered so that the model can perform detection quickly
and accurately in real-time.
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