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Abstract: Most of the aspect-based sentiment analysis research completes the two subtasks (aspect
terms extraction and aspect sentiment classification) separately, and it cannot see the full picture and
actual effect of the complete aspect-based sentiment analysis. The purpose of end-to-end aspect-based
sentiment analysis is to complete the two subtasks of aspect terms extraction and aspect sentiment
classification at the same time, and the current research in this area focuses on the connection between
the two subtasks and uses the connection between them to construct the model. However, they rarely
pay attention to the connection between different aspects and ignore the sentiment inconsistency
within the aspects caused by the end-to-end model. Therefore, we propose an interactive learning
network to maintain sentiment consistency, first using the multi-head attention mechanism to achieve
the interaction between aspects and subtasks and then using the gate mechanism to design an
auxiliary module to maintain sentiment consistency within aspect items. The experimental results on
the datasets Laptop14, Restaurant14, and Twitter showed that, compared with the optimal benchmark
method, the F1 values of the proposed method increased by 0.4%, 1.21%, and 5.22%, respectively.
This indicates that the proposed method can effectively consider the relationships between aspect
items and maintain emotional consistency within the aspect items.

Keywords: aspect-based sentiment analysis; multi-head attention mechanism; sentiment consistency;
interactive learning

1. Introduction

With the rapid development of information technology, the Internet has become an
indispensable part of people’s lives, and people increasingly like to leave their own reviews
on various platforms. Effective use of these review text data, mining and analyzing the
sentiment tendencies they contain, has important practical application value; for example,
reviews in the e-commerce platform have important reference value for other users to
choose commodity, and also help merchants improve their products and services. As one
of the most popular social media platforms worldwide, Twitter contains views, opinions,
and ideas on a variety of topics, and in the context of recent works related to Twitter data
mining and analysis, a number of works have focused on the sentiment analysis of tweets,
which can provide effective information for various fields [1,2].

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task; its
purpose is to identify the different aspects of a text and judge their corresponding sentiment
polarity [3]. ABSA can be divided into two subtasks: aspect terms extraction (ATE) and
aspect sentiment classification (ASC) [4]. The purpose of end-to-end ABSA is to complete
the two subtasks of ATE and ASC at the same time to achieve the complete ABSA process.
Since the ATE task is a sequence-labeling task and the ASC task is a classification task,
in order to make the end-to-end model solve the two tasks together, the current research
methods are to treat the ASC task as a sequence-labeling task [5].

In the initial study, each subtask was considered separately and was not linked with
other tasks [5,6]. Recently, more and more research has begun to focus on the connection
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between two subtasks and deal with them together by analyzing the connection between the
two subtasks [7–9]. However, they do not take into account that there is also a connection
between the aspects, such as “nice operating system and keyboard”, the sentiment polarity
of the aspect term “operating system” is determined by “nice”, and “operating system”
and “keyboard” are connected by the juxtaposition “and”, then the sentiment polarity of
these two aspects should be the same and both positive. However, it may be affected by
the context and labeled as a different sentiment. Secondly, “operating system” is an aspect
item composed of two words; because we treat the aspect sentiment classification as a
sequence-labeling task, then there may be a multi-word aspect item with two different
sentiment polarities, for example, “operating system” may be labeled as “B-POS E-NEU”,
which appears as an aspect item that contains two different sentiment polarities, which is
obviously unreasonable.

In response to the above problems, an interactive learning network that maintains
sentiment consistency is proposed. In this network, the task-sharing layer is used to link the
two subtasks preliminarily; then, the multi-head attention mechanism is used to combine
the context information to let the model consider the connection between the aspects and
realize the interaction between the two subtasks so that the model can fully interact with
information and consider the context information of the text. An auxiliary component with
a gate mechanism is also designed, which can be used to maintain sentiment consistency
within aspect items by considering the results of the previous moments at the current
moment and correcting the current results.

Our main purpose and contributions are summarized as follows:

• A new framework is proposed to address the complete ABSA in an end-to-end man-
ner. Use the task-sharing layer to enable interaction between two subtasks and take
advantage of the multi-head attention mechanism to consider the connection between
aspect items;

• An auxiliary component with a gate mechanism is designed to maintain sentiment
consistency within aspect items.

2. Related Work

In the past, ABSA was carried out separately from two subtasks, only studying
ATE [10], aiming to extract aspects in the text, or only studying ASC [11], using the aspect
items obtained in advance to classify their sentiment, both of which currently have good
results, but they cannot see the full picture and actual effect of complete ABSA. There
is a pipeline method [12], which first uses one model to extract the aspects contained in
the text and then another model to classify the sentiment of these aspects and complete
two subtasks simultaneously to obtain a complete ABSA model. The two submodels of
this approach may work well when used separately, but this pipe-based approach requires
data to flow across multiple models that cannot be backpropagated, and the erroneous
predictions of one model are passed on to the next, so the end result must be wrong. In
addition, the pipeline method requires training two models separately, which also results
in a waste of computing resources. Therefore, end-to-end research is necessary.

To process two subtasks at the same time, Wang et al. [5] proposed a multi-task neural
learning framework that can simultaneously process ATE and ASC subtasks and use the
attention mechanism to learn the joint representation of aspect and affective relationship.
Li et al. [6] used stacked LSTMs to predict the boundary and unified prediction of aspect
terms and designed three auxiliary components to correct the prediction results. These
end-to-end models can achieve multiple tasks in one step, avoid the conduction of false
predictions in multiple models, and at the same time, can make the error backpropagate
within the model, ultimately reducing the error rate and improving the accuracy rate.
However, they only complete the two subtasks at the same time without considering
the connection between them, so the effect is also poor. Luo et al. [13] and He et al. [14]
proposed that the previous research did not make full use of the interconnection of the two
subtasks and proposed a shared network and a multi-task learning network, respectively,
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using different methods to achieve the interaction between the two subtasks. However, the
study of the two of them only linked the two subtasks and did not expand on other content,
so the results were more general.

With the continuous development of deep learning, the pre-trained model BERT [15]
gradually replaced the traditional word vector model and was widely used in various
research fields of natural language processing. Li et al. [16] first applied BERT to end-
to-end ABSA when they constructed a series of simple but effective neural baselines for
sequence labeling problems and used BERT to fine-tune task-specific components. The
results showed that the pre-trained model BERT was very effective; just BERT plus a simple
linear classification layer had better results than before.

Luo et al. [17] proposed that the imbalance between labels would affect performance,
so they extended the gradient coordination strategy to alleviate this problem and used
virtual adversarial training and post-training of domain datasets to improve collaborative
extraction performance. They came to the conclusion that alleviating the label imbalance
problem is more important for sequence labeling. Oh et al. [18] proposed a deep-context
relationship-aware network DCRAN based on aspect sentiment analysis, which allows
implicit interaction between subtasks in a more efficient way and allows two explicit self-
monitoring strategies for deep context and relationship-aware learning; the results show
that their two explicit self-monitoring strategies are very effective.

The above research improves the performance of the model by exploring different con-
tents but does not solve the problem of the connection between the aspects and maintaining
the sentiment consistency within aspect items. Hence, an interactive learning network that
maintains sentiment consistency is proposed.

3. An Interactive Learning Network That Maintains Sentiment Consistency

The model structure in this paper is shown in Figure 1. Firstly, the text is input into
BERT to obtain the context representation of the text, and the front l layer of BERT is used as
the task-sharing layer to obtain the shared features of the two subtasks. Then, the remaining
layer of BERT is used as the aspect terms extraction layer to obtain the aspect term feature
representation, and the aspect term extraction results are obtained through the classification
layer. Then, the feature representation of the aspect item is input into the transformer
decoder module with multiple multi-headed attention, and the interaction between the
aspect items and the interaction between the two subtasks is realized in combination with
the shared features. Finally, the sentiment consistency component is used to maintain
the sentiment consistency of the aspect items, and the final result is obtained through the
classification layer.

3.1. Task Definition

In order to merge the two subtasks of ATE and ASC into one task simultaneously, it
is necessary to combine the labeling task of ATE and the classification task of ASC into
a unified labeling task. Given a text C of length n, denoted by C = {w1, w2, w3, . . ., wn},
label each word with a unified tagging scheme: Ys = {B-POS, I-POS, E-POS, S-POS, B-
NEU, I-NEU, E-NEU, S-NEU, B-NEG, I-NEG, E-NEG, S-NEG, O}. Each label contains two
parts of label information, “B, I, E, S, and O”, representing the beginning, the middle, the
end, a single word aspect, and non-aspect words, respectively. “POS, NEG, and NEU”
indicate positive, negative, and neutral sentiments. The predicted final marker sequence is
Y = {y1, y2, y3, . . ., yn}, where yi ∈ Ys.

3.2. Encoding Layer

This model uses the pre-trained language model BERT as the encoding layer to con-
struct a contextual representation of the text. In addition to the input layer and output
layer, each of the remaining layers of the BERT model is composed of multiple transformer
modules, and the input of each transformer module in each layer comes from the output of
the previous layer. Given a text C, after preprocessing it, such as word segmentation, the
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processed data are input into the pre-trained model BERT, and the output H is the context
representation sequence of the text, defined as shown in Equation (1).

H[1:L] = BERT(C) (1)

where H[1:L] represents each layer of BERT output,. There are a total of L layers; for example,
HL represents the last layer of BERT, which is the largest layer, HL ∈ Rm∗d, where m
represents the encoded length of C and d represents the dimension of the word vector.
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3.3. Task-Sharing Layer

Jawahar et al. [19] believe that different layers of BERT can capture different levels of
information; for example, the underlying network captures surface information, the middle
network captures syntactic information, and the higher network captures semantic infor-
mation. The research of this paper requires not only semantic information but also syntactic
information, but as the number of layers of BERT increases, the syntactic information in the
output features will decrease, so we can take the front l layer of BERT as the shared layer,
that is, the output of the l layer is the shared feature representation of the two subtasks
Hshare, which contains context information such as aspect item information, sentiment
information, syntactic information and semantic information of text, and the l layer to the L
layer of BERT is used for the aspect item extraction subtask. That is, the L-layer output is
the feature representation of the aspect extracted by the Hate. The definitions are shown in
Equations (2) and (3).

Hate = HL (2)

Hshare = Hl (3)
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The feature representation of the ATE task is input into the classification layer, and the
aspect entity sequence Ya is obtained. The formula is as follows: Wa is the weight matrix of
the linear layer, and ba is the bias term.

Ya = so f tmax(Wa Hate + ba) (4)

The results produced here are not used as the final aspect items to extract the task
results but only play an auxiliary role for later use of the multi-head attention mechanism
to consider the interaction between the aspect items.

3.4. Interaction Layer

Then, use two transformer decoder [20] modules to consider the relationship between
aspect items and between two subtasks. The transformer decoder module is formed by
stacking layers of multiple multi-headed attention mechanisms on top of each other, which
can learn the behavior of different tasks and then combine different behaviors as knowledge,
which can take into account multiple aspects. The transformer decoder module in this
article consists of a layer of multi-head self-attention, a layer of multi-head cross-attention,
and a feedforward neural network (FNN); the specific structure of the transformer decoder
module is shown in Figure 2. In the multi-head attention mechanism, Q represents the
query matrix, K represents the key matrix, V represents the value matrix, and Q, K, and V
are obtained by different linear transformations based on different weight matrices, WQ,
WK, and WV, respectively. The operating principle is to calculate the attention distribution
of the current Q under all K, add weight to the distribution and Softmax, attach to V in the
form of a score to obtain the attention calculation result, and then set multiple heads. Each
head performs the same operation to make the model pay attention to different aspects of
information, and finally, the attention calculation results of each head are spliced together
and multiplied with the output weight to obtain the final multi-head attention mechanism
result. When Q, K, and V are transformed from the same input, the multi-head attention
mechanism at this time is called the multi-head self-attention mechanism, and when their
inputs are different, it is the multi-head cross-attention mechanism. FNN is a simple neural
network containing an input layer, an intermediate layer, and an output layer. Using the
GELU activation function, the specific formula is shown in Equation (5), where ∅(x) refers
to the cumulative function of the Gaussian normal distribution of x.
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The module represents Hate as input using the features of the generated aspect entity
sequence Ya, and in the first layer, the multi-head self-attention mechanism is used, and
Hate is operated as Q, K, and V. In the second layer, the bull cross-attention is used, Hshare as
K and V, and the output H1 of the first layer as Q input into it. Finally, the output H2 of the
second layer is input into the feedforward neural network layer, and finally, a preliminary
result S is obtained. Each layer in the transformer decoder is followed by a residual
connection [21] and layer normalization [22] to process the result. The specific formula is
shown in Equations (6)–(8), where LN denotes layer normalization. The main function of
this module is to realize the interaction between aspect items, consider the relationship
between aspect items, use the previously obtained aspect items to extract the results, and
combine the context information of the text to obtain a preliminary prediction result.

In the second transformer decoder module, the output of the previous module is
taken as input, and the rest remains unchanged. This module uses preliminary predic-
tion information, then combines the context and sentiment of the text to produce more
accurate results.

GELU(x) = x∅(x) (5)

H1 = LN(Hate + Sel f Atten(Hate, Hate, Hate)) (6)

H2 = LN(H1 + CrossAtten(H1, Hshare, Hshare)) (7)

S = LN(H2 + FNN(H2)) (8)

3.5. Maintaining Sentiment Consistency

The issue of sentiment inconsistencies for aspect items arises from end-to-end model-
ing using sequence annotation. In order to deal with this problem, this paper constructs a
consistent sentiment component with a gate mechanism; in this component, the input is
a preliminary sentiment prediction result S for each word. Use Equation (10) to calculate
the threshold value gt, which represents the importance of the current moment prediction
result, then, combine the prediction result of the previous moment through Equation (9) so
that the prediction of the current moment will inherit the characteristics of the previous
moment, to reduce the situation of different sentiment polarities in the same aspect item.
The internal structure of this component is shown in Figure 3. In Equations (9) and (10),
St represents the preliminary prediction result at the current moment, S′t−1 represents the
final prediction result at the previous moment, Wg is the weight matrix, bg is the bias term,
and σ is the Sigmoid function.

S′t = Stgt + S′t−1(1− gt) (9)

gt = σ(WgSt + bg) (10)

3.6. Output Layer

The results from the sentiment consistency component are normalized by the Softmax
classifier to obtain the probability of a uniform tag corresponding to each word, and the
maximum probability corresponds to the final result of the word, which contains the results
of two tasks: ATE and ASC. The calculation formula is shown in Equation (11), W is the
weight matrix of the linear layer, and b is the bias term.

Y = so f tmax(WS′ + b) (11)

3.7. Model Training

This model uses the cross-entropy loss function as the loss function to train the model.
The formula of the cross-entropy loss function is shown in Equation (12), where N is the
number of samples, M is the number of classes, yij is the sign function, if the true category



Appl. Sci. 2023, 13, 9327 7 of 11

of sample i is equal to j, take 1, otherwise take 0, and pij indicates the predicted probability
that sample i belongs to class j, which is the Softmax value.

L = − 1
N

N

∑
i=1

M

∑
j=1

yij log pij (12)

In this study, all tasks are jointly trained, so the objective function is the sum of the loss
functions of each task; that is, the objective function is equal to the sum of the loss function
of the ATE and the loss function of the final unified prediction, as shown in Equation (13).

Loss = Late + Labsa (13)
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4. Experiment and Results Analysis
4.1. Dataset

In this paper, we evaluate our model on three widely used sentiment analysis datasets,
namely Laptop14 [23], Restaurant14 [23], and Twitter [24] datasets; the statistical results of
data information of each dataset are shown in Table 1.

Table 1. Experimental data statistics.

Datasets Train Dev Test

Laptop14
POS 881 104 339
NEG 754 106 130
NEU 406 46 165

Restaurant14
POS 1956 213 728
NEG 735 64 195
NEU 575 52 197

Twitter
POS 549 69 73
NEG 212 24 30
NEU 1811 203 233

4.2. Model Parameters

The experiment uses the “BERT-base-uncased” model of the pre-trained model BERT,
where the number of transformer layers L = 12, the embedding dimension d = 768, using
the Adam optimizer, all dropout rates of the model are set to 0.1, use Precision, Recall, and
F1 as metrics to evaluate the model, the calculation formula is shown in Equation (14). For
each dataset, the batch size is set to 16, the learning rate is set to 3 × 10−5, the number of
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training steps is set to 3000 steps, and a result is obtained every 100 steps, with the best
result as the experimental result. For each dataset, set the number of layers l for different
task sharing layers, Laptop14 set to 10, Restaurant14 to 11, and Twitter to 12.

F1 = 2× Precision× Recall
Precision + Recall

(14)

4.3. Baseline Methods

We compare our model with the following models:

• LM-LSTM-CRF [25]: It is a language model-enhanced LSTM-CRF model, which
achieved competitive results on several sequence-labeling tasks;

• E2E-TBSA [6]: Two stacked LSTMs were used to perform two tasks, target boundary
detection and complete ABSA, respectively, and two auxiliary components were designed;

• DOER [13]: A double-cross shared RNN framework that jointly trains ATE and ASC
for two tasks, considering the relationship between aspect and polarity;

• IMN [14]: An interactive multi-task learning model for the joint extraction of joint
aspect items and opinion items, as well as ASC, and introduces a novel messaging
mechanism that allows information interaction between tasks;

• BERT-E2E-ABSA [16]: Applying BERT to ABSA, they constructed a series of simple
but effective neural baselines for this problem, using the best-performing BERT + GRU
as a reference;

• SPAN [26]: A pipelined approach in which one model is used for ATE tasks, and then
another model is used for ASC tasks;

• DREGCN [27]: An end-to-end interaction architecture based on multi-task learn-
ing relying on syntactic knowledge enhancement, the model uses well-designed
dependency-embedding graph convolutional networks to make full use of syntactic
knowledge and also designs a simple and effective messaging mechanism to realize
multi-task learning;

• DCRAN [18]: A deeply contextualized relationship-aware network that allows implicit
interaction between subtasks in a more efficient way and allows two explicit self-
supervised strategies for deep context and relationship-aware learning.

4.4. Experimental Results

The comparison results between the model and each model in this paper are shown
in Table 2. Glove indicates that the model is based on the Glove [28] word vector model,
and BERT indicates that the model is based on the “BERT-base-uncased” model of the
pre-trained model BERT. P stands for Precision, and R stands for Recall.

Table 2. Compare experimental results (%).

Model
Laptop14 Restaurant14 Twitter

P R F1 P R F1 P R F1

GLOVE

LM-LSTM-CRF 53.31 59.40 56.19 68.46 64.43 66.38 43.52 52.01 47.35
E2E-TBSA 61.27 54.89 57.90 68.64 71.01 66.60 53.08 43.56 48.01
IMN - - 57.66 - - 68.32 - - 51.31
DOER 61.43 59.31 60.35 80.32 66.54 72.78 55.54 47.79 51.37

BERT

BERT-E2E 61.88 60.47 61.12 72.92 76.72 74.72 57.63 54.47 55.94
SPAN 66.19 58.68 62.21 71.22 71.91 71.57 60.92 52.24 56.21
DREGCN - - 63.04 - - 72.60 - - -
DCRAN - - 65.18 - - 75.77 - - -

Our method 67.73 63.56 65.58 76.92 77.05 76.98 62.22 60.66 61.43

Through the comparative analysis in Table 2, it can be seen that the effect of the Glove-
based model is significantly lower than that of the BERT model, indicating that the BERT
model is better than the Glove in this task.

On the Laptop14 dataset, our model is the best on all three metrics and 0.4% higher
than the best DCRAN on F1. On the Restaurant14 dataset, our model has the best results
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on the Recall and F1 metrics, with F1 values 1.21% higher than the best DCRAN and DOER
the best on Precision, but its Recall is low and lower than most models, indicating that their
model can predict a small number of correct ones. On the Twitter dataset, our model is the
best on three indicators, especially on Recall, which is 6.19% higher than the best BERT-E2E
and 5.22% higher than the best SPAN on F1 values, which indicates that our model has
good predictive performance, not only predicting more but also correctly.

Compared with DREGCN, using dependent syntactic knowledge enhancement, the
results of this model are greatly improved, which shows that we can make good use of the
context information and dependencies of text using the multi-head attention mechanism.

In addition, we have also completed experiments on the Restaurant15 dataset; the
results are in line with our expectations, and all indicators are higher than these models.

4.5. Ablation Study

In order to verify the effectiveness of the interaction between the aspects and the
components that maintain sentiment consistency, an ablation experiment is performed on
three datasets with consistent settings.

For verifying the validity of the interaction between aspect items, the redundant BERT
layer is no longer used to extract the aspect items, and the final output of BERT is directly
input into the transformer decoder module, and a transformer decoder module is reduced;
only the interaction between subtasks is performed, and the objective function becomes a
loss function with only the final prediction result.

For verifying the validity of the component that maintains sentiment consistency, the
component is removed, and the representation of the sentiment features that come out of the
transformer decoder module is classified directly through the softmax classification layer.

The results of the ablation experiment are shown in Table 3, and it can be seen from
the table that after removing the interaction of the aspect items, the proposed model per-
formance has a certain degree of degradation on the three datasets, with F1 decreasing by
2.21, 1.72, and 0.72%. After removing the sentiment consistency component, the degrada-
tion in model performance was small, with F1 decreasing by 1.68, 0.86, and 0.31%. From
these two experiments, it can be shown that the interaction between the aspect items is
effective with the emotionally consistent components. The term w/o means to remove
the module, ATI represents the interaction between aspect items, and MSC represents the
sentiment consistency component.

Table 3. Results of ablation experiments (%).

Model
Laptop14 Restaurant14 Twitter

P R F1 P R F1 P R F1

Full model 67.73 63.56 65.58 76.92 77.05 76.98 62.22 60.66 61.43
w/o ATI 65.01 61.83 63.37 75.00 75.54 75.26 61.43 60.01 60.71
w/o MSC 65.78 62.15 63.90 76.53 75.71 76.12 61.95 60.31 61.12

4.6. The Number of Task-Sharing Layers

In order to study the optimal value of the number of shared layers l when BERT is used
as the task-sharing layer, this paper conducts a comparative experiment. The experiment is
carried out on three datasets using the BERT model, except that the number of task-sharing
layers l is inconsistent, and other parameter settings are consistent. In this paper, the
number of layers shared by tasks is experimented on from 1 to 12, the performance of the
model under the number of layers shared by different tasks is tested, and the optimal value
is determined by comparing the F1 values. The results are shown in Table 4.
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Table 4. The performance comparison results of different shared layer numbers (F1%).

l Laptop14 Restaurant14 Twitter

1 65.30 75.41 60.74
2 64.45 76.21 60.67
3 64.75 76.08 60.25
4 64.99 75.92 61.13
5 63.96 75.78 60.64
6 65.00 75.94 60.13
7 65.20 76.36 60.50
8 63.82 76.01 60.93
9 64.78 76.19 61.11
10 65.58 75.44 61.43
11 64.89 76.98 60.63
12 65.28 76.03 60.89

As can be seen from Table 4, the optimal number of task-sharing layers l is not the
same for different datasets. On the Laptop14 dataset, the performance is best at layer 10;
on Restaurant14, the performance is best at layer 11; and on the Twitter dataset, the
performance is best at layer 10. From this experiment, it can be concluded that the output
of the later layers of BERT contains more information features required for this task, but
it is not that the higher the number of layers, the better the performance. However, this
optimal number of shared layers is susceptible to various influences and cannot find a
common value.

5. Conclusions

In this paper, an interactive learning network that maintains sentiment consistency is
proposed to handle sentiment analysis tasks at the end-to-end aspect based. This paper uses
the task-sharing layer and multi-head attention mechanism to realize the interaction of the
two subtasks of aspect item extraction and aspect sentiment classification, consider the rela-
tionship between aspect items, and use the context information of the whole text. Auxiliary
components are also built using gate mechanisms to maintain sentiment alignment. The
experimental results show that our model has better performance than previous studies,
especially on the Twitter dataset, which is a big improvement. Future work could add
auxiliary modules to the model, such as modules to improve the performance of extracting
aspects in intermediate processes or build a more efficient interaction module.
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