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Abstract: The digitalization of music has led to increased availability of music globally, and this
spread has further raised the possibility of plagiarism. Numerous methods have been proposed to
analyze the similarity between two pieces of music. However, these traditional methods are either
focused on good processing speed at the expense of accuracy or they are not able to properly identify
the correct features and the related feature weights needed for achieving accurate comparison results.
Therefore, to overcome these issues, we introduce a novel model for detecting plagiarism between two
given pieces of music. The model does this with a focus on the accuracy of the similarity comparison.
In this paper, we make the following three contributions. First, we propose the use of provenance
data along with musical data to improve the accuracy of the model’s similarity comparison results.
Second, we propose a deep learning-based method to classify the similarity level of a given pair of
songs. Finally, using linear regression, we find the optimized weights of extracted features following
the ground truth data provided by music experts. We used the main dataset, containing 3800 pieces
of music, to evaluate the proposed method’s accuracy; we also developed several additional datasets
with their own established ground truths. The experimental results show that our method, which we
call ‘TruMuzic’, improves the overall accuracy of music similarity comparison by 10% compared to
the other state-of-the-art methods from recent literature.

Keywords: music plagiarism detection; data provenance; deep learning; data trustworthiness; music
information retrieval

1. Introduction

Music plagiarism refers to the illicit copying or close imitation of another musician’s
composition. It is the fundamental cause of enormous losses in revenue for original artists
in the music industry. Moreover, with the rise of social media platforms such as YouTube
and Soundcloud, plagiarism accusations have also become more prevalent. These social
platforms allow users to comment on the piece of music, this is where terms and phrases
describing plagiarism accusations are often formulated. There is a constant stream of these,
often in the form of click-bait lists. The number of accusations appearing only in the US
more than doubled from 2010–2019 compared to 2000–2009. Fink et al. [1] claimed that
the loss of sales from the U.S. economy was approximately 58 billion USD a year. This
also resulted in the loss of 373,000 jobs, and the resulting loss of revenue from those jobs
amounted to an additional 16.3 billion USD. Furthermore, tax collection was reduced by
2.6 billion USD. Another report, “Innovation Policy and the Economy” [2], claims that
global music sales have decreased from 40 billion USD in 1995–1996 to 15 billion USD in
2014 due to music plagiarism. Moreover, there are other issues such as stealing musical
ideas, not crediting the original contributors, and false accusations that need to be addressed
by the music industry, for example, Bruno Mars, had six separate accusers that his song
“Uptown funk” was plagiarized [3]. All this means that the classification of similarity, which
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refers to the degree of plagiarism between two songs, is a critical issue, since knowing
how similar two songs are help in discerning intentional copies from unintentional copies.
To resolve these issues, several organizations function as bridges by offering a platform
for artists and other businesses to interact and secure their work concerning the relevant
copyright laws. The ASCAP (American Society of Composers, Authors, and Publishers),
which is a world leader in performing rights and advocacy for music creators, reported
higher domestic revenues of 1.27 billion USD in 2019, a 47 million USD increase over
2018. Other organizations that are similar to ASCAP, such as SACEM (Society of Authors,
Composers, Editors, and Musicians) and BMI (Broadcast Music Incorporation), work in
their own countries and regions, performing similar roles. One of the main aims of these
organizations is to help in the decision-making process once complaints about plagiarism
surface. Music plagiarism cases sometimes end in voluntary, out-of-court settlements.
However, these settlements are not usually guaranteed to be successful for the artist that
has been copied due to the different dynamics involved in monopoly negotiations. In
addition, the long delay between the original accusation judgment is also a critical issue,
even in successful ASCAP, SACEM, or volunteer settlements [3]. Nevertheless, a substantial
number of songs have been copied, and this malpractice continues at a fast pace. Detecting
plagiarism is a challenging task. For instance, in 2004, SACEM was only able to verify
18,000 out of 250,000 registered complaints [4]. Unfortunately, with the increasing number
of plagiarism cases, this gap is only getting wider every year.

In the past two decades, the music industry has witnessed several technological
advancements that directly or indirectly contribute to music plagiarism. First, the digital-
ization and compression techniques used for storing, processing, collecting, and querying
music make listening to music vastly more affordable and accessible. Discogs is a crowd-
funded database that offers 1.5 billion tracks [5]. While other music databases or services,
such as YouTube or SoundCloud also provide easy access to a vast amount of music. Second,
the influx of software-based music editing tools over recent years has allowed musicians
(even novices) to customize original pieces of music that many then go on to claim as their
own unique work. Third, high-speed internet and progress with music-related middleware
tools have improved the accessibility of music around the world while also speeding up
composers’ workflows. The current global accessibility of music, which has been facili-
tated by these advances, is among the fundamental reasons that have contributed to the
growth of the music business. However, these advances also raise significant challenges
for the music industry regarding music plagiarism. Novel methods and tools are needed
to efficiently and transparently measure indications of plagiarism. Typically, when music
plagiarism cases are brought to court, they often ask music experts and musicologists to
analyze the similarities between two songs, the final judgments then rely entirely on whose
subjective opinion of the court fact-finders choose to believe. Plagiarism claims are very
challenging to verify because music experts are not reliable, especially as they are being
paid by each side to support their case, and with the thousands of cases being registered,
it is not practically feasible to recruit the enormous numbers of unbiased music experts
needed. Hence, a technical tool for music similarity analysis between two songs can play
the vital role of a scientific reference for decision-making, speeding up the analysis process,
and assisting in faster judgments being made. Therefore, a computer-based approach to
musical similarity comparisons is needed to detect plagiarism efficiently.

Thus far, various similarity approaches have been applied to music retrieval techniques.
However, few pieces of research have addressed detecting when music has been copied,
including [6–8], respectively. Due to the limitations of the current state-of-the-art methods,
the accuracy of the comparison results is often limited. Existing similarity models also
find it challenging to address another issue: computing the degree of plagiarism present.
In real-world music comparison, it is not enough to just determine if a song is similar
to another one, we must also know how similar it is (using a score/measure), to help
determine if the similarity is intentional or not. In addition to straight plagiarism, there is
another issue of stealing from coworkers or not giving them proper credit. In their paper,
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Cameron et al. [3] raised the question of how to determine the various contributions from
each member of a music group. The research objectives of this work are as follows:

• To develop a solution that allows users to accurately compare two pieces of music,
with accuracy being the main goal of the model above other considerations.

• Use a provenance-based approach, which can further help to identify the source’s
trustworthiness and determine the contribution of a musician or a group of musicians
to a piece of music.

• To find a deep learning-based solution that learns from expert knowledge regarding
similarity comparison and then classifies the similarity level of any two given songs.

• To compare the similarity among the various musical features, our model identifies
the given pieces of music and also discovers the right weights for those features.

Our provenance-based method focuses on the origin of the music as well as the
authenticity of the sources. Provenance, when it comes to music data, provides authentic
information about the history of the musical piece and its composer. This information
improves the overall accuracy of our process and helps the model identify plagiarism
without hesitation or long deliberation.

In this paper, we present a novel music plagiarism detection approach called TruMuzic
that exploits provenance information in music as well as the music content itself. Music
theory states that there are weak and strong beat positions in musical composition [9].
Music plagiarism detection is a complicated issue; plagiarism should not only be judged
in quantitative terms but also be looked at from a qualitative point of view. For example,
n copied notes in the middle of a song do not have the same impact as the same number
of copied notes at the beginning of the song. Most similarity comparison methods fail
to properly address this issue as they merely compare the overall amount or degree of
similar notes. Therefore, we present a theme-based comparison method, where notes are
stored in smaller musical units called “phrases”. These phrases can be compared and
weighed individually or all together based on their overall similarity scores. We can then
generate our final similarity scores based on a combination of both. The final similarity
score for two sets of musical notes depends on three things: (1) the frequency of copied
notes, (2) the location of those copied notes, and (3) the overall percentage of the copied
notes. In addition, the scores generated can also be influenced by comparing pitch, census,
and provenance data. TruMuzic works as follows, it computes the similarity between two
pieces of music based on four types of data: musical notes, pitch, census, and provenance
data. We then compare two pieces of music looking for similarities, and this results in
generating a similarity score. Our simple mulitilayer model with five nodes uses a deep
learning-based method to weigh the importance of these four individual data types. These
weights can be adjusted to further improve the model’s overall precision when giving a
similarity score.

We developed a comprehensive framework that uses a combination of musical and
provenance data to evaluate the similarity between two given pieces of music. The funda-
mental notion behind data provenance is the process of tracing and recording the origins
and development path of the musical data. This recorded data can be applied as an ad-
ditional tool for evaluating the trustworthiness of a given piece of data [10]. We also use
a 12-tone composition comparison method on the notes in the songs being evaluated,
this eliminates the possibility of ignoring similar notes during the comparison. Another
issue with evaluating the accuracy of any similarity measurement model is developing a
ground truth dataset to serve as the basis for making similarity comparisons. To evaluate
comparison methods, we first establish the ground truth with the help of music experts, this
ground truth then serves as training data for our deep learning-based weight distribution
model. Next, in this paper, we compare TruMuzic with other state-of-the-art (SOTA) music
similarity comparison methods for recent and established research [9,11–15]. Experimental
analysis shows that our model is better at making similarity evaluations, by 10% in terms of
overall accuracy, compared to the existing SOTA models. We summarize the contributions
of our work as follows.
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• We introduce TruMuzic, a deep learning-based music similarity comparison model
that computes the similarity scores between any two given pieces of music based on
several data types (musical properties).

• We present the significance of using provenance data in making music similarity
comparisons.

• An extensive evaluation of the performance of TruMuzic was performed to look into
the importance of the various calculated musical features.

• We also evaluate the overall accuracy and efficiency of our model compared to other
traditional and SOTA methods.

The rest of this paper is organized as follows: Section 2 presents related work along
with the history and evaluation of music information retrieval (MIR), music plagiarism, and
data provenance. Section 3 describes the basic concepts and working mechanisms of our
model. It also explains the proposed model’s similarity score generation for both musical
sources and musical data. Section 4 presents the experimental results of our research, while
in Section 5, we discuss the results achieved by our model. Finally, we conclude the paper
in Section 6.

2. Related Work

This research work combines various technologies and musical concepts. Hence, in
this section, we will cover all these areas and discuss their specific aspects that relate to
music. We classify the related work into 3 Sections; first, in Section 2.1, we describe the
music plagiarism detection works, while in Section 2.2, we discuss data provenance-based
trust evaluation methods. In Section 2.3, we describe how deep learning-based music
similarity comparison research works. Finally, in the concluding part of this section, we
present the distinctive attributes of our model in comparison to existing works. Moreover,
we address a pertinent query: can the aforementioned related methodologies effectively
incorporate our dataset for the purpose of similarity analysis?

Music similarity comparison models use a wide variety of approaches for measuring
the distance between given pieces of music. These approaches often comprise both the
selection of musical features and the choice of an appropriate distance function. Generally,
the similarity methods used can be put into one of two broad categories: (1) note-based
and (2) frame-based methods. The following describes a more granular categorization of
the various approaches used in this problem: (1) string matching approach, (2) geometric
approach, (3) n-gram-based approach, (4) ground truth-based approach, (5) probability-
based similarity, and (6) hybrid approach [16]. Recently, many research works, including
those by Son et al. [17], and Buckers et al. [18], have again addressed MIR. However, most
of the research work on MIR in recent times has been based on deep learning, as we will
explore in Section 2.3.

2.1. Music Plagiarism Detection

Music plagiarism is the process of presenting another musician’s work as your own.
According to Keyt et al. [19], the basic framework of a plagiarism lawsuit requires proving
three elements. First, whether a valid copyright protects the piece of music. Second, whether
the piece of music is “copied” or not. Third, whether the copying can be considered beyond
the question of coincidence. From a technical point of view, a reliable music plagiarism
detection framework makes it possible to prove the second and third elements from above,
as it makes it possible to confirm whether a piece of music has been copied and to what
degree. According to Dittmar et al. [6], music plagiarism can be further categorized into
three subcategories. The first is sampling plagiarism, which refers to the reuse of a small
part of a previously recorded piece of music [20]. In other words, sampling creates a “song
within a song.” To use these samples in new, original pieces of music, the samples are
manipulated in pitch or tempo, mixed with additional instruments, or rearranged in a
loop with cropped portions, taking the new piece beyond recognition of the original from
which the sample was taken. The second is rhythm plagiarism, which refers to the copying
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of a piece of music but making modifications to the original rhythm. In other words, it
focuses on adjustments in the periodic pattern of beats in the various frequency bands.
There has not been much work done on rhythmic plagiarism, but some researchers, such
as Paulus et al. [21] and Foote et al. [22], have presented rhythmic similarity, estimation
models. The third is melody plagiarism, which is a gray area, where similarity comparisons
are challenging. A melody can be considered copied, even if it is transformed into another
key, slowed down, or sped up in tempo. Muller et al. [23] have presented solutions for
melody plagiarism detection techniques.

Another approach for music plagiarism detection is called the “visualization ap-
proach,” where the goal is to translate two pieces of music’s similarity into visual terms [15].
Similarly, graph-based representations have been created, but generally for the readability
and effectiveness of nodes, for example [15,24]. In the paper by Muelder et al. [25], the
authors presented a graph-based visual interface for exploring a library of music, where
the music content was analyzed rather than the tag information. In the graph, each node
represents a song, and the connection between nodes is weighted according to a Fourier
Transform-based similarity measure. Furthermore, using the graph matching-based ap-
proach, [9] proposed a method that treated melodies as graphs with consecutive nodes;
in this work, the melodies being compared are transformed into bipartite graphs. The
similarities between melodies can then be determined based on maximum weight matching
and edit distance algorithms. In another recent work, Six et al. [26] described duplicate
detection techniques and presented a metadata-based solution to detect duplicate digital
audio in an archive, while Borker et al. [7] proposed an audio fingerprinting and segment
matching-based model for music plagiarism detection. Garcia et al. [27] present an audio
spectrogram-based method for detecting the similarity between two musical pieces. Malan-
drino et al. [28] propose a hybrid method combining text-similarity and clustering-based
methods to generate similarity between two songs.

2.2. Data Provenance-Based Music Trustworthiness

Provenance is a combination of techniques to evaluate the trustworthiness of data
that works by analyzing the origin and paths taken by the music data. According to
Hu et al. [29], data provenance is the analysis of metadata derived from tracking the
paths and sources of that data. Historically, trustworthiness evaluation frameworks
have been built around the following aspects: data integrity, data quality, systems, and
data provenance.

Data provenance is a slightly new concept compared with the other three.
Buneman et al. [30] presented the “why and where” concept of data provenance. Data
provenance works on the notion of “why” a piece of data exists and from “where” this
data has emerged. Widom [31] introduced a Trio system that works using information
management regarding data provenance and data accuracy. They associated both accuracy
and provenance as an integrated part of their data management and query processing.

Gupta et al. [32] proposed a trustworthiness framework, called TRUTHFINDER,
that focuses on the trustworthiness of Web services. Liang [33] presented a data prove-
nance architecture using blockchain technology. In recent data provenance-based works,
Aichroth et al. [34] presented a study of audio forensics and provenance analysis technolo-
gies, while McGarry et al. [35] proposed a provenance-based study of the music production
domain to understand and support music production systems.

2.3. Deep Learning in MIR Data

We now describe a brief history of deep learning-based contributions to MIR. Deep
learning is mainly used in fields such as image classification and text generation. In
music-based research, deep learning has only been introduced recently. Lee et al. [36]
presented a deep convolutional network for extracting features from music in a genre
classification framework. Briot et al. [37] presented a survey that reviewed the deep
neural-based architectures used for generating monophonic and polyphonic music. In
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some other recent works; Pacha et al. [38], aimed to provide a baseline for detecting mu-
sical symbols using deep learning, and Oramas et al. [39], present a multimodel-based
approach to classify music genres. Schedl [40] reviews the music recommendation sys-
tems based on deep learning. Zheng et al. [41] present a deep learning-enabled music
genre classification method, and Majidi et al. [42] propose a deep learning-based method
for automatic music generation. Yang et al. [43] present a deep learning-based method
for music content recognition and recommendation system, Lee et al. [44], propose a
deep metric learning-based music similarity evaluation system, Elbir et al. [45], intro-
duce MusicRecNet, a CNN-based model which is trained for music similarity analysis,
Yesiler et al. [46] and Du et al. [47] present deep learning based methods for identifying
cover songs, Thome et al. [48] presented a CNN-based music similarity-based search engine,
to help find similar songs for video production and Dhand et al. [49] proposed a system
that detects the mood of the user and is further trained with a logistic regression-based
model to recommend music based on the user’s facial expressions.

In music similarity analysis, a predominant focus emerges on two primary types
of comparative data: music notes and musical pitch. This trend is underscored by the
methodology employed in MESMF [9], Borkar et al. [7], and SiMPle [12] methods, as
elucidated in Sections 3.2 and 4. These approaches use music notes for their similarity
analysis. However, an intriguing observation arises when examining the utilization of
census and provenance data within these related works. Remarkably, these two datatypes
remain relatively unexplored in the context of music similarity analysis. A distinct avenue
of exploration unveils itself through research works such as in the case of Holten [24] and
Muelder [25], which uses graphical visualization methods. Furthermore, Malandrino [28]
and Yang [43] introduce text and content-based similarity analysis techniques. The cus-
tomization of these diverse methodologies in association with notes-based methods can
opens up possibilities for adapting them to the potential use of census and provenance
data. The main idea behind TruMuzic is that we focus mainly on accuracy of the plagiarism
detection, hence we include all these types data. A detailed explanation of these technical
comparisons is provide in Section 4 of the paper. In the next section, we explain the concept
of our model in detail.

3. TruMuzic: Deep Learning and Data Provenance-based Plagiarism-Detection

In this section, we explain the concept behind TruMuzic and look at the working
mechanism of its approach. First, we describe how musical features and their presentation
are used in our framework in Section 3.1. Next, we explain the methods used in computing
the similarity of these features in Section 3.2. In Section 3.3, we introduce a deep neural
network-based embedded solution to improve the overall accuracy of the model and
provide the right distribution of feature weights. Finally, in Section 3.4, we define the
overall functionality of the proposed solution.

3.1. Music Feature Representation

Generally, music comes in one of two digital formats. The first format is the acoustic
representation, where the audio intensity is recorded about the time while being sampled
at a particular frequency. Examples of acoustic music formats include mp3, mp4, and
.au files. The second format is the structural representation, where music is described
by musical scores, which give information such as pitch values or duration of notes.
Examples of structured music formats include MIDI and humdrum data. Score-based
musical data are quite suitable for similarity-based computation in MIR. In this paper, we
use structured music data for plagiarism detection. We classify the musical data used into
three categories: (1) musical notes, (2) pitch data, and (3) census data. We also introduce
the use of provenance data in music similarity comparison as a fourth category to consider
in comparisons, as shown in Figure 1. In this paper, we use a combination of music data
through “http://kern.ccarh.org/ (accessed on 20 May 2018)”, provided by the Center for
Computer-Assisted Research in the Humanities (CCARH) at Stanford University. It hosts

http://kern.ccarh.org/


Appl. Sci. 2023, 13, 9425 7 of 28

a large collection of music scores in the Humdrum file format, which is a plain-text file
format used for representing musical data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 29 
 

of structured music formats include MIDI and humdrum data. Score-based musical data 
are quite suitable for similarity-based computation in MIR. In this paper, we use struc-
tured music data for plagiarism detection. We classify the musical data used into three 
categories: (1) musical notes, (2) pitch data, and (3) census data. We also introduce the use 
of provenance data in music similarity comparison as a fourth category to consider in 
comparisons, as shown in Figure 1. In this paper, we use a combination of music data 
through “http://kern.ccarh.org/ (accessed on 20 May 2018)”, provided by the Center for 
Computer-Assisted Research in the Humanities (CCARH) at Stanford University. It hosts 
a large collection of music scores in the Humdrum file format, which is a plain-text file 
format used for representing musical data. 

All four of these features are used in TruMuzic, their similarity comparisons are ex-
plained below. 

 
Figure 1. Main categories of music feature representation. 

3.1.1. Musical Notes 
A note in music is a symbol that represents the sound of the music. The notes used 

in composing a musical piece are the most important and most used data types in MIR 
applications. Our model also uses the 12-tone theory to cluster similar notes, this 12-tone-
based classification helps in copying detection where similar-sounding notes are used in-
stead of the original notes. The notes data used in this paper is accessed from the 
“http://kern.ccarh.org/ (accessed on 20 May 2018)”, website hosts a collection of music 
scores in the Humdrum file format. The Humdrum format is a plaintext representation of 
music, which is mainly used for research purposes. We store the musical notes in small 
musical units called phrases, each consisting of 16 beats. This allows us to direct our sim-
ilarity comparisons to the desired locations in the two given songs.  

3.1.2. Pitch and Census Data 
Pitch in music is the measurable value of a music note by which we can determine 

whether a note is high or low. A musical note that has a steady frequency with a 

Figure 1. Main categories of music feature representation.

All four of these features are used in TruMuzic, their similarity comparisons are
explained below.

3.1.1. Musical Notes

A note in music is a symbol that represents the sound of the music. The notes
used in composing a musical piece are the most important and most used data types
in MIR applications. Our model also uses the 12-tone theory to cluster similar notes, this
12-tone-based classification helps in copying detection where similar-sounding notes are
used instead of the original notes. The notes data used in this paper is accessed from the
“http://kern.ccarh.org/ (accessed on 20 May 2018)”, website hosts a collection of music
scores in the Humdrum file format. The Humdrum format is a plaintext representation of
music, which is mainly used for research purposes. We store the musical notes in small
musical units called phrases, each consisting of 16 beats. This allows us to direct our
similarity comparisons to the desired locations in the two given songs.

3.1.2. Pitch and Census Data

Pitch in music is the measurable value of a music note by which we can determine
whether a note is high or low. A musical note that has a steady frequency with a qualitative
hertz value is said to have a definite pitch. In this paper, we use these definite pitch notes
in our similarity comparisons. Census data in music refers to metadata related to musical
pitch and notes. The process of generating the census data provided in this paper involves

http://kern.ccarh.org/
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analyzing and extracting specific musical characteristics from a given musical composition.
Census data provides a concise summary of key characteristics of the musical composition,
such as the number of notes, pitch range, note duration, loudness, and mood. We also
include intensity and spirit scores in our evaluations, these scores represent the loudness
and mood of the music, respectively. A song with an intensity score of 9 or 10 would be very
loud and intense, and similarly, a song with a high spirit score would be a very happy and
positive song. Tables 1 and 2 present sample sets of the census and pitch data used in our
model. Moreover, the properties of both the pitch and census data are similar; hence, we
use cosine similarity for calculating the similarity between two pieces of music. Although
in experimental evaluations, we also used both these features separately. Generating census
data requires human expertise and interpretation, especially for subjective measurements
like mood and intensity.

Table 1. Sample Census data extracted from music samples.

Data Type Census Score

No. of note heads 85
No. of notes 85
Longest note 4
Shortest note 31
Highest note CCC
Lowest note FF
No. of rests 0

Maximum no. of voices 2
Intensity score (loudness) 4

Spirit score (Mood) 6

Table 2. Sample Pitch data extracted from music samples.

12-Tone-Pitch Class Pitch Score

0 18.5
1 0
2 6.5
3 0
4 19
5 3
6 0
7 9
8 0
9 0
10 0
11 2
12 0

3.1.3. Provenance Data

Provenance refers to the history and source of the data in question. In the field of
music, this often consists of the history of the song including information on the composers,
the origin of the music, parental work, time, country, and the group of countries involved in
the composition. As we will see in the experimental results, provenance data by itself does
not improve accuracy, but it allows significant improvements in combination with other
data types. This paper classifies provenance data into two categories: (1) data-oriented
provenance shown in Table 3 and (2) source-oriented provenance shown in Table 4. Data-
oriented provenance refers to the history and path of a song, for example, the country of
composition, related parental work (folk), the genre of the song, etc. In source-oriented
provenance, provides a score to the composer based on his/her copying history as shown
in Table 5. The data-oriented provenance data is accessed from the “http://kern.ccarh.org/

http://kern.ccarh.org/
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(accessed on 20 May 2018)” website and the source-oriented provenance data is generated
by our music experts. Generating provenance data in music involves a combination of
archival research, historical documentation, musicological analysis, expert knowledge, and
sometimes subjective interpretation. Moreover, we also consider copying patterns based
on whether the copying pattern matches the other song or not. We keep the categories
and their marking soft to improve score computation; Tables 3 and 4 show the data and
source-oriented provenance data, respectively. For example, according to Cameron et al. [3],
Ed Sheeran faces four accusations of plagiarism, while Adele has only one for her song “A
Million Years Ago”, hence, the source trustworthiness scores may differ in the cases of Ed
Sheeran and Adele.

Table 3. Sample data-oriented provenance data.

S. No Provenance Data

1 Country of composition
2 Parental work
3 Music genre
4 History of Collaboration
5 Place of Publication/Release
6 Common publisher/distributor
7 Connection with folk music
8 Common artist

Table 4. Sample source-oriented provenance data.

S. No Scores

1 Source trustworthiness score
(Refer to Table 5 of this paper)

2 Copying pattern score

Table 5. Source-oriented provenance and trustworthy scores for compositions.

Comp. Category Percentage of Copied Songs Score Given

Original 0–1% 0.09
Coincidental 1–3% 0.08
Influenced 3–5% 0.06

Copied More than 5% 0.05

3.2. Similarity Score Computation from Music Data

To compute the similarities between the above-explained features in the two songs,
we use three different methods, each based on the individualistic nature of the related
data type. Below, we describe the similarity computing methods for each data type, one
by one. To select similarity measurements, while also looking at their suitability to use
with the given data type, our model also considers these methods’ simplicity, effectiveness,
and ability to optimize. We use Cosine similarity for pitch and census data, this computes
the cosine of the angle between two vectors. The advantage of this metric is that it helps
overcome the issue of size variance, where due to size differences between the two pieces
of music some features may appear far apart in terms of Euclidean distance, even if they
are similar. Similarly, we use Jaccard similarity when analyzing provenance data as it is
suitable for the data type and effective for text mining of two sets of data. For musical
notes we use a Dynamic time wrapping (DTW)-based approach for making similarity
comparisons, this helps to deal with incompatibility between the initiative and calculated
distances between music notes. DTW is a commonly used distance measurement for
speech processing, bioinformatics, and other time-series data analysis. DTW helps to
recover optimal alignment, which minimizes the cumulative distance between two sets of
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musical notes. As shown in the internal comparison in Section 4, using DTW improves
the accuracy of similarity comparisons. Our model evaluations come closest to the ground
truth along with the MESMF [9], Borkar et al. [7], and SiMPle [12] methods.

3.2.1. Musical Notes Data

To calculate the DTW between the data song P and query song Q, the following steps
are performed. Let P(p1, . . . , pn) and Q(q1, . . . , qm) be any two series with lengths of n and
m, respectively; these series are to be used for similarity comparisons. Hence, an n × m
matrix can be defined to represent the note-to-note correspondence relationship between P
and Q, where the elements in this matrix indicate the Euclidean distance d

(
pi, qj

)
between

pi and qj which is defined as:

d
(

pi, qj
)
=

√{(
pi − qj

)2
}

(1)

The alignment and warping between each note in P and Q can be represented by a time-
warping path W =< w1, . . . , wk >, max(n, m) ≤ k < n + m− 1. The element wk =

(
pi, qj

)
represents the alignment and the matching relationship between pi, i ∈ n, and qj, j ∈ m.

The criterion to meet the lowest-cost path between the given series is:

DTW(P, Q) = min
W

{
∑k

1 dk, W =< w1, . . . , wk >} (2)

where dk = d
(

pi, qj
)

and wk ∈ pathW.
Therefore, the dynamic time warping can be defined as:

DTW(P, Q) = d
(

pi, qj
)
+ min


DTW(P, Q[2 : end])
DTW(P[2 : end], Q)

DTW(P[2 : end], Q[2 : end])

 (3)

A dynamic programming method based on the accumulated distance matrix is imple-
mented. The algorithm is constructed based on the above equation.

r(i, j) = d
(

pi, qj
)
+ min{r(i− 1, j), r(i, j− 1), r(i− 1, j− 1)} (4)

The final similarity score is given by Sn.

3.2.2. Pitch and Census Data

Cosine similarity is equal to the cosine of the angle between the two-time series,
i.e., it determines whether the series are pointing in the same direction. Mathematically, it
is defined by the inner product of the time series. The comparison between P and Q songs
is created using the cosine similarity function as follows:

sim(P, Q) =
P.Q
|P||Q| =

∑n
i (pi.qi)√

p2
1 + . . . + p2

n

√
q2

1 + . . . + q2
n

(5)

The function returns the similarity scores, Sp and Sc, for pitch and census data, respec-
tively, as shown in Algorithms 1–3.
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Algorithm 1 Computing the DTW for musical note data.

Input: Pair of songs pi ∈ P, qi ∈ Q;
Notes divided into ‘themes’ of songs P and Q.

Output: Similarity scores (Sn)
Function: DTW
Steps:

1. read the themes of both songs
2. dtw← zeros[length o f the input]
3. dtw(0, 0)← 0
4. apply DTW
5. loop:
6. compute distance, dij ← from eq. 1
7. dtw(i, 1)← dtw(i− 1, 1) + di1
8. dtw(1, j)← dtw(1, j− 1) + d1j

9. Cost Matrix, dtw(i, j)← dij + min{dtw(i− 1, j); dtw(i, j− 1); dtw(i− 1, j− 1)}
10. return Sn

Algorithm 2 Computing the Cosine Similarity for pitch and census data.

Input: Pair of songs pi ∈ P, qi ∈ Q.
Sets of pitch datasets of census data for songs P and Q.

Output: Pitch and census data similarity scores (Sp, Sc)
Function: Cosine Sim
Steps:

1. read the set of pitch/census data
2. function CosineSim :
3. num = sum(p.q)
4. modp = sqrt((p.̂2)
5. modq = sqrt((q.̂2)
6. simpq = num

modp .modq

return Sp and Sc

Algorithm 3 Computing the Jaccard similarity for the provenance data.

Input: Pair of songs pi ∈ P, qi ∈ Q;
Set of provenances for both data P d and source Ps.

Output: Provenance similarity scores (Spr)
Function: JaccardSim
Steps:

1. read Set of data provenance Pd
2. apply Function JaccardSim
3. num = abs(intersection(p, q))
4. den = abs(union(p, q) )
5. simpq = num

den
6. return Pd = simpq
7. compute Ps

return Spr = Pd + Ps

3.2.3. Provenance Data

Considering the nature of provenance data, we used a token-based Jaccard similarity
method to compare two sets of such data, P and Q. We used a hash map-based Jaccard
method to avoid overlap issues [50].

Consider the two strings to be compared, P and Q, where P = {Germany, Classical}
and Q = {Ravel, Germany, Classical}. Here, the JAC (d,q) = 2/3. We compute the overlap
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size by building a hash map for each token. The Jaccard similarity coefficient compares
two sets of time series data and produces a score based on shared features among the two
provided sets of data. It is computed as an intersection over a union, i.e.,

J(P, Q) =
|P ∩Q|
|P ∪Q| =

|P ∩Q|
|P|+ |Q| − |P ∩Q| (6)

where |P ∩Q| is the weight of the maximal matching for the biograph. Let the provenance
score, based on the Jaccard function, be Spr. After computing the provenance score, we
combined both the data and source-oriented scores into the final score, Spr (Pd + Ps = Spr).

We have also considered the other data features, but the four data types used were
chosen for two reasons. First, they make significant contributions to the accuracy of the
final similarity scores our model generates. Second, they have measurable properties that
make them suited to similarity comparisons. In the following subsection, we define the
problems for and explain the working mechanism of TruMuzic.

3.3. Optimization Using Deep Learning-Based Weight Adjustment

Music similarity score calculation is a complex task. Hence, we need an advanced
solution to accurately evaluate similarity that adjusts the weights of features used in the
model. As such, we used a multimodal approach to train our model, where four levels of
similarity are provided by music experts as the ground truth and provide the similarity
scores for the four features used in the first phase of TruMuzic’s process. As shown by
experimental results using a linear regression-based approach, we were able to find the
proper weight distribution of similarity features in our model. In this subsection, we
explain our deep learning-based classification solution in this regard.

Our model uses the ground truth of similarity levels generated by the experts as
training data to learn each individual feature’s weight, as shown in Figure 2. To generate
ground truth training data, we first developed a dataset of paired songs along with a
questionnaire. The questionnaire was used to label the similarity of each paired song, more
details of which are provided in Appendix A.
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Neural networks are composed of interconnected layers of computational units called
neurons. These networks transform data until the right weights and correct classifications
are found, so the network outputs good predictions. The neurons multiply an initial value
with randomly generated weights, and as we train the model on more paired songs with
their similarity level, the model adjusts the weights of each neuron’s biases based on
the output results. The network functions according to an iterative learning process that
adjusts the values of the weights of the network each time in reference to the ground truth
as shown in Algorithm 4. This process continues until the right combinations of weights
are found.

Algorithm 4 DNN-based weight distribution

Input: Similarity scores of four features for given data songs Q and P.
Weights generated through ground truth-based classification.
Desired results of the comparisons Rd.

Default (zero) weights
Output: Final weights of given four features to adjust the final similarity scores (w1, w2, w3, w4)
Function:

1. Cost function Ep = C (Dp, M (Zp, W))

a. Error computation of the outputs
b. Average of the errors Ep

2. Multiply the weighted/backpropagated error with the unit derivative (bias)

Steps:

3. Implementation of the cost function
4. Compute the error of the output
5. Pass the error backward and weight it along each edge
6. At unit: Multiply
7. While the error is not equal to Rd
8. Repeat steps 1–4,
9. End while
10. Return w1, w2, w3, w4

As shown in Figure 3, the feature similarity results, Sn, Sp, Sc, and Spr, are produced
by comparing two songs, Q and P. Moreover, these similarity results are at first just the
initial values of neurons along with their randomly given weights. In the recursive process,
the final output of all the values based on their weights is computed and compared with
the desired output Rd. Moreover, based on the differences between the desired output and
the output produced by the modules, the weights are adjusted in each iteration. Biases
(B1 and B2) of the module also contain weight values, which help in making weight
adjustments. We use a backpropagation algorithm to achieve the desired combinations of
weights in the neural network. Backpropagation consists of applying the chain rule to all
possible paths in our network. It is a dynamic programming-based algorithm that reuses
intermediate results to calculate gradients. After this, it transmits the intermediate errors
backward. The algorithm implements a function Xn = Fn (Wn, Xn−1), where Xn is the
output vector representing the similarity between two songs. Wn represents the weights
module, and Xn−1 represents the output of the previous iteration and the input vector of the
current module.
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If the partial derivative of error E representing Xn is known, then with backward
recurrence, we can compute the partial derivative of E in relation to Wn and Xn−1. The
algorithm adjusts the weights using a stochastic gradient descent method.

Wk+1
i = Wk

i − η
∂e

∂Wk
i

(7)

In Equation (6), k represents the number of iterations and η is the learning rate, while
∂e

∂Wk
i

is the average of the total error in terms of the adjusted weight.

We explain the experimental process used for the DNN-based training in the
following subsections.

Dataset: A deep network has numerous parameters, and hence a significant amount of
data is required to train the model adequately. We decided to use the Kernscores database
with our model; this dataset was developed and is maintained by Stanford University’s
researchers and musicologists. The library consists of 7,866,496 notes in 108,703 files.
Additionally, the music data is classified by genre, composer, and various other pieces
of data. Tables 6 and 7 present the list of composers and music genres in the library. We
downloaded the data for the 1200 pieces of music in the Kernscores database and processed
them as explained in Appendix A.

Table 6. The list of composers presented in the KernScores library.

Composers

Adam Chopin Giovannelli Lassus Schubert
Alkan Clementi Grieg Liszt Schumann

J.S. Bach Corelli Haydn MacDowell Scriabin
Banchieri Dufay Himmel Mendelssohn Sinding
Beethoven Dunstable Hummel Monteverdi Sousa

Billings Field Isaac Mozart Turpin
Bossi Flecha Ives Pachelbel Scarlatti

Brahms Foster Joplin Prokofiev Vecchi
Buxtehude Frescobaldi Josquin Ravel Victoria

Byrd Gershwin Landini Scarlatti Vivaldi
Weber
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Table 7. List of genres in the dataset.

Genres

Ballate Etudes Motets Scherzos Symphonies
Ballads Fugues Preludes Sonatas Virelais

Chorales Madrigals Ragtime Sonatina Waltzes
Contrafacta Mazurkas Quartets

• We also generated similar data for an additional 650 songs; here we mixed up 234 pairs
of songs where one is allegedly a copy of the other, along with 182 noncopied songs,
to extend the amount of training data available to the model with the help of our
experts. These data were generated according to answers given in a questionnaire,
as explained in Appendix A. Although, the total of 1850 songs in our dataset, with
1200 from Kernscores and 650 categorized by experts, seems quite small from a deep
learning dataset perspective, if we combine any song in the dataset with any other
song, the sets of pairs produce a much bigger matrix. Including both the internal and
external experiments, which are explained in detail in Sections 4.1 and 4.2, overall,
we used 3800 combinations of songs in the training process of the model. The dataset
used in this paper was split up into three disjoint sets; a training set with 70% of the
data, a cross-validation set with 15% of the data, and a test set with 15% of the data.

• Content preprocessing: We use humdrum data from Kernscores, and we also develop
additional features with the help of experts to enhance the datasets by adding quanti-
tative values. As explained in Section 3.3, through the questionnaire developed for
this model, we were able to add features such as spirit scores and intensity scores to
these songs in our database. Moreover, for the test datasets, we intentionally created
similar data with the help of music experts. Apart from the classes developed by our
experts, our dataset includes features such as musical notes, 12-tone pitch classes,
absolute pitch, spirit score, intensity score, composer history, composing location, and
provenance score of composers to help identify plagiarism. We also convert some
additional musical data into the required format to review songs famously accused of
plagiarism using our model for experimental purposes.

• Implementation and training of the deep network: We implement our deep network
using Keras with TensorFlow as the backend. This dense implementation is based on a
large unit layer followed by a final layer that computes the SoftMax probabilities. The
hyperparameters of the model are given below in Table 8. The total number of params
used for our DNN was 1,424,681, and all of these were trainable.

Table 8. Explaining the hyperparameters of the DNN.

Layers Output, Shape Number of Params

Dense layer 1 (Dense) (None, 32) 160
Dense layer 2 (Dense) (None, 16,000) 528,000
Dense layer 3 (Dense) (None, 56) 896,056
Dense layer 4 (Dense) (None, 8) 456
Dense layer 5 (Dense) (None, 1) 9

Music plagiarism detection is a tricky task. For example, whether the same sequence
of notes appears at the beginning of a song or in the middle of a song has a large impact
on the overall likelihood of plagiarism. Although plagiarism detection is essential for the
music industry, there has been very little research in this field. Moreover, the efficiency and
accuracy of existing models based on plagiarism-based research are also limited. Some of
the limitations are as follows. First, this previous research failed to resolve the discrepancy
issue that can occur between any two musical sequences. Second, they limited comparisons
to basic musical features because they were not able to find the correct combinations of
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features and weights in their models. Third, most of these methods focused on processing
speed rather than the accuracy of the final comparison score.

In our solution, we use four types of data to achieve improved accuracy in similarity
comparison tasks. Along with the musical data such as the notes, pitch, and census
data contained in a song, we also considered provenance information in our similarity
comparisons. The experimental results show this improves the overall accuracy of the
model. We further use DTW for note comparisons, which solves the discrepancy issue
between intuitions and calculates distances between songs by first recovering optimal
alignment. Unlike other similarity computation methods such as Euclidean distance, where
the similarity computation on two sets of variable sizes is limited, our study proposes the
utilization of a deep learning network to discover the correct combination of weights for
making more wide-ranging music similarity comparisons.

3.4. The Overall Functionality of TruMuzic

The overall functionality of the model is explained in Figure 3. TruMuzic can be
divided into three phases: the preprocessing phase, the processing phase, and the postpro-
cessing phase, as detailed in our previous work [16]. In the preprocessing phase, the model
works on feature selection, data normalization, and developing additional quantitative
features. In the processing phase, the features of the query song are compared against the
features of the data song, which come from legitimate original songs stored in the database.
A combination of similarity comparison algorithms is used. Additionally, the weights
of the features are adjusted based on the ground truth, which was provided by experts.
Moreover, as shown in Algorithm 5, after the similarity comparison, we can see that, in
the deep learning-based phase of TruMuzic, the scores are adjusted based on the given
weights. In the postprocessing phase, the final score Sd is presented as the model’s output.
We define this solution as follows:

Algorithm 5 Adjusting the final score

Input: Individual Score; Sn, Sp, Sc, and Spr from Algorithm 1
Weights from the DNN; w =

{
wn, wp, wc, wpr

}
Output: Final score Sd
Function: ScoreAdjustment
Steps:

1. Read individual scores
2. Read weights provided by DNN
3. f inalscore = wn ∗ Sn + wp ∗ Sp + wc ∗ Sc + wpr ∗ Spr
4. repeat until f inalscore == Sd:
5. wn ∼ wn ; wp ∼ wp; wc ∼ wc; wpr ∼ wpr
6. check; if f inalscore == Sd :

return wn, wp, wc, wpr

Every song S is first represented using a set of feature vectors denoted by
f (s) = {f 1, f 2, f 3, . . ., fn}. Each of the individual fi here represents a class of features. For exam-
ple, they could be pitch or chord features. These weights are set to zero at the beginning as
the default.

Sd = W0 + (Sn × w1) + (Sp × w2) + (Sc × w3) + (Spr × w4) (8)

The similarity scores for each respective feature in the two given songs, P and Q, are
sent to the final score calculation function along with their weights, and then the final score
is calculated by summing all the individual feature scores. Feature comparison algorithms
for each feature type compare every particular feature of the two given songs and then
generate a similarity score. The individual similarity scores are sent to the final score
calculation function, where these similarity scores are adjusted based on their generated
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weights. The individual weights of the features are presented in the experimental results in
the next section.

4. Experimental Results

In this section, we discuss the experimental results achieved by TruMuzic. Since the
nature of music is subjective, it is a challenging task to evaluate music plagiarism detection
models. Therefore, we established various test datasets with ground truths alongside a
series of experiments to assess and compare the results produced by TruMuzic with those
from other SOTA approaches. There are two primary goals used in our experimental
process. The first is to evaluate the weights of the data features used in the model. The
second is to assess the accuracy and efficiency of our model against other SOTA approaches.
In this paper, we focus our model primarily on accuracy. However, for experimental
purposes, we also evaluate its efficiency by measuring the time taken by TruMuzic to
process a result compared to existing approaches. It is always up for debate which method
works best for music similarity comparison because the goals of the various available
models and the data features they use for their comparison are entirely different and
application specific. Therefore, we developed several test datasets to evaluate the accuracy
of the overall process as well as look at the individual contributions from various data
features to the final result.

As mentioned in the experimental goals, we performed the experiments in two phases:
(1) internal comparisons and (2) external comparisons. In the internal or distinctive com-
parisons, we evaluate the similarity contribution of a particular data feature or various
combinations of these features and their impact on the model’s overall accuracy. In the
external or comprehensive comparisons, we combine all features and evaluate the model’s
overall accuracy against other SOTA methods. In this section, we will also explain our
experimental setup. We describe the internal evaluation of features in Section 4.1, followed
by the external evaluation against other methods in Section 4.2.

4.1. Comparison of Internal Features

Our research must examine how much a particular data feature should affect the
similarity comparison results using a linear regression model, as shown in Figure 4. This
should help us know the impact of each feature set on the performance of our deep learning-
based model, which is used to adjust the weight of each feature category. Next, we develop
a dataset with the help of music experts, where we classify songs into four categories:
1. Copied songs; 2. Influenced songs; 3. Same genre; and 4. No match. Some examples of
this are shown in Table 9. Additionally, Table 10 shows TruMuzic finding the similarity
between these 16 songs and presents the model’s individual and combined accuracy when
considering combinations of the various features available in our data.

For regression-based results, the coefficient of determination (R-squared) shows that
a proportionate amount of variation in the response variable can be explained by the
independent variable’s variation in the linear regression model. The larger the R-squared
is, the more variability is seen by the linear regression model. Generally, the higher the
R-squared, the better the model fits the data. The model also displays the p-value for each
coefficient. The p-values show which variables are significant for the model’s result. The
p-value is lowest for the musical notes data feature; the p-value indicates if this feature is
statistically significant. If the p-value was found to be p < 0.05 (5% significance level), then
those variables are not considered significant and are removed from any further evaluation.
Additionally, as shown in the graphs, the musical notes features have the smallest squared
error (SE) and the highest t-coefficient, which further proves the significance of musical
notes in our model. Overall, the regression-based results demonstrate that the inclusion
of musical notes, along with pitch, census, and provenance data, enhances the predictive
power of our model. These findings highlight the substantial influence of musical notes in
determining the similarity between musical compositions and emphasize the importance
of considering multiple data types for a comprehensive music similarity evaluation.
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Table 9. Sample set from dataset developed by experts from internal evaluation.

S.no Copied Songs
(Class-1)

Influenced Songs
(Class-2)

Same Genre
(Class-3)

No Match
(Class-4)

1

Dazed and confused
(Jake Holmes)
v.s
Dazed and Confused
(Led Zeppelin)

Joyful Noise (Da T.R.U.T.H)
v.s
Dark Horse (Katy Perry)

Jazz See you Again (Wiz
Khalifa, Charlie Puth)
v.s
My rifle, my pony, and
me (Rio Bravo)

So what (Miles Davis)
v.s
My one and only Love
(John Coltrane)

2

You need love (Muddy
Waters)
v.s
Whole lotta love
(Led Zeppelin)

If I Could Fly (Joe Satriani)
v.s
Viva la Vida (Coldplay)

Techno All the stars
(Lamar, SZA)
v.s
Mother Sky (Can)

Energy Flash (Joey Beltram)
v.s
Bang the box (Jackmaster)

3

The Who (Baba O’Riley)
v.s
You ain’t seen nothing
yet (Bachman turner
overdrive)

Let’s Get it On (Marvin Gaye)
v.s
Thinking out Loud
(Ed Sheeran)

Country Danger Zone (Kenny
Loggins)
v.s
Eye of the Tiger
(Survivor)

Abilene (Waylong Jennings
v.s
I Walk the Line
(Johnny Cash)

4

Under Pressure (Queen
and David Bowie)
v.s
Ice baby (Vanilla ice)

I wanna be your Boyfriend
(The Rubinoos)
v.s
Girlfriend (Avril Lavigne)

Rock Miss Misery
(Elliot Smith)
v.s
Save Me (Aimee Mann)

You Shook Me All night long
(AC/DC)
v.s
Sweet Child O’Mine
(Guns n Roses)

Table 10. Analysis of the results from an internal comparison.

S. No. Features Used for Comparison Accuracy in Percentage

Individual Data

1 Musical notes 54%
2 Pitch data 31%
3 Census data 15%
4 Provenance data 19%

Combination Data

5 Musical chords and Pitch data 63%
6 Musical chords and census data 58%
7 Musical notes and provenance data 60%
8 Pitch data and census data 56%
9 Pitch data and provenance data 58%
10 Census data and provenance data 49%
11 Musical notes, pitch, and census data 74%
12 Pitch data, census data, and provenance data 68%
13 Musical notes, pitch, and provenance data 81%
14 Musical notes, census, and provenance data 76%
15 All the features 86%

The dominant variable can be determined by the slope of the fitted line. As the notes
feature has the highest slope, it is the most significant feature, i.e., finding the ground truth
is highly dependent on the notes. This finding is further strengthened by the p-value and
squared error results for the notes feature. The fitted line shows how the model, as a group
of variables, can explain the response variable. The slope of the fitted line is not close to
zero, and while the confidence bound does not include a horizontal line, this shows that
the model fits better than a degenerate model that consists of only a constant term. The
test statistic values are shown in the model display (F-statistic vs. constant model), which
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shows the F-test on the regression model. This proves that the model fits significantly better
than a degenerate model that consists of only a constant term.

In Table 10, we compare models based on various combinations of features and
provide their similarity scores. The combination of two data features, music notes and
pitch data, provides the highest similarity scores; this is followed in order by the notes-
provenance, notes-census, pitch-provenance, and census-provenance combinations. Fur-
thermore, in a combination of three data features, the notes-pitch-provenance data provides
the highest accuracy, followed by the notes-pitch-census data, and then the pitch-census-
provenance data.

According to Table 11, musical notes are the most significant individual data feature,
followed in order by the census, pitch, and provenance features. Individually, provenance
data performed poorly, but in combination with musical chords and other data features, its
inclusion in the model improves accuracy significantly. We can also observe the individual
impacts of these features on the overall accuracy. From the internal comparison phase,
we can conclude that the accuracy of TruMuzic improves with an increasing number of
features in the input data.

Table 11. Estimated coefficients by the linear regression model.

Features Estimate SE t-Stat p-Value

(Intercept) 2.1717 0.36628 5.929 4.8201 × 10−9

Notes 1.1048 0.020196 54.704 6.2884 × 10−253

Pitch 1.0033 0.030476 32.92 1.5882 × 10−143

Census 0.37196 0.037046 10.04 3.1316 × 10−22

Provenance 1.1563 0.069131 16.726 5.8422 × 10−53

4.2. External Comparison

In the external comparison phase, we first compare only DTW with SOTA methods by
developing test datasets with the help of our experts. However, since the goal is to evaluate
our model’s overall accuracy against existing methods, we also use a dataset of songs that
are famous for allegedly being copied, which was developed and validated by a team of
music experts. Finally, in Section 4.2.3, we look at the contributions made by our work in
comparison with related works.

4.2.1. Test Datasets

The test datasets were developed through a process called harmonization, where notes
are modified by addition or deletion. This dataset was developed by a team of music
experts for experimental purposes. We further classify test datasets into two subcategories:
(a) random restoration and (b) copying-oriented restoration. For random restoration, we
selected five songs from Kernscores and modified each to create five different versions
of the original songs with the help of our experts. We requested that the music experts
replace a certain percentage of the original notes with random notes. In this dataset, we
did not intend to keep the song melodic for the listeners, so we principally followed the
mathematical ratio when modifying the song. In our dataset, the song in subset 1 has
all the original notes, followed by versions with 80%, 70%, 60%, and 40% of the original
notes in subsets 2, 3, 4, and 5, respectively. Moreover, as stated earlier, the original notes
were replaced by random notes according to that version’s subset’s mathematical ratio.
For example, subsets with 80% and 60% original notes contain songs that have 20% and
40%, respectively, of their notes replaced with randomly selected notes. The ground truth
is established based on the mathematical percentage of the original notes. We compared
the results of each subset against the ground truth. To evaluate TruMuzic, we were only
able to compare the performance of DTW on the musical notes feature since we were not
able to change the rest of our data types with manually produced test datasets in the same
way. As shown in Table 12, we evaluated the performance of DTW against MESMF [9],
Borkar et al. [7], SiMPle [12], Silva et al. [51], and a traditional edit distance-based similarity
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comparison method. MESMF introduces a music plagiarism detection model called BMM-
Det, which uses a graph-based approach to compare potential plagiarized and original
songs, by calculating the edit distance using the BMM-Det algorithm. Borkar et al. [7]
extracted musical fingerprints and compared them with the database of existing songs
through segment matching. SiMPle [12] and methods proposed by Silva et al. [51], also
worked on audio fingerprinting; however, they use ‘SiMPle’. They calculated music
similarity based on the SiMPle (similarity matrix profile) method. The table shows that
the DTW, MEMSF, Borkar et al. [7], and SiMPle models closely follow the ground truth;
however, the edit-distance model and Silva et al. [51] are a little further from the ground
truth, but remain somewhat close.

Table 12. Random restoration—an external comparison of DTW against other state-of-the-art methods.

Models Set 1 Set 2 Set 3 Set 4 Set 5

Edit-distance [14] 0.79 0.63 0.55 0.33 0.15
Silva’s Model [51] 0.84 0.63 0.51 0.36 0.19

SiMPle [12] 0.90 0.66 0.52 0.38 0.19
Borkar’s model [7] 0.88 0.69 0.58 0.32 0.16

MESMF [9] 0.89 0.64 0.49 0.34 .020
DTW 0.85 0.63 0.51 0.39 0.21

Ground-truth 1.00 0.75 0.65 0.45 0.25

It should be noted that, in Table 12, we are only comparing the musical notes feature,
and all the other features of TruMuzic are not being considered in the comparison. In this
way, it was found that DTW improves the similarity measurement of temporal sequences
by taking acceleration and declaration into account. However, the evaluation of this test
dataset does not contribute to the goal of achieving accurate real-time plagiarism detection
after the pattern of a piece of music has been copied. In general, a composer intending
to copy a musical piece will make slight changes to some of the chords and tempo, but
primarily, the musical structure will remain the same. Therefore, we will apply a more
realistic copy-oriented approach in our next experimental setup.

4.2.2. Songs Famous for Allegedly Being Copied

In this experimental setup, we used an extended version of the dataset presented in
Table 9. Our team of music experts included 100 songs in each class to help evaluate the
accuracy of our model. We computed the similarities of these pairs and compared the
results against the established ground truths. The evaluation here indicates whether the
model in question can classify the songs correctly as copied or not. We merely show the
results of our analysis and do not claim that any of the songs were indeed copied or not. As
shown in Table 12, we can see that the SiMPle method, edit distance, and Silva et al. follow
the ground truth somewhat closely, but Borkar’s model [7], MESMF, and TruMuzic are
the models closest to the ground truth. Here, the ground truth is the correct classification
of songs in the four different categories developed by our experts. As shown in Table 13,
TruMuzic outperforms the existing models, since in this test we included provenance data,
census data, pitch data, and time-based chord comparisons.

As we can see in Table 13, TruMuzic consistently outperforms the other SOTA methods
in all classes, except classes 1 and 3, where MESMF equals the performance of TruMuzic.
The accuracy of TruMuzic is lowest when differentiating between classes 1 and 2 for copied
and influential songs, respectively. However, when classifying between classes 1 and 4,
TruMuzic reaches 100% accuracy. In the external experiments, it is slightly improper to
compare other models with TruMuzic since it uses four data features to make its decisions,
while the others use only data features based on the song’s chords or its sheet music. Com-
paring Tables 12 and 13, we can see that the integration of pitch, census, and provenance
data when calculating the final similarity scores enhances the accuracy of TruMuzic. As far
as efficiency is concerned, TruMuzic is the slowest model, followed by edit-distance and
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Silva et al [51]. Moreover, the SiMPle method presented by Silva et al. [12] outperforms all
the other models in time-based efficiency. However, as explained earlier, we are focused on
accuracy in this project. Moreover, to explain the impact of deep learning-based weight
distribution, we have shown the results of TruMuzic with and without weight distribution
in Table 13. The deep learning-based weight distribution improves the overall accuracy of
our model by 24%.

Table 13. Similarity results for allegedly copied songs showing the impact of weight distribution
based Trumuzic.

Classes
Edit

Distance
[14]

Silva’s
Model

[51]

SiMPle
[12]

Borkar’s
Model [7] MESMF [9]

TruMuzic
(without Deep

Learning-Based
Weight

Distribution)

TruMuzic
(with deep

Learning-Based
Weight

Distribution)

Class 1 and 2 36% 51% 57% 61% 60% 54% 76%
Class 2 and 3 59% 65% 74% 77% 78% 61% 89%
Class 1 and 3 66% 68% 77% 80% 92% 76% 92%
Class 1 and 4 68% 76% 89% 91% 94% 90% 100%
Class 3 and 4 36% 59% 65% 78% 76% 64% 81%

Class 1, 2, and 3 26% 34% 47% 54% 58% 46% 74%
Class 1, 2, and 4 28% 37% 61% 66% 68% 48% 80%
Class 2, 3, and 4 32% 36% 67% 68% 73% 45% 86%

Overall results 44% 53% 67% 72% 75% 61% 85%

The TruMuzic database consists of a combination of test data, random songs, allegedly
copied songs, and intentionally altered versions of original songs. We used databases such
as kernscores, and cmme.org, along with several music transcription tools such as music21,
scorecloud, etc., to search and generate data for our database. The data features we are
using are challenging to find or produce for a large number of songs, even with our team
of three music experts. As such, we limited the number of songs in our testing to 3800. For
experimental purposes, we also used altered versions of some famous songs, for example,
covers or remixed versions. The idea behind this was to generate a dataset that would
include songs that represent real-world plagiarism problems well. We provide the details
of our experts in Section 7. Another important aspect of comparative work in the field of
music is cover song identification [46,47]. Theoretically, these models have the same goal of
identifying similar pieces of musical data; however, version identification methods often
only consider content-based similarity features.

4.2.3. Comparison with Related Works

In Table 14, we compare various other models from previous studies with Tru-
Muzic. The goal is to compare some famous and current models to understand the signif-
icance of TruMuzic in the field. We summarize the results in Table 14 by answering the
following questions.

1. Does the model use a dataset?
2. If yes, what is the number of songs?
3. What method do they use for similarity comparison?
4. What is the application-oriented objective of the model?
5. What aspect of achieving the result does the model focus on?
6. Do they use a neural network-based weight distribution system?
7. Does the method use any questionnaires?
8. Does the method include a user study by domain experts?
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Table 14. Comparison with other models from previous studies.

Study Datasets No. of Songs Methods Used Application Result Type
Neural Network

for Weight
Distribution

Questionnaire User Study by
Domain Expert?

Edit distance [14] No No Distance computation Similarity
matching Accuracy No No No

Silva’s Model [51] 123 Classical and
YouTube covers 350

Shapelets, a
content-based

approach

Cover song
recognition Accuracy No No No

SiMPle [12] YouTube covers and
Mazurkas 50 + 2919 Subsequent matrix

computations
Similarity
matching Accuracy No No No

De Prisco Model [15] No
No, only a few
melodies for

representations

Visualization
Approach Music analysis Accuracy and

efficiency No Yes Yes

MESMF [9] Yes (self-designed)
20 pairs of

self-developed
alleged songs

Graph
matching-based

distance
measurements

Plagiarism
detection Accuracy No No No

Borkar’s Model [7] Yes Not mentioned Audio fingerprinting Plagiarism
detection Accuracy No No No

TruMuzic

Kernscores by
Stanford University
and test datasets by

domain experts.

3800 DTW, Data
provenance

Plagiarism
detection Accuracy Yes Yes Yes
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5. Discussions, Implications, and Limitations

In this section, we establish the importance of the experimental results achieved by
our model and demonstrate the correlations between the ground truth and the similarity
features. We also explain the implications and limitations of our approach. To evaluate our
model’s results, we used a basic statistical approach and developed hypotheses. In this
way, we established five hypotheses and then evaluated whether the results proved them
true or false.

1. Two songs with higher note similarity scores are expected to be more similar.
2. Two pieces of music with higher pitch similarity scores are expected to be

more similar.
3. A combination of note and provenance similarity scores leads to an accurate classification.
4. A combination of pitch and census similarity scores leads to an accurate classification.
5. All of the similarity scores combined led to the most accurate classification.

As shown in Table 10, hypotheses 1, 3, and 5 can be seen to be true, achieving scores
of 54%, 60%, and 86% for accuracy, respectively. In contrast, hypotheses 2 and 4 achieved
respective accuracy scores of 31% and 56%, and hence, we declared these statements false.
Our model achieved an accuracy of 86% when all features of the data were considered
while making the comparison.

To understand the possible implications of our work, we first need to understand
that music plagiarism is not only about analyzing the similarity between two pieces of
music. It is also important to quantify the degree of similarity between the two pieces
of music in question. Moreover, stealing a musical idea or not crediting the original
contributors are also acts of music plagiarism. This is where our model is different from
most other previous approaches, not only did we focus on accuracy and degree of accuracy,
but with our provenance-based approach, we can also figure out whether two musicians
have a history of working together. For example, a score based on an artist’s history of
collaborations, common artists, etc., along with the trustworthiness of the source, can help
analyze plagiarism. Our research can also be applied to determine copyright violations in
the audio used as a background to videos from members of the public similar to those seen
on YouTube.

The identification of music plagiarism is a complex task since it depends on the model’s
ability to determine hidden but significant similarities between the melodic fragments
inside two songs. A major drawback linked to automatic music plagiarism detection is
that different legislative structures around the globe have different standards for showing
plagiarism. Clear legislation designed to establish general and accepted rules for detecting
plagiarism has yet to arrive. Even though current laws do not emphasize this, often the
deciding element in plagiarism cases is usually related to the melody of the song. Another
commonly discussed issue is the quality and availability of data for model training and
comparing large numbers of songs.

6. Conclusions

In this paper, we propose a novel method for music plagiarism detection. Our model
improved the accuracy of other similarity comparison models by implementing the follow-
ing techniques. First, we employed provenance-based data in our model’s feature-based
similarity comparison approach. Second, we used a customized DTW algorithm to im-
prove the accuracy of our model’s note comparisons. Third, we used a deep learning-based
error function to evaluate and establish the right combinations of weights for each feature.
Our experimental results showed that the model’s accuracy improved after implementing
additional comparison features. Our method is slightly slower than other current SOTA
methods, as our model is focused on improving the accuracy of similarity comparisons
between two songs.
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In future investigations, we want to pursue the following improvements to our model.
1. A deep learning-based feature selection method to advance the quality of features
being compared. 2. Exploit using image-based input data for feature comparisons to
improve processing speed along with accuracy. 3. The introduction of a suitable pruning
technique along with algorithms to improve the overall accuracy and speed of the similarity
comparison itself. 4. Examine the inclusion of established cover song identification methods
in our music plagiarism detection model.
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Appendix A

This questionnaire was used to develop the ground truth and additional music features
with the help of music experts.

1. Which option is true for this pair of songs?

(a) Copied (Similarity ≥ 90%)
(b) Similar or Coincidental (Similarity ≥ 70%)
(c) Some parts of the songs are similar but overall, not similar.
(d) Completely different songs

ccarh.org
https://github.com/InfoLab-SKKU/TruMuzic
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2. Would you say both the songs fall into the same music genre?

(a) Yes
(b) No
(c) Cannot say

3. What is similar in this pair of songs (you may choose multiple options)?

(a) Musical notes
(b) Music genre
(c) Tempo
(d) Pitch
(e) Background music
(f) Instruments played
(g) None of the above
(h) Any additional comments

4. How would you define the intensity (loudness) of the songs?

(a) Similar-Both high
(b) Similar-Both low
(c) Different

5. Please provide an intensity score to both the songs individually from 1 to 10, where
10 is the loudest phase.

(a) Song 1-
(b) Song 2-

6. What would you say about the spirit (mood) of both songs?

(a) Similar
(b) Different
(c) Cannot say

7. Please provide a spirit score to both the songs individually from 1 to 10, where 10 is
the happiest mood of the song.

(a) Song 1-
(b) Song 2-
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38. Pacha, A.; Hajič, J.; Calvo-Zaragoza, J. A baseline for general music object detection with deep learning. Appl. Sci. 2018, 8, 1488.

[CrossRef]
39. Oramas, S.; Barbieri, F.; Nieto Caballero, O.; Serra, X. Multimodal deep learning for music genre classification. Trans. Int. Soc.

Music. Inf. Retrieval. 2018, 1, 4–21. [CrossRef]
40. Schedl, M. Deep learning in music recommendation systems. Front. Appl. Math. Stat. 2019, 5, 44. [CrossRef]
41. Zheng, Z. The Classification of Music and Art Genres under the Visual Threshold of Deep Learning. Comput. Intell. Neurosci.

2022, 2022, 4439738. [CrossRef]

https://doi.org/10.1007/BF00117340
https://doi.org/10.1177/1473871616655468
https://doi.org/10.2307/3480618
https://doi.org/10.1109/JSTSP.2011.2112333
https://doi.org/10.1007/s10618-022-00835-2
https://doi.org/10.1007/s11280-019-00746-1
https://doi.org/10.3390/app8091488
https://doi.org/10.5334/tismir.10
https://doi.org/10.3389/fams.2019.00044
https://doi.org/10.1155/2022/4439738


Appl. Sci. 2023, 13, 9425 28 of 28

42. Majidi, M.; Toroghi, R.M. A combination of multi-objective genetic algorithm and deep learning for music harmony generation.
Multimed. Tools Appl. 2023, 82, 2419–2435. [CrossRef]

43. Yang, G. Research on Music Content Recognition and Recommendation Technology Based on Deep Learning. Secur. Commun.
Netw. 2022, 7696840. [CrossRef]

44. Lee, J.; Bryan, N.J.; Salamon, J.; Jin, Z.; Nam, J. Disentangled multidimensional metric learning for music similarity. In Proceedings
of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 6–10.

45. Elbir, A.; Aydin, N. Music genre classification and music recommendation by using deep learning. Electron. Lett. 2020, 56, 627–629.
[CrossRef]

46. Yesiler, F.; Serrà, J.; Gómez, E. Accurate and scalable version identification using musically-motivated embeddings. In Proceedings
of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,
4–8 May 2020; pp. 21–25.

47. Du, X.; Yu, Z.; Zhu, B.; Chen, X.; Ma, Z. Bytecover: Cover song identification via multi-loss training. In Proceedings of the ICASSP
2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June
2021; pp. 551–555.

48. Thomé, C.; Piwell, S.; Utterbäck, O. Musical Audio Similarity with Self-supervised Convolutional Neural Networks. arXiv 2022,
arXiv:2202.02112.

49. Dhand, G.; Beri, T.; Sobti, T.; Angrish, V. Music Recommendation Using Sentiment Analysis from Facial Recognition. In
Proceedings of the International Conference on Innovative Computing & Communication (ICICC), Delhi, India, February 2022.

50. Konda, P.; Das, S.; Doan, A.; Ardalan, A.; Ballard, J.R.; Li, H.; Panahi, F.; Zhang, H.; Naughton, J.; Prasad, S. Magellan: Toward
building entity matching management systems over data science stacks. Proc. VLDB Endow. 2016, 9, 1581–1584. [CrossRef]

51. Silva, D.F.; de Souza, V.M.; Batista, G.E. Music Shapelets for Fast Cover Song Recognition. In Proceedings of the International
Symposium on Music Information Retrieval, Malaga, Spain, 26–30 October 2015; pp. 441–447.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-022-13329-6
https://doi.org/10.1155/2022/7696840
https://doi.org/10.1049/el.2019.4202
https://doi.org/10.14778/3007263.3007314

	Introduction 
	Related Work 
	Music Plagiarism Detection 
	Data Provenance-Based Music Trustworthiness 
	Deep Learning in MIR Data 

	TruMuzic: Deep Learning and Data Provenance-based Plagiarism-Detection 
	Music Feature Representation 
	Musical Notes 
	Pitch and Census Data 
	Provenance Data 

	Similarity Score Computation from Music Data 
	Musical Notes Data 
	Pitch and Census Data 
	Provenance Data 

	Optimization Using Deep Learning-Based Weight Adjustment 
	The Overall Functionality of TruMuzic 

	Experimental Results 
	Comparison of Internal Features 
	External Comparison 
	Test Datasets 
	Songs Famous for Allegedly Being Copied 
	Comparison with Related Works 


	Discussions, Implications, and Limitations 
	Conclusions 
	Music Experts 
	Appendix A
	References

