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Abstract: Chromite is a strategic mineral resource for many countries, and chromite deposit occur-
rences are widespread in the ultramafic rocks of the Yarlung Zangbo ophiolite belt, particularly in the
harzburgite unit of the mantle section. Conducting field surveys in complex and poorly accessible
terrain is challenging, expensive, and time-consuming. Remote sensing is an advanced method of
achieving modern geological work and is a powerful technical means of geological research and
mineral exploration. In order to delineate outcrops of chromite-bearing mantle peridotite, the present
research study integrates seven image-enhancement techniques, including optimal band combina-
tion, decorrelation stretching, band ratio, independent component analysis, principal component
analysis, minimum noise fraction, and false color composite, for the interpretation of Landsat8 OLI
and WorldView-2 satellite data. This integrated approach allows the effective discrimination of
chromite-containing peridotite outcrops in the Luobusa area, Tibet. The interpretation results derived
from these integrated image-processing techniques were systematically verified in the field and
formed the basis of the feature selection process of different lithologies supported by the support
vector machine algorithm. Furthermore, the distribution range of the ferric contamination anomaly is
detected through the de-interference abnormal principal component thresholding technique, which
shows a high spatial matching relationship with mantle peridotite. This is the first study to utilize
Landsat8 OLI and WorldView-2 remote sensing satellite data to explore the largest chromite de-
posit in China, which enriches the research methods for the chromite deposits in the Luobusa area.
Accordingly, the results of this investigation indicate that the integration of information extracted
from image-processing algorithms using remote sensing data could be a broadly applicable tool
for prospecting chromite ore deposits associated with ophiolitic complexes in mountainous and
inaccessible regions such as Tibet’s ophiolitic zones.

Keywords: remote sensing; spectral enhancement techniques; support vector machine; mantle
peridotite; chromite deposit

1. Introduction

Ophiolite hosts economic minerals such as chromium, which explains why chromite
deposit exploration attempts for ore resources have resulted in much research interest by
scientists and exploration geologists across the world. Ophiolitic ultramafic rocks are the
hosts of podiform chromite deposits. Chromitite is closely associated with mantle peridotite
in ophiolitic complexes [1]. Ophiolite zones in Tibet are widespread and are often found in
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different locations with varying geologic and tectonic settings. The Luobusa ophiolite is
one of the most promising areas for prospecting chromite deposits because of the extensive
outcrops of mantle peridotites [2]. Dozens of chromite deposits have been identified in
mantle peridotite. These chromite occurrences have lenticular, tubular, and vein-like shapes,
a few meters or tens of meters in length, which are hosted in peridotites. These bodies
are individually small, but, where abundant, they form large-scale chromitite deposits [3].
Accordingly, the discrimination and mapping of mantle peridotites in ophiolitic complexes
are quite interesting for chromite exploration plans.

The Luobusa chromite deposit is a typical ophiolite-type or alpine-type chromite
deposit, also known as a podiform chromite deposit due to its production characteristics. It
is the largest and highest-quality chromite deposit in China [4,5]. Although its cumulative
reserves of more than 500× 104 t still cannot compare with the known super-large chromite
deposits in the world (100 Mt), such as Bushveld in South Africa and Kempirsai in the
Southern Urals, its prospects should not be underestimated [2,6]. Moreover, the ore quality
(grade) of the Luobusa chromite deposit is excellent, with the content of Cr2O3 in the ore
generally as high as 50%, and Cr2O3/FeO > 4 [7–9]. Therefore, due to the great extent
of ultramafic rocks, which are the host of chromite deposits in the Luobusa ophiolite,
the possibility of discovering new chromite deposits is high, and more exploration and
investigation is needed. There is reason to believe that its reserves can be increased through
continued exploration [2,9,10].

However, most Tibet ophiolitic zones are located in mountainous and inaccessible
regions. Thus, given that the outcrop scale of ophiolite is often large, and traditional geolog-
ical surveys are more expensive, time-consuming, and inefficient, especially for geological
environments with high altitudes and harsh conditions that make it difficult to form a com-
prehensive understanding, new exploration methods such as the remote sensing method
can be useful for this purpose [11–13]. Remotely sensed data have been extensively used
for the delineation of lithological units and geological mapping. In contrast to conventional
field surveying, remote sensing, with its macro, comprehensive, multi-scale, and multi-level
characteristics, has become an effective tool for lithology mapping and has been widely
used in geological work at different spatial scales [14–19]. Each multispectral band records
unique energy interactions with a surface, and geological features are enhanced spectrally
(such as band ratio (BR), principal component analysis (PCA), independent component
analysis (ICA), minimum noise fraction (MNF), and RGB color combinations) and spatially
(such as image fusion and filtering), thereby improving their tones, hues, image texture,
fracture patterns, lineaments, and trends to distinguish the different lithologic units. Image-
enhancement methods produce new images with detailed information from the highly
correlated bands. In different countries and regions, previous studies have performed a lot
of work using remote-sensing technology for ophiolite delineation [15,20–25]. Currently,
geological mapping techniques have combined with machine learning, such as a support
vector machine (SVM). Several geologists have made remote sensing data more effective
in lithological and mineral mapping by employing advanced machine-learning algorithm
techniques [26–28]. The spectral bands of the multispectral sensor are characteristic for
absorptions of such minerals, and thus the bands of the sensor can be used to discriminate
the ferric iron-rich weathered surfaces of harzburgites [29].

In the field of remote-sensing technology used to delineate ophiolite, previous re-
search mostly focused on two or three spectral enhancement approaches or a single data
source. Consequently, the current study combined remote-sensing data (Landsat8 and
WorldView-2) of different resolutions, processed the integration of seven image enhance-
ment techniques, and analyzed the utilization of the support vector machine algorithm
(SVM) and anomaly extraction technique for mantle peridotites, delineating and extracting
alterations in the Luobusa area for the first time.



Appl. Sci. 2023, 13, 9325 3 of 23

2. Geological Setting

The chromite-bearing ophiolite belt in Tibet is mainly located in the Yarlung Zangbo
deep fault [8,30,31]. The Lhasa block is located in Yarlung Zangbo ophiolite belt in the
eastern part of the Tethys-Himalayan tectonic belt and is regionally controlled by the
Indus-Yarlung Zangbo suture zone, bordered by the Gangdese-Nyainqentanglha tectonic
belt to the north and the Himalayan tectonic belt to the south [32,33] (Figure 1a,b). Due
to the superimposition of the Himalayan orogeny and a series of fault structures, the
ophiolites have been modified by late tectonic activity, and the massifs on both sides of
the north–south axis are limited by faults [30,34]. The massifs form a south-dipping wall-
shaped complex, with the northern part composed of Paleogene–Neogene conglomerate
and the new Cenozoic Gangdese granite, and the southern part composed of late Triassic
metamorphic slate, sandstone, and phyllite (Figure 1c) [34,35].

The Lhasa massifs extend nearly east–west and have a planar shape that is an inverted
“S” shape [36,37]. The chromitite orebodies are grouped into three clusters, designated
from west to east, the Luobusa, Xiangkashan, and Kangjinla districts [1,6,38]. The ophiolitic
section forms a tectonic slab, made up primarily of mantle peridotites with minor crustal
cumulates and mafic dikes. The mantle rocks constitute ~93% of the exposure section
and include harzburgite and less dunite. Both the drill core and surface samples indicate
that the peridotites consist chiefly of harzburgite. Most of the harzburgites, both in the
outcrop and drill core, are fresh, dark green, and massive. The rocks mostly have coarse-
grained, granular textures and consist chiefly of olivine (68~85 modal%) and orthopyroxene
(14~30%) with minor clinopyroxene, magnesiochromite, and magnetite [1]. The cumulate
rocks consist of wehrlite, lherzolite, pyroxenite, and gabbro [1,34,35,39].
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Figure 1. (a) The study area is located in China’s geographical location; (b) tectonics in the study
area, adapted from Ref. [40]; (c) a geological map of the study area is shown on the right, which
was derived from an initial geological map at 1:50,000. The geological map is not shown strictly in
accordance with the criteria, but in other bright and easily distinguishable colors to more clearly
show the spatial distribution and boundaries of litho-units. The extent defined by corner points
(1) 29◦14′40′′ N, 92◦10′35′′ E; (2) 29◦12′24′′ N, 92◦9′31′′ E; (3) 29◦11′47′′ N, 92◦19′41′′ E; (4) 29◦9′29′′ N,
92◦18′47′′ E.
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Chromite deposits are mainly hosted in mantle peridotite and appear in groups and
belts, which is typical of alpine-type chromitite deposits [6]. Most of the orebodies lie near
the top of the mantle section [41]. The structure of chromite ore includes blocky, beany,
banded, and impregnated shapes (Figure 2). The main characteristic of the ore is that
it is rich in Cr2O3 and associated with platinum group elements, mainly osmium and
ruthenium, which can be comprehensively utilized [2]. Mantle peridotite is an exclusive
rock for podiform chromite deposits, and chromite is closely associated with the mantle
peridotite belt, so the chromium needed for chromite may mainly come from mantle
peridotite itself [4,38,42]. Furthermore, previous studies have shown that the chromium
content in the mantle and in chondrite meteorites is much higher than that in the crust, and
ultra-high-pressure minerals from the deep mantle, such as diamonds, have been found
in the Luobusa chromite deposits, providing important information on the deep-seated
genesis of chromite [1,5,6,35,43–45].
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3. Data Sources

This article uses Landsat8 OLI and WorldView-2 remote-sensing data, and its basic
parameters are shown in Table 1. Landsat8 carries two sensors: OLI and TIRS. The OLI
sensor includes nine bands of a spatial resolution of 30 m, including a panchromatic band
of a spatial resolution of 15 m [46]. OLI includes all the bands of Landsat7 ETM+ and
has a narrower spectral width, which improves the recognition quality of clay minerals
and iron oxides and can better distinguish vegetation and non-vegetation features in
the panchromatic image. In order to avoid atmospheric absorption features, OLI Band
5 excludes the water vapor absorption feature of 0.825 µm. In addition, a blue band (band
1: 0.433–0.453 µm) and a cirrus band (band 9: 1.360–1.390 µm) are added, which can be
applied to coastal observation and cloud detection, respectively. Furthermore, all the OLI
and TIRS spectral bands are stored as geolocated 16-bit digital numbers in the same Level 1
terrain corrected (L1T) file, which facilitates the differentiating of materials more efficiently
than ETM+ imagery stored as 8-bit numbers [47,48]. Although multispectral sensors such
as TM, ETM+, and OLI render insufficient spectral resolution for discriminating specific
minerals, achieving effective processing, or running data analysis, they yield useful image
products for regional exploration and discovery when they are combined with a good
understanding of the associated landforms [46]. In this study, a cloud-free L1T Landsat-8
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image of the study area (path/row 137/40) was downloaded from the US Geological Survey
(USGS) Earth Resources Observation and Science Center (http://earthexplorer.usgs.gov).

Table 1. Characteristics of Landsat8 and WorldView-2 data.

Satellite Band Range/µm Resolution/m Swath Width/km Altitude/km Launch Date

Landsat8

B1 Coastal 0.43–0.45

30

185 705 February 2013

B2 Blue 0.45–0.51
B3 Green 0.53–0.59
B4 Red 0.64–0.67
B5 NIR 0.85–0.88

B6 SWIR 1 1.57–1.65
B7 SWIR 2 2.11–2.29

B8 Pan 0.50–0.68 15
B9 Cirrus 1.36–1.38 30
B10 TIR 1 10.6–11.19

100B11 TIR 2 11.5–12.51

WorldView-2

B1 Coastal 400–450

1.84 16.4 770 October 2009

B2 Blue 450–510
B3 Green 510–580
B4 Yellow 585–625

B5 Red 630–690
B6 Red edge 705–745

B7 NIR 1 770–895
B8 NIR 2 860–1040

Pan 450~1040 0.46

NIR = visible near infrared, SWIR = short-wave infrared, and TIR = thermal infrared.

The WV-2 satellite was launched on 6 October 2009 and operates on a sun-synchronous
orbit at a height of 770 km [49]. It can provide panchromatic imagery with a spatial
resolution of 0.5 m and multi-spectral high-resolution satellite imagery with a spatial
resolution of 1.8 m [50,51]. The satellite-borne multispectral sensor not only has four
standard spectral bands of the industry (red, green, blue, and near-infrared 1), but also
includes four additional bands (coastal, yellow, red edge, and near-infrared 2) [52–54]. The
data used in this article were imaged on 8 February 2015.

The remote sensing images are clear, with a strong sense of hierarchy for different land
cover types, clear textures, and good tone contrast. The projection coordinate system is the
UTM Mercator projection, and the ellipsoid is WGS-84.

4. Methodology

In this article, two types of data were preprocessed, including orthorectification,
radiometric calibration, atmospheric correction, cropping, and image fusion. Then, seven
spectral processing methods were comprehensively applied to OLI and WV-2 images
to enhance the color differences between various lithologies. The advantage of high
spatial resolution was fully utilized to establish the main lithological interpretation signs.
By establishing training samples, effective supervised classification of OLI images was
performed using the support vector machine algorithm, and the “de-interference anomaly
principal component thresholding technology” was used to extract abnormal information.
Finally, remote-sensing images were comprehensively evaluated and verified in the field.
The image-processing operations were completed using ENVI 5.6 and ArcGIS pro3.0
software, as shown in the technical flowchart in Figure 3.

http://earthexplorer.usgs.gov
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4.1. Image Preprocessing

Orthorectification was applied to the WorldView-2 data, using a small number of
ground control points combined with the satellite model to correct spatial and geometric
distortions in the image. Remote sensing images generally record information in digital
quantization values (DN) without quantization scales, and we need to use radiometric
calibration to convert DN values into specific physical quantities (radiance, reflectance).
Radiometric calibration establishes a quantitative relationship through the linear equation
Lλ = Gain × DN + Offset (where Gain is the sensor gain value, and Offset is the offset
value) [55]. Then, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) atmospheric correction algorithm was used to eliminate or reduce the influ-
ence of atmospheric scattering on the reflectance of the land surface, to obtain the true
reflectance of the land cover. It is based on the MODTRAN5 radiation transfer model and
is currently the most accurate atmospheric correction method under ENVI software. In
many studies, it has been proven to be significantly effective in removing atmospheric
effects [56–61]. The fusion method used the super-resolution Bayesian fusion algorithm,
namely, Gram–Schmidt Pan Sharpening, which is currently one of the best remote-sensing
fusion algorithms in terms of fusion effect and color fidelity. Its advantages lie in automatic
alignment, retaining spectral information, and increasing spatial resolution to enrich land
cover information [62–64].

4.2. Digital Image Processing

For remote-sensing images, using multiple spectral enhancement techniques helps to
contrast the range of lithology or highlight the boundaries of lithological units. In this paper,
we combined seven spectral enhancement techniques, including optimal index analysis,
decorrelation stretch, band ratio, independent component analysis, principal component
analysis, minimum noise fraction, and false color composite.

4.2.1. Optimal Index Analysis

The optimal index method analyzes all RGB color combinations based on the total
variance and correlation coefficients of multispectral remote-sensing data. Currently, the
most widely used method for selecting the best bands is the optimal index factor (OIF)
method, which comprehensively considers the information content of single-band images
and the correlation between different bands [65,66]. It is closer to the basic principle of
band selection, and the calculation is simple and easy to implement [62,67]. The formula
for calculating OIF is OIF = ∑3

i=1 Si/∑3
j=1|Rij|, where Si is the standard deviation of the i-th

band, and Rij is the correlation coefficient between the i-th and j-th bands [68,69]. OIF sorts
all possible RGB band combinations generated from remote-sensing images, and the band
with the highest OIF value usually has the most information.
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4.2.2. Decorrelation Stretch (DS)

Decorrelation stretch (DS) is a type of color stretch used to solve the problem of overly
concentrated image tone changes or decreased image saturation. It reduces the correlation
between spectra and is widely used as a means of spectral enhancement [23,70,71]. For ex-
ample, Abram used the 7-5-4 band decorrelation stretch with TM data to identify ultrabasic
rocks when mapping the Oman ophiolite [22].

4.2.3. Band Ratio (BR)

Band ratio (BR) is one of the commonly used image-enhancement techniques [72,73].
It is a simple and helpful technique for reducing the effect of topography and enhancing
the subtle differences in the spectral reflectance characteristics of rocks and soils [20,74].
Several band ratios and false color composites of ETM+ in RGB have been suggested for
enhancing lithology and alteration zones, for example, 5/7 for hydroxyl-bearing minerals
and 3/1 for iron oxide [57,61,71,75–79]. Many previous studies have used band ratios
to identify mantle peridotites. For example, Sultan used an ETM (5/7, 5/1, 5/4 × 3/4)
false-color image to delineate ultrabasic and basic rocks from silica-rich granitic rocks [24].

4.2.4. Principal Component Analysis (PCA)

Principal component transformation is a statistical technique that selects uncorrelated
linear variables called principal components (PC) using orthogonal transformation of a set of
possibly correlated variables [12,48,61,69,80–82]. It is one of the most effective and commonly
used image information extraction methods in remote-sensing geology [12,48,61,69,80–82].
It generates very small and easily interpretable independent components through linear
transformation and preserves the main information [12,48,61,69,80–82]. The first principal
component includes most of the information of the original multispectral image, and
selecting three transformed principal components for the false color composite can achieve
the purposes of data compression and highlighting of target information.

4.2.5. Independent Component Analysis (ICA)

Independent component analysis transforms a set of mixed signals into independent
components and statistically estimates the maximum correlation direction, which can
reduce losses in the data decomposition process [69,83–87]. It can be considered a special
case of principal component analysis (PCA).

4.2.6. Minimum Noise Fraction (MNF)

Minimum noise fraction (MNF) is an orthogonal transformation that is a very useful
algorithm for reducing the inherent dimensionality of multispectral data and reducing
noise in images [23]. MNF is essentially two cascaded principal component transformations,
where the first transformation is used to separate and rescale the noise in the data, and the
second transformation is the standard principal component transformation of the noise-
whitened data [56]. MNF transformation is also commonly applied directly to vegetation
or lithological mapping [46,69,71,79,88].

4.2.7. False Color Composite (FCC)

False color images can greatly facilitate image visualization for better interpretation.
In this study, the selection of the RGB combination method was mainly based on the rock
types and their spectral characteristics, the geological information carried by each spectral
transformation component, and previous research experience. RGB false color synthesis
was used to highlight the differences in tone of various lithological units.

4.3. Machine Learning Classification

Recently, using machine learning methods in geoscience studies has been increasing
in various applications, including mapping land-cover types and monitoring land usage.
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Some work has been carried out in the field of identifying and classifying lithologies of
valuable minerals [56].

Digital image classification by computers can greatly improve the objectivity of the
image classification process. The the support vector machine algorithm (SVM) method is
widely used in machine learning methods for geological applications, and it has proven
to be robust and effective, especially in helping in the identification of rock units over the
years [26–28,77,89].

Supervised classification is a machine learning method based on statistical learning
theory (SLT), which is based on the theory of statistical learning and the principle of
structural risk minimization [90,91]. The basic strategy is to find an optimal hyperplane that
can separate the two classes of data and use confirmed sample units to identify unknown
class pixels [18,92]. It automatically seeks support vectors that have greater discriminative
power for classification based on limited sample information and maximizes the gap
between classes [27,28]. Compared to other traditional supervised classification methods
in geological surveys, it has been confirmed to deliver higher classification accuracy than
other traditional supervised classification schemes [93–95].

4.4. De-Interfered Anomaly Principal Component Thresholding Technology

Principal component analysis (PCA) is a widely used and mature technique for ex-
tracting anomalous information. This paper uses the “De-interfered Anomaly Principal
Component Thresholding Technology”, which has been determined by the China Geologi-
cal Survey as a remote-sensing technology method that must be used in mineral survey
work [96,97]. In a pixel, as long as the vegetation does not exceed 50%, anomalous infor-
mation can be extracted. After performing principal component transformation on the
selected bands, the threshold of 2, 3, and 4 is set based on the variance σ of the anomaly
intensity as the scale to achieve density segmentation of the anomaly principal components.
To present the anomaly image more intuitively, the density segmentation result also needs
to be processed with a 5 × 5 Gaussian low-pass filter.

5. Results and Discussion
5.1. Image Enhancement Results
5.1.1. OIF

Due to the spectral mixing effect and fuzziness of spectral features in low spatial
resolution of satellite images, for the lithological interpretation of WV-2 data, we assigned
more weight to visual inspection and interpretation to establish interpretation signs. We
took full advantage of its spatial resolution and avoided the disadvantage of its narrow
spectral range. For visual interpretation, the difference between hues is the most significant
and intuitive. Based on the data correlation analysis of WV-2, it can be known that the
optimal index value for the combination of b8, b6, and b4 is the largest (Table 2), and
selecting these three bands is more conducive to the interpretation of lithology and structure.
However, in actual remote-sensing interpretation, other combination schemes can also be
used, such as selecting b5-b3-b2 for true color synthesis to make the image closer to natural
colors, or selecting b7-b5-b3 for standard false color to show vegetation in characteristic red.

Sedimentary rocks in the area are mainly composed of compound conglomerate,
sandstone, siltstone, and significant banded texture structure is a typical remote-sensing
interpretation sign [62]. Combined with the comprehensive characterization of rock texture
and hue, the identification and delineation of sedimentary rocks in the study area can be
achieved. At the macroscopic scale, conglomerate is characterized by multiple steep slopes,
with large terrain undulations, underdeveloped water systems and vegetation, and rough
texture (Figure 4a). Sandstone generally exhibits a more typical parallel banded texture
on high spatial resolution images, with relatively delicate image features distinguishing it
from conglomerate (Figure 4b). As a microclastic rock, siltstone appears delicate and soft in
the WV-2 image. The WV-2 of b5-b3-b2 in RGB separated siltstone into brown-yellow, black-
gray, and gray-brown (Figure 4c). Because this type of rock has poor water permeability,
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typical branched water system textures can be seen in the WV-2 image, and the vegetation
is relatively developed.

Table 2. Optimal index factor and index highest rankings of WV-2 bands.

R G B OIF

8 6 4 255.29
8 6 3 250.57
8 6 1 229.29
8 4 1 221.34
7 6 1 218.71
8 3 1 213.14
7 4 1 209.53
7 5 3 203.96
8 5 1 198.60
7 5 1 184.75
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Figure 4. WV-2 images of sedimentary rocks: (a) conglomerate, RGB: 864; (b) sandstone, RGB: 864;
(c) siltstone, RGB: 532.

Most metamorphic rocks are characterized by relatively uniform hue and monotonous
and directionally arranged discontinuous textures [62]. Common metamorphic rocks in
the area include slate, quartz-magnesite rocks, and marble. The Upper Triassic slate is the
most common metamorphic rock in the study area and has obvious interpretation signs.
Due to the low degree of metamorphism in slate, it retains many features of microclastic
rock, with finer residual slope sediments and low gentle hills or hill-like terrain (Figure 5b).
The hue is mainly gray or black, and the distribution is mainly in the northeast part of the
study area (Figure 5a). The boundary between the quartz-magnesite rock and the slate is
neat, intermittently exposed along the southern boundary of the ophiolite body, and the
north part of it is strongly developed with serpentinization (Figure 5c). The interpretation
sign of marble is similar to carbonate rocks. In this article, the WV-2 true color synthesis of
b5-b3-b2 in RGB with grayish and light colors as the main hue, with many speckled texture
features, steep terrain, and retaining the basic characteristics of limestone (Figure 5d).

The mantle peridotites crop out in a broad band along part of the ophiolite and
make up the bulk of the ophiolite; harzburgite accounts for 70% of the Luobusa mantle
peridotite [1]. The interpretation and delineation of ultramafic rocks using high-resolution
remote-sensing images are more based on comprehensive analysis and judgment. Most
of the chromitite bodies in Luobusa are located in the harzburgite; we focus on mantle
peridotites closely related to chromite deposits. The harzburgites are locally deformed and
serpentinized, particularly those in the eastern part of the ophiolite. Alteration increases
slightly near the chromitite orebodies, and both serpentinite and tectonic breccias are locally
present [1]. The dark minerals of mafic and ultramafic were easily faded by weathering,
and the surface developed serpentinization. They often appeared in negative terrain, and
the residual slope developed. In order to intuitively identify the target objects in WV-2
images according to the tones and texture characteristics of peridotite in the study area,
B5, B3, and B2 were selected and placed in channel R, G, and B, respectively, to reflect
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the actual color characteristics, so as to better identify light green weathered peridotite
(Figure 6a) and serpentinized peridotite with a light green tone (Figure 6b).
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5.1.2. Band Ratio (BR)

The reflectance spectrum of a rock depends on the mineralogical composition of its
surface, which is usually a mixture of the whole rock mineralogy and weathering minerals.
Accordingly, the selected bands in this technique depend on their spectral reflectance and
the positions of the absorption bands of the mineral being detected. Therefore, the presence
of ferrous iron (Fe2+) on weathered surfaces produces absorptions centered at about 0.45 µm,
1.0–1.1 µm, 1.8–1.9 µm, and 2.2–2.3 µm, depending on its lattice environment. The ferric
iron (Fe3+) produces absorptions at about 0.65 µm and 0.87 µm [61]. Based on the spectral
absorption and reflection characteristics of harzburgite, this study selected the b5/b4 and
b4/b7 band ratios. The operation process is to divide the grayscale values of corresponding
pixels into two different band images, which can effectively suppress the topographic
changes in the Tibetan mountain area and highlight the information of exposed rocks. The
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differences between objects with significantly different spectral characteristics are easily
recognizable in false color composite images [29,60,98–101]. The final results of the b5/b4,
PC4, and b4/b7 RGB images showed exquisite contrasts between different rock units in
the study area (Figure 7). This contrast enabled better detection of the mantle peridotite
as a dark blue color, sandstone presented as green, and slate presented as light blue. We
believe that band-ratio combinations proved their effectiveness in lithological mapping
due to their shown ability to highlight spectral properties of specific rocks and minerals,
while eliminating or reducing other types of information.
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5.1.3. Principal Component Analysis (PCA) and Independent Component Analysis (ICA)

PCs contain spectral information relative to minerals and whether the digital numbers
(DNs) of pixels containing the target minerals had high (bright) or low (dark) values [61]. In
this article, PC1 tends to represent topographic and brightness information, while PC4 may
represent the characteristic information of a lithology with low DNs. Although lower-order
principal components only contain a small amount of spectral information, they have a
lower signal-to-noise ratio. Therefore, selecting lower-order and higher-order principal
components for combination is very meaningful for emphasizing some target spectral
features [72,87,98,102–104]. We selected PC6, PCA5, PCA4, and PCA2 components for RGB
false color composites, which can better distinguish mantle peridotite rocks from other
lithological units. The RGB combinations of PCA5-PCA4-PCA2, PCA2-PCA4-PCA5, and
PCA6-PCA4-PCA2 demonstrated the distribution of mantle peridotite in blue or purple
where it was prominently emphasized (Figure 8a–c). Meanwhile, the main IC component
obtained by independent component transformation and the main PC component band
combination were used to maximize the expression of component information. Results
revealed that combining ICA1-ICA7-ICA6 in the RGB channels enhanced not only the
differentiation of mantle peridotite in a red color but also the identification of southeast
slate in a viridis color (Figure 8d).
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5.1.4. Minimum Noise Fraction (MNF) and Decorrelation Stretch (DS)

In this study, our results revealed that the MNF5 represents mantle peridotite infor-
mation and MNF3 represents topographic information. Therefore, we selected MNF3-
MNF5-MNF2 and placed them in the RGB channel, respectively; the RGB image showed
an exquisite contrast between different rock units in the study area. This contrast enabled
better detection of the range of ophiolitic mantle peridotite as fluorescent green in color
(Figure 9a). Other geological units, such as conglomerate, were purple in color, mainly
distributed in the northeast corner of the study area and distinguished from the Gangdese
granite based on texture features, and metamorphic slate in brown in the southeast corner
of the image. Moreover, using the MNF bands as inputs for the decorrelation stretch
technique results in convenient discrimination for all the exposed rock units through DS
of b7-MNF5-MNF3 FCC in RGB (Figure 9b). Their combined composite delivered images
with better saturation and color contrast.

5.1.5. False Color Composite (FCC)

As dimensionality reduction and image-enhancement techniques, PCA and ICA trans-
formations generate information-dense bands ideal for identifying the spectral features of
minerals or rock units within the study area. Although principal component analysis (PCA)
or minimum noise fraction (MNF) can compress and separate overlapping information,
the lithological information we focus on often concentrates on the later components after
performing PCA or MNF transformation. Therefore, practical applications, by means of
combining different components obtained by diverse methods, can yield better results
than using a single transformation method. The combined ICA–PCA technique demon-
strates higher noise suppression capabilities compared to using ICA or PCA separately.
Using PCA4 and ICA2 in FCC PCA4-PCA4-ICA2 in RGB (Figure 10a) provides excellent
identification of the mantle peridotite, where it separates the boundaries of mineralized
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lithological units in blue. Additionally, the OLI RGB combination of ICA2-MNF5-PCA4
demonstrated mantle peridotite in purple-red in color (Figure 10b).
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5.2. Machine Learning Results

Interference factors during image formation often make it difficult to achieve accurate
classification of targets. Ensuring adequate training and testing data, besides selecting a
suitable classifier, are the main pillars for delivering veracious classification. Toward that
aim, the outputs of all the previously mentioned image-processing techniques, the spectral
signatures of the different rock units, previous mapping, and field observations have been
used as inputs for lithological classification utilizing the support vector machine algorithm.
Consequently, for a more accurate selection of training sites in this study, three files were
used: (1) all lithological data from compiled previous geological maps; (2) several effective
RGB color composites resulting from various image-processing techniques, such as OIF,
BR, PCA, and MNF; (3) the locations of rock samples.

The sample types in the study area are divided into seven categories: mantle peridotite,
glutenite, slate, Gondwana granite, quaternary, water body, and hillshade. Accordingly,
training areas for seven classes were determined and fed into the SVM algorithm. A total
of 11,423 pixels representing seven targets were selected. The separability of each category
exceeds 1.9. Secondly, by creating training samples from the region of interest (ROI) and
using the support vector machine classification (SVM) method (algorithm) to classify the
entire image, each pixel is merged into the known sample category created in advance.
After classification, the Majority tool is used to remove small patches in the classified image
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(Figure 11). Finally, these results are evaluated and compared using the overall accuracy
and Kappa coefficient. The Kappa coefficient is distinct from the overall accuracy since
it considers the complete contingency matrix and is intended to evaluate the consistency
of the results [69,86]. The classification accuracy is evaluated using a confusion matrix,
and the results shows overall classification accuracy of 94.98% and a Kappa coefficient of
0.93. However, misclassification still occurs in some areas, which is due to the mixed pixels
caused by spectral resolution. Hence, field verification is required.
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5.3. Anomaly Extraction

Rocks and minerals containing groups such as Fe2+ or Fe3+ have characteristic spectral
band shapes, which are mainly reflected in the visible bands. Fe3+ has strong absorption in
the spectral range of 0.85 µm~0.94 µm and appears as an absorption valley in the OLI 2
and OLI 5 bands. In remote-sensing images, it is shown by low brightness values. OLI 4 is
the iron ion reflection band, which is shown as relatively bright in the OLI 4 image. The
sign of the feature vector should be opposite to that of the coefficients of OLI 2 and OLI 5.

Because the visible light band is more sensitive to iron oxide, OLI 2, OLI 4, OLI 5,
and OLI 6 are selected for principal component transformation to extract iron anomaly
information, and OLI 7 is excluded to eliminate interference from hydroxyl or carbonate
ion information. The criterion for judging the principal component representing the iron
anomaly material is that the feature vector constituting this principal component should
have an OLI 4 coefficient opposite in sign to the coefficients of OLI 2 and OLI 5, and
generally has the same sign as the coefficients of OLI 6. Such a principal component is
called an iron abnormal principal component. According to previous research, anomalies
often appeared in the fourth principal component. The statistical analysis of the image
feature vectors in the study area is shown in Table 3.

From Table 3, PC1 contains 88.96% of the information in the entire map, mainly reflect-
ing brightness and terrain information, while PC4 only contains 0.39% of the information,
but it represents abnormal information in the map. In order to obtain more accurate extrac-
tion results, the interference factors of mountain shadows and water bodies are eliminated
using a mask file, and the fourth principal component where anomalies are concentrated
is subjected to density segmentation. The result shows that the distribution of anomalies
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matches well with the exposed mantle peridotite, indicating good indicative significance
(Figure 12).

Table 3. Principal component analysis eigenvector matrix.

Eigenvectors Band 2 Band 4 Band 5 Band 6 Information

PC1 −0.169 −0.348 −0.536 −0.750 88.96%
PC2 −0.611 −0.618 −0.087 0.487 9.71%
PC3 −0.390 −0.080 0.801 −0.447 0.94%
PC4 −0.668 0.700 −0.252 0.006 0.39%
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5.4. Field Geological Verification

Benefiting from the synergy of optical remote sensing and high spatial resolution im-
agery, the resulting lithological boundaries were acquired in a much shorter time compared
to traditional geological surveys. Nevertheless, field-based geological mapping was still
the backbone of the whole exploration procedure described in this study for verifying
remote-sensing data.

The integrated OLI-WV2 results were utilized for the first time in the Luobusa area
and proved their efficiency in lithological discrimination, as well as accurate detection of
chrome-bearing peridotite and its spatially associated alteration. Fieldwork (field geology,
field sampling, and field photos) as well as previous geological maps were used to validate
remote sensing and machine learning results. Figure 13 shows the locations where the
photos were taken for field verification.

The sedimentary rocks exposed in the study area are mainly located in the north of the
ophiolite belt, composed of a set of rocks including polymictic conglomerate, sandstone, and
greywacke. The conglomerate had strong weathering resistance, large terrain fluctuations,
and rough textures (Figure 14a). The sandstone mostly formed a one-sided mountain;
it appeared as inclined rock layers. They had a lower density of water systems and
underdeveloped vegetation (Figure 14b,j). The field inspection results are consistent with
the visual interpretation results of the WV-2 remote-sensing images (Figure 4a,b).
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Figure 14. Field photographs showing the rock units of (a) contacts between peridotite and Tertiary
Luobusa Formation; (b) contacts between harzburgite, conglomerate, and sandstone; (c) outcrop
of slate; (d) outcrop of harzburgite, Tertiary Luobusa Formation, and slate in Kangjinla; (e) a block
of harzburgite; (f) contacts between harzburgite and dunite; (g) the view of chromite by open pit;
(h) underground chromite mining; (i) quartz veins inside listwanite. (j) sandstone.
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Currently, mining operations are still being carried out in the Luobusa mining area
(Figure 14g,h). The chromite ore is mainly distributed in the harzburgite (Figure 15a,c–e). A
clear contact boundary between dunite and harzburgite can be seen in the field
(Figures 14f and 15g). The main rock-forming minerals of the two rocks are forsterite,
and they have roughly similar spectral absorption characteristics. Therefore, they are
uniformly identified as peridotites. The harzburgite has a blocky structure (Figure 14e),
with severe surface weathering, and is mostly dark yellow-brown. The serpentinite peri-
dotite is dark green in color, with obvious interpretation marks on the WV-2 true color
image (Figure 6a,b). The gabbro was interlaced in veins (Figure 14f). Due to the later
tectonic movement modification, the exposed range is not large and is difficult to identify
on remote-sensing images.
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The linear features in the study area were enhanced by directional filtering (Figure 16b,
scale 1:50,000) to interpret the tectonic structures. Meanwhile, according to mineralogical
research, the cataclastic structure is widely developed in the southeastern part of the
study area, which indicates that the rocks may have undergone relatively strong tectonic
stress [34,105]. In addition, the experimental petrological evidence shows that chromite in
the Luobusa ophiolite is formed by the reaction between boninite melts and harzburgite.
Boninite is a typical product of the forearc basin in island arc systems, and the subduction
zone is the most favorable environment for finding podiform chromite ores. Therefore, the
discovery of podiform chromite can even be used as a marker for determining the tectonic
environment. The formation of podiform chromite is closely related to the formation of
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ophiolites [41,42]. In recent years, a large number of ultra-high pressure minerals have
been found in mantle peridotites and podiform chromites [10,45,106], suggesting that the
formation depth of podiform chromite may reach the transition zone, and even the lower
mantle [10,38]. Therefore, the formation process of Luobusa podiform chromite involves
both deep and shallow processes, and may have undergone multiple stages of evolution,
including from the transition zone, mid-ocean ridges, subduction zones, and even late-
stage surface evolution [1,6]. The involvement of fluids in the mineralization process
of podiform chromite favors the liquation of chromite and silicates, forming orientated
chromite that indicates the direction of fluid movement (Figure 2c). Conversely, Figure 15h
shows a reversed pisolitic structure, which also represents the hydrodynamic record [107].
The most direct evidence of the effect of tectonic structures on the spatial distribution of
podiform chromite deposits is the east–west distribution of chromite ore belts caused by
the convergence in the north–south direction, often accompanied by tectonic lenses and
breccias [32,108,109] (Figures 15b,i and 16c).
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The slate is distributed in the southern area of the ophiolite belt and is in a fault
contact with ophiolite. It has a large outcrop area and is well exposed (Figure 14d). The
WV-2 image clearly shows a large-scale reverse fault (Figure 5a). The quartz magnesite
rock is distributed between the serpentinite ultramafic rock and the slate (Figure 14c). It
is formed by the peridotites or serpentinite under the condition of carbon dioxide-rich
hydrothermal activity. It can be divided into three alteration zones when observed in
the field from north to south: peridotite zone, serpentinite zone, and quartz magnesite
zone [110]. This has a good correspondence with the WV-2 image (Figure 5c) and shows the
interpretation advantages of WV-2 high spatial resolution. The contact boundary between
quartz magnesite and slate is clear, and they outcrop intermittently along the southern
boundary of the ophiolite massifs (Figure 16a). Quartz and carbonate veins of varying
widths (3–15 cm) are also developed in the quartz magnesite (Figure 14i).

6. Conclusions

The largest chromite deposit in China is located in the mantle peridotite of the Lu-
obusa ophiolite. In this study, Landsat8 OLI multispectral and WorldView-2 high spatial
resolution remote-sensing data have been employed to delineate the ophiolite complexes
for exploring high-potential chromite zones using several image-processing techniques for
the first time, which were proven to be successful in discriminating lithological units and
delineating chromite host rock within ophiolites, especially in harsh plateau areas, and is
of great significance for realizing modern geological surveys.

Seven spectral enhancement methods were comprehensively used to delineate mantle
peridotites in the area, including decorrelation stretching, band ratio, ICA, PCA, MNF, and
FCC, which detected different rock units and mantle peridotite as a host rock of chromitite
within ophiolitic complexes at a regional scale. Meanwhile, the spatial resolution advantage
of WorldView-2 remote-sensing data was used to establish interpretation signs for the main
rock units in the study area. The support vector machine classification method was applied
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to the digital Landsat multispectral OLI data, which gave rise to the supervised classified
thematic map of the investigated area. The overall accuracy assessment of the produced
classification map was accepted. At the same time, the “De-interfered Anomalous Principal
Component Thresholding Technique” was used to extract abnormal information, and the
result shows a good matching relationship with the chromite mineralized belt, especially in
areas where ophiolitic peridotites are exposed, indicating good significance. Finally, image-
processing results were verified by comprehensive fieldwork. The results of this study
demonstrate the applicability of remote-sensing data for the delineation of harzburgite or
peridotite as host rocks of chromite mineralization in the Luobusa zone and lithological
mapping in mountainous and inaccessible regions.
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