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Abstract: There is a technological necessity for more efficient, abundant, and sustainable materials
for energy storage applications. Lithium-ion batteries dominate, however, there are a number of
sustainability, economic, and availability issues that require the investigation of post-lithium batteries.
In essence, the drive is to move to non-lithium-containing batteries as there is simply not enough
lithium available to satisfy demand in a few years. To find alternative ions migrating at appropriate
rates in crystal lattices requires significant research efforts and, in that respect, computational model-
ing can accelerate progress. The review considers recent mainly theoretical results highlighting the
kinetics of ions in post-lithium oxides. It is proposed that there is a need for chemistries and ionic
species that are sustainable and abundant and in that respect sodium, magnesium, and oxygen ion
conduction in batteries is preferable to lithium. The limitations and promise of these systems are
discussed in view of applications.

Keywords: batteries; diffusion; defect engineering; solid oxide fuel cells; nuclear materials; oxygen
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1. Introduction

The growing need for electricity generation and storage has led to a plethora of tech-
niques seeking better energy materials to meet growing needs in technological applications
that include, but are not limited to, electric vehicles, grid electricity storage, electronic
products, energy harvesting, and nanoelectronics [1-25]. Lithium compounds such as
lithium carbonate (LiCO3), lithium oxide (Li;O), and lithium hydroxide (LiOH) offer
favorable electrochemical fundamentals and cost-effective manufacturing options for the
fabrication of rechargeable batteries, which utilizes approximately three-quarters of the
global production of lithium at present. In recent years, the explosive demand for lithium is
raising questions of sustainability mostly due to rather limited known global reserves and
regional concentration. Nearly half of the world’s known economically recoverable reserves
of 105 million tonnes are concentrated in Bolivia, Chile, and Argentina (the so-called lithium
triangle) while nearly half of the annual production of lithium is currently taking place in
Australia. On the demand, side there are doubts as to whether there is enough lithium to
move into electricity for the nearly 1.5 billion cars on the planet, let alone provide for grid
storage and non-transportation applications. Although there seems to be sufficient lithium
to enable, at least the early stages of, the green transition and Net Zero by 2050, numer-
ous environmental, supply chain, and sustainability challenges, motivate, with a sense of
urgency, scientific research and development in post-lithium energy storage technologies.
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The novel materials considered for post-lithium energy storage have typically exotic
crystallography and are composed of substances that are not abundant or sustainable
considering the massive scale required for technological solutions to make a real differ-
ence [26-50]. Here, we consider three paradigms in energy storage applications, such as
sodium (Na), divalent conductors (magnesium (Mg)), and finally oxygen (O), which have
been proposed as alternatives to Li-ion conductors.

The drive to substitute Li ions is due to its high price and the limited lithium re-
sources [43]. Sodium in comparison is more than four orders of magnitude more abundant
in the Earth’s crust and also in seawater, whereas the working principle of Na-ion batteries
is similar to Li-ion batteries [43]. The technological issues in Na-ion battery materials
include slow insertion/extraction kinetics and low theoretical capacity and these can be
traced to the larger size of the sodium ion as compared to the lithium ion. The crystal
structure is the matrix where the ions migrate and the community is trying to assess which
crystal structures will provide the necessary kinetics for Na ion that will compensate for its
larger size as compared to Li ion.

Magnesium-based rechargeable batteries are currently being considered by the com-
munity as potential candidates for the next generation energy storage because of their
high gravimetric and volumetric capacity, non-toxicity, abundance, and higher melting
temperature [44,45]. Importantly, the ionic size of the Mg?* ion is comparable to the Li* ion,
however, the stronger ionic interaction of Mg?* ions in the lattice will make intercalation
harder [44,45]. These issues can be rectified by reducing the size of the cathode ions in the
crystal and by increasing the shielding of Mg?* [33,34].

The first part of this review briefly discusses the computational methods to model
oxides. In this part, molecular dynamics (MD) and density functional theory (DFT) are
discussed. The second part of the review is focused on recent efforts to substitute lithium
ions for energy storage applications. Sodium and magnesium-containing oxides are consid-
ered and the focus is on the ionic diffusion properties. Thereafter, we discuss oxygen ion
diffusion and the novel concept of oxygen ion batteries. Then we consider ways to tune
ionic diffusion as sodium and magnesium ion-containing materials are lagging behind
in the kinetics as compared with lithium materials. Finally, perspectives and the future
outlook are given.

2. Materials and Methods
Molecular Dynamics and Density Functional Theory

In this review, most of the results are from papers based on MD and DFT. For com-
pleteness, we will briefly summarize key aspects of these methods. For more detailed
descriptions there are more comprehensive reviews on the computational modeling of
inorganic materials [51-53].

The quantum mechanical formulation is the most complete description of nature. In
practical terms, however, the analytic solution of the Schrodinger equation for a large
number of electrons is computationally intensive and intractable mainly because of the
complexity of many electron interactions [54]. In an effort to overcome these problems,
the DFT approach was developed [55-57]. In the DFT approach, the exchange-correlation
energy of electrons is described by the local density approximation (LDA) or the gener-
alized gradient approximation (GGA) or with the more appropriate and rigorous hybrid
functionals that include a part of exact exchange from the Hartree-Fock theory [57]. The
main idea is the use of a plane-wave basis set with the pseudopotential method so that
the core electrons are described by effective potentials, whereas the valence electrons can
evolve explicitly. Typically, in DFT the activation energy of ionic diffusion can be predicted
by identifying the minimum energy path (for example using the nudged elastic band
method) [58]. Although the DFT approach is a simplification and renders the derivation
of results tractable, whereas analytical approaches would not, the simulation size is still
limited (typically hundreds of atoms). Therefore, the use of this approach to more extended
problems (i.e., microstructures or extended defects) is not possible.
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An alternative way that is popular when studying diffusion in oxides (or more ex-
tended defects such as grain boundaries) is classical potential-based MD. In classical MD
the state of the system can be described by considering the positions and the momenta
of all the particles with Newton’s equations of motion being solved iteratively to predict
the evolution of the system. The interactions between particles are through potential en-
ergy functions and for ionic systems this is within the classical Born-like description [59].
Typically, the ionic interactions can be modeled by a Coulombic term (long-range) and by
a short-range parameterized pair potential [60-62]. The computational simplicity of MD
allows the consideration of very extended systems (millions of ions), however, they cannot
describe the electronic structure of the system. Nevertheless, classical MD is a valuable tool
when considering the diffusion and defect chemistry of ionic materials.

Complementary to DFT and MD are thermodynamic models that can aid in the under-
standing of material properties for a wide range of pressures, temperatures [63-75], and
methods such as cluster expansion and special quasirandom structures that can be used
to render the compositional and structural complexity of solid solutions computationally
tractable [76-88]. These have become increasingly important in the past years as it is becom-
ing common to investigate systems with ever-increasing structural complexity. In this, it is
hard to randomly select one or a few “representative” structure(s) to perform the atomic
scale investigation, whereas it is practically impossible to investigate all possible configura-
tions, particularly for extended systems. In that respect, the special quasirandom structures
method can offer designed smaller cells that are representative of the local structures of
solid solutions. That is, it is not required to do thousands of calculations in many extended
supercells, but rather a few hundred (typically) calculations in a single cell that captures
all the important local environments [77,78,82-88]. Combining computational techniques
with experiments (refer for example in [13,25] and references therein) or advanced methods
such as neural networks [35] is the way forward.

3. Post-Lithium Ionic Conductors
3.1. Sodium-Ion Batteries

Sodium (Na) is being actively considered as an alternative ion for energy storage
applications [44,48,89-105]. In previous studies, we considered a number of sodium-
based materials including NaZr,(PO4)3, NasFey(PO4)s, NagV(POy),, NaNiO,, NaFeO,
and Nay;MnSiOy. Table 1 reports the activation energies of diffusion of promising Na of
candidate Na-ion battery materials, which range from 0.26 to 0.81 eV [41,47,94-97]. It is
observed from Table 1 that NaZry(POy)3 (known as NZP- it is NASICON-type) has a very
low activation energy of diffusion (0.26 eV) [47]. These static atomistic simulations are in
agreement with previous molecular dynamic calculations by Zou et al. [20] that calculated
activation energy for Na diffusion of 0.23 eV.Figure 1 is a schematic representation of
the long-range Na-ion diffusion and the migration energy profile for the Na pathway in
NaZr;(POy)3 [47]. DFT simulations indicate that NaZr,(PO,); is a wide-gap semiconductor,
however, the exoergic incorporation of sodium leads to Na* ions and electrons. Thus, it is
an electronically conductive/high-capacity material that can be used as an electrode [47].

Table 1. The activation energies of diffusion of Na in candidate Na-ion battery materials.

Material Activation Energy/eV Comments
NaZry(POy)s 0.26 Ref. [47], vacancy mechanism
NazFe;(POy)3 0.45 Ref. [95], vacancy mechanism

NazV(POy), 0.59 Ref. [94], vacancy mechanism

NaNiO, 0.67 Ref. [96], ab-plane

NaFeO, 0.65-0.67 Ref. [97], vacancy mechanism

NapyMnSiOy 0.81 Ref. [41], vacancy mechanism
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Figure 1. Schematic representation of (a) the long-range Na-ion diffusion and (b) the energy profile
for the Na pathway required to migrate via the vacancy mechanism in NaZr,(POy)3 [47].

Figure 2 is a schematic representation of the crystal structure (space group C2/c) and
the Na ion diffusion paths calculated in NazFe,(POy)3. Here the green, purple, and light
blue atoms represent the Na ion hopping trajectories [95]. Although there is no experimental
work on the diffusion pathways in NazFe;(POy); there are previous atomistic studies on
related materials that show the same similar energetics and diffusion mechanisms [30,31].
For example, in the classical atomistic simulation investigation by Clark et al. [31] in
Na,FeP,0y7, calculated three-dimensional long-range Na ion migration paths in different
directions with activation energies for Na self-diffusion 0.33-0.49 eV. Tripathi et al. [30]
employed computational modeling to study Na ion diffusion in NaFePO, material. They
predicted that the lowest energy path is in the [010] direction with an activation energy
of only 0.30 eV [30]. Fe-based polyanion materials have reasonably low activation energy

for Na-ion diffusion and this suggests that they can be considered for energy storage
applications [30,31,95].

FeQq PO,

(b)

Figure 2. Schematic representation of (a) the crystal structure (space group C2/c) and (b) the Na ion
diffusion paths (along the bc-plane) calculated in NazFe;(POy)s. Here, the green, purple, and light
blue atoms represent the Na ion hopping trajectories [95].



Appl. Sci. 2023,13, 9619

50f 15

Figure 3 represents the crystal structure (space group C2/c) and the Na ion diffusion
paths along the ab-plane in monoclinic NagV(POy); [94]. For NagV(POy); previous cal-
culations are consistent with this two-dimensional Na ion diffusion mechanism [38,94],
although there is a range of the calculated activation energies (0.433 eV (DFT) [38] and
0.59 eV (static atomistic simulation) [94]).

(b)

Figure 3. Schematic representation of (a) the crystal structure (space group C2/c) and (b) the Na ion

diffusion paths along the ab-plane in monoclinic NagV(POy), [94].

3.2. Magnesium-Ilon Batteries

Magnesium and calcium are interesting alternative ions to Li, which have the advan-
tage of being divalent [17,45,106-119]. Here we will consider Mg as a potential divalent
ion to substitute Li as the diffusion of Ca ions in crystal lattices is plagued by its larger
ionic radius. Table 2 reports the activation energies of Mg diffusion in candidate Mg-ion
battery materials. It can be observed that there is a very wide range of activation energies
(0.52-2.19 eV, refer to Table 2).

Table 2. The activation energies of diffusion of Mg in candidate Mg-ion battery materials.

Material Activation Energy/eV Comments
MgV,0,4 0.52 Ref. [45], 3D
MgsMnOg 0.86 Ref. [109], 3D
MgTiO3 0.88 Ref. [17]
Mg3zFe;SizO1n 2.19 Ref. [112]

As can be observed in Table 2, MgV;,0y is the most promising Mg-ion battery material
considered here with an activation energy of Mg-diffusion of 0.52 eV [45]. In more detail,
Kuganathan et al. [45] employed atomistic simulations to calculate the energetics and
vacancy-mechanism pathway (refer to Figure 4). The Mg local hops cover distances of
3.62 A (refer to the arrows in Figure 4a) and the activation energy of migration is 0.52 eV
(refer to Figure 4b). These local hops can lead to long-range three-dimensional (3D) dif-
fusion. As the diffusion mechanism is 3D there is no preferred plane or direction [45]. In
essence, the ionic conductivity in MgV,0y is significant, however, when it is significantly
less as compared to Li-diffusion or Na-diffusion [45,47,95].
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Figure 4. Schematic representation of (a) the Mg ion diffusion paths constructed in MgV,04 and
(b) the energy profile diagram for the Mg migration [45].

The computational simulation studies of a range of oxides showed that Mg diffusion
is significantly lower as compared to Li (or Na) diffusion, so it is anticipated that these
materials in their present form will not be appropriate for energy storage applications.

4. Oxygen Ion Batteries
4.1. Oxygen-Ion Diffusion

Oxygen diffusion is a fundamental property that is very important for oxide materials
employed for solid-state ionic materials, fusion materials, etc. Given the applications oxide
materials with increased ionic diffusivity have been sought by the community. What is
evident is that there is a wide range of oxygen diffusivities depending upon the crystallog-
raphy, stoichiometry, and composition. Even in similarly structured oxides, for example, in
perovskite-related oxides, there is a range of activation energies of oxygen diffusion (refer
to Table 3) [120-123]. As can be observed from Table 3 of representative perovskite-related
oxides, there is a significant range of activation energies of diffusion [120-123]. Although
these oxides have some common structural features (the perovskite block) their differences
in composition and stoichiometry lead to differences in activation energies of diffusion
of 2.2 eV (refer to Table 3). Additionally, it was established in previous studies (for exam-
ple [120-123] and references therein) that these materials possess different mechanisms of
diffusion in different directions.

Table 3. The activation energies of oxygen diffusion in representative oxides.

Material Activation Energy/eV Comments
LapNiOy, 4 0.56 [121], anisotropic mechanism
GdBaCo0,0s,5 0.60 [122]
Sro.75Y(0.25C005 g5 1.56 [123], isotropic mechanism, MD
Laovgsro_le’lO:;,(; 2.80 []20]

4.2. Oxygen Battery

In the seminal study by Schmid et al. [50] an oxide ion battery was constructed with a
Lag ¢Srg 4FeO3_s (LSF) cathode and a Lag 5519 5Crg»2MnggO3_5 (LSCrMn) anode. Figure 5
shows schematically how the oxygen ion batteries compare with respect to other related
electrochemical technologies with respect to their potential power and energy density [50].
The cycling performance was excellent, whereas DC measurements determined capacities
up to 120 of A h cm~3 at a cell voltage of 0.6 V and a temperature of 350-400 °C [50]. The
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study of Schmid et al. [50] showed that mixed ionic electronic conducting-based oxide ion
batteries are a possible electrochemical energy storage solution. In a subsequent study;,
Krammer et al. [124] prepared porous Lag ¢Srp4CoO;5_5 (LSC) thin film electrodes on yttria-
stabilized zirconia. They determined that rechargeable oxygen ion batteries efficiently
store oxygen by changing the oxygen non-stoichiometry and by the encapsulation of
high-pressure oxygen in the closed pores of the cathode [124].

10* 5
3 Fuel cell
103 - Na-S battery
If’c’ 102 4 Li-ion battery
e 3
= O-ion battery
>
G 0% 3
o ]
S
- 1 Flow
2 qp0 4 battery
Q :
w
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107 I L. (Y B 1.7 . N I 5 L) PRSI ) 2,511, R 5144 QR R IS A2
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Power density (Wkg™1)

Figure 5. A schematic comparison of the potential power and energy density of oxygen ion batteries
with related electrochemical technologies [50].

The high operating temperatures required (typically 200-500 °C) exclude this technol-
ogy from mobile applications where Li-ion batteries dominate (such as laptops, phones,
and cars). Nevertheless, it is a promising technology to store energy where there can be a
supply of heat and off-peak electricity production, for example near a civil nuclear reactor.
Such an energy storage solution with provide added benefit for the use of centralized
nuclear energy production.

5. Tuning the Ionic Diffusion

Tuning the ionic diffusion is typically carried out by doping as discussed above and
by forming interfaces or using external parameters such as strain; also, interfaces are
important for energy applications [6,7,125-137]. As the energetics of ionic diffusion are
governed by the activation energy of diffusion that is in turn the sum of the migration
energy of diffusion (i.e., the energy barrier that the ion has to overcome) and the formation
energy (i.e., the number of mobile species, so for an oxygen ion migrating via a vacancy
mechanism the formation energy of the oxygen vacancy is important) it is necessary for
faster diffusion to lower these terms. For example, Kushima and Yildiz [9] employed DFT
calculations to predict the optimum strain conditions that would lower the oxygen ion
migration energy barriers in strained yttria-stabilized zirconia. Considering the study by
Lee et al. [135] it was determined that designed ionic interfaces (heterointerface between
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CeO; (fluorite) and Y,Oj3 (bixbyite)) can lead to the formation of a very high concentration
of interfacial oxygen vacancies. These fluorite-bixbyite interfaces pave the way for the
designed formation, transport, and control of oxygen vacancies and may have applications
in memristive and ionotronic devices [135]. Notably, the field benefited from the study of
Garcia-Barriocanal et al. [6] which determined a colossal enhancement in the ionic conduc-
tivity at ZrO,:Y,03/5rTiO3 heterostructures. Although there was a lot of research on the
claims by Garcia-Barriocanal et al. [6,7,9,127] there was significant focus and progress in the
field in the direction of heterointerfaces. As it was seen in Section 3, Mg and Na ions would
benefit from an enhancement in the diffusion energetics. What the energy storage commu-
nity normally investigates first is the impact of the structure and composition (i.e., crystal
structure and hypo-hyperstoichiometry) and doping). Future work should also explore
the impact of designed heterointerfaces on the diffusion of Mg and Na ions. The key could
well be designing the material interfaces rather than exploring exotic crystallographies and
compositions. Designed interfaces could offer the concentration of the vehicles required for
ionic transport and lower the migration energy barriers.

Doping is an efficient way to tune the migration energy barrier, the number of intrinsic
defects required for diffusion, and electronic properties. Considering NaszFe,(POj,); the
lowest energy intrinsic defect process is the Na Frenkel (i.e., the formation of a Na vacancy
and Na interstitial pair) [95]. This, in turn, will lead to the formation of Na vacancies that
are beneficial for Na ion migration as the vacancy mechanism is energetically favorable [95].
Doping the Fe of the site of NazFe;(PO4); with isovalent dopants (M = Sc, La, Gd, and Y)
to form Nag(FexM;j_x)2(PO4)3 can improve electronic conductivity [95]. Importantly, for
Zr doping on the Fe site increases the Na vacancy concentration [95]. Conversely, doping
with Si on the P site results in the formation of Na interstitials, which can lead to the
enhancement of the capacity of NazFe;(POy)3. For NaZry(POy); the Na Frenkel is also the
lowest energy intrinsic defect process [47]. Considering isovalent doping it was predicted
that K* and Ge** are the significant isovalent dopants on the Na and Zr sites [47]. Doping
with Yb, Y, Ga, and In on the Zr site leads to the formation of oxygen vacancies and Na
interstitials [47]. Finally, for NagV(PO,), atomistic simulations revealed that the Na-V anti-
site defect is the lowest energy intrinsic defect process [94]. Therefore, at high temperatures,
there will be some Na ions on the V site and V ions on the Na site [94]. The high energy
of the Na Frenkel mechanism will result in very few Na vacancies that are necessary for
Na* diffusion. The most efficient strategy to form these Na vacancies is by doping with the
tetravalent dopant Ge** on the V site [94]. Notably, Ge doping on the P site increases the
Na interstitial concentration that is required for high capacity [94]. Considering MgV,0Oy,
Kuganathan et al. [45] showed that doping with cobalt at the vanadium site can lead to the
increase of Mg interstitials and O vacancies.

In the fundamental study by Chiabrera et al. [19] it was determined that the control
(tuning) of the non-stoichiometry in grain boundaries is an efficient way to enhance the
diffusion properties. In particular, Chiabrera et al. [19] showed that the defects induced
by strain in the La;_«SryMnQOsz.+5 (LSM) grain boundaries amplify the oxygen diffusion.
In essence, with the use of designed interfaces and/or the formation of nanocomposites
with appropriate architectures it is possible to tune the material properties of systems for
energy applications without the need to use very expensive and scarce materials such as Li
or rare-earths.

The kinetics of Na ions (and to a lesser degree Mg) and the continuous and systematic
investigation of new novel oxides for energy storage applications are very promising and
are expected to compete with Li [138-148]. These ions also have considerable advantages
as compared to Li. In particular, Na and Mg are far more abundant, more environmentally
friendly, sustainable, and economical as compared to Li. Therefore, should the engineering
requirements are met they will make a significant contribution to energy storage from
renewable energy and nuclear energy production sites.
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6. Summary, Perspective, and Future Outlook

Motivated by explosive lithium demand (for transportation and grid energy storage)
and known supply limitations including reserves, regional concentration, mining, and
supply chain as well as environmental concerns, the present review considers alternatives
to lithium compounds with emphasis on the computational modeling of prospective alter-
native materials for energy storage. Particular focus is on the defect processes and kinetics
of post-lithium oxide batteries. Computational modeling is a tool that can be utilized to
provide supplementary information to experiment in order to understand defective oxide
materials and optimize them for energy storage applications. Its advantages include aiding
experimental work in the characterization of crystal structures, the prediction of the defect
diffusion mechanism and energetics, the discovery of the most efficient defect engineering
strategies to optimize diffusion, and the fundamental understanding of interfaces and
their properties. It is acknowledged that the most interesting systems are usually the ones
with the most complicated structures, composition, and stoichiometry. All these consti-
tute their experimental investigation and synthesis difficult. Theoretical calculations can
offer a complementary tool to select and focus on the most important systems and there
has been also substantial progress in the past years in advanced methodologies. These
are now applicable given the ever-increasing computational power and it is anticipated
that quantum MD simulations will become a popular tool to investigate the structure,
diffusion energetics, and electronic properties of extended systems. Hybrid functionals
and meta-GGA approaches are also presently used and these in turn are important when
considering the electronic structure of defects. At any rate, deeper analysis will be gained
by the traditional methods of analysis such as Brouwer diagrams and the thermodynamic
c¢BQ) model. These approaches have been embraced, to some extent, by the community in
energy-related materials studies. Finally, it is anticipated that advanced techniques based
on machine learning will gain ground particularly when a particular material or family of
materials will need to be pre-selected for experimental or advanced DFT work. This in turn
will accelerate the research and development processes.

A bottleneck for technology is the use of expensive and scarce materials (such as Li,
rare-earths, or precious metals) in most advanced technological applications. This is an
expensive and unsustainable way that will lead to delay and frustration in the coming
years. Many key materials such as rare-earths are mined in China, whereas economic areas
such as the EU produce very limited quantities of rare-earths and Li. A future potential
reduction in rare-earth or Li exports will have disastrous consequences for numerous
industries in many countries. Recycling and/or the discovery of more mines alone will not
suffice to provide a sustainable supply of these materials. What is required is to gradually
reduce the dependence on scarce materials in advanced technological applications and
to move towards cheaper and more available materials. In this respect, the development
of energy storage materials based on Na, and to a lesser degree Mg, is the way forward.
The development of energy storage systems needs to be assessed considering all steps
from cradle to grave. The environmental, economic, and sustainability of storage systems
are also important for associated technologies such as renewable energy production and
nuclear energy.
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