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Abstract: This paper presents a methodology to improve energy efficiency and sustainability in urban
environments. The ongoing climate change is causing increasingly important consequences for cities
and their inhabitants. Temperatures are rising and human thermal comfort conditions are becoming
worse. For this reason, it is essential to evaluate how parts of cities react to these phenomena and how
they could improve their behavior. To do this, the area of interest has to be analyzed from various
aspects, starting with an assessment of the microclimatic conditions. Through these analyses, it is
possible to observe the interactions between climate and the urban context on a macro-scale. The
actual results, such as surface temperature and air temperature, will be useful for hypothesizing
where different paved surfaces need to be restored with mitigative actions. Another aspect that
needs to be considered for a comprehensive analysis of the area’s potential concerns the study of
solar potential. We will describe how this topic was approached, making in-depth evaluations of the
quality of the results obtained through the analysis of simplified models. The portability of these data
within a spatial domain was also evaluated, integrating the values on a territorial database. Another
important topic that needs to be analyzed to plan an improvement of an area in terms of energy
production is the installation of new solar active production systems. The appropriate inclusion of
photovoltaic panels could lead to the near self-sustainability of buildings by decreasing the external
energy demand. The results obtained by applying the methodology in a case study highlight that all
these aspects must be taken into account simultaneously to improve the existing conditions of entire
city areas, leading to a more sustainable urban environment.

Keywords: mitigative actions; microclimatic conditions; solar potential analyses; solar active
production systems; sustainability

1. Introduction

This study’s aims were to conduct an extensive analysis applied to a case study,
examining it from various sustainability and efficiency aspects. To develop an effective
methodology, this process was structured by following three different phases applied to a
specific case study. The goal was to firstly gain a complete overview of the current situation
and then hypothesize subsequent interventions. During the first phase of the process, it
was essential to introduce the topic of the urban heat island phenomenon, highlighting the
significant importance of mitigative interventions that could be implemented at the urban
scale. These interventions were evaluated after conducting microclimatic analyses [1]. The
next step involved the detailed evaluation of studies on solar potential. This evaluation
aimed to design interventions that can improve the energy response of entire urban areas [2].
On the other hand, the last part involved an advanced design phase that considered the
placement of photovoltaic panels on the facades of existing buildings. The three different
phases required the use of various tools and software for internal implementation to achieve
the desired results. Our study utilized the following software and procedures, and in the
subsequent chapters, their functionality will be explained (Figure 1).

Appl. Sci. 2023, 13, 9745. https://doi.org/10.3390/app13179745 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179745
https://doi.org/10.3390/app13179745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0005-7521-901X
https://orcid.org/0000-0002-5989-995X
https://doi.org/10.3390/app13179745
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179745?type=check_update&version=2


Appl. Sci. 2023, 13, 9745 2 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 17 
 

procedures, and in the subsequent chapters, their functionality will be explained (Figure 
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Figure 1. Workflow of the different phases. 

The initial focus of this paper was to analyze the urban heat island (UHI) phenome-
non by investigating both its causes and the various potential mitigation solutions [3]. This 
phenomenon is specifically defined as a thermal anomaly that occurs in urbanized areas, 
where the temperatures inside the city are higher than those present in rural areas [4]. It 
represents one of the most studied phenomena related to climate change and depends on 
five main parameters: the scarcity of green and permeable areas; the climate and weather 
conditions related to geographical location; the radiative and thermal properties of urban 
materials; the urban geometries; and the anthropogenic heat [5,6]. Among the most sig-
nificant causes, there can be found alterations introduced by human intervention and land 
use. The transformation of existing soil and vegetation into impermeable surfaces, char-
acterized by an increased density, promotes a buildup of heat caused by the reflection of 
incident solar radiation [7,8]. In this scenario, one of the most important functions of green 
areas inside urban environments is to screen solar radiation that is neither stored nor re-
flected, thereby reducing air temperature through evapotranspiration [9]. This highlights 
the great importance of the presence of green areas and trees. During the summer period, 
the full extent of the UHI phenomenon is experienced, creating an uncomfortable micro-
climate in urban areas [10]. The pavement absorbs solar radiation, stores the energy un-
derground, and releases it through convection and infrared radiation to the surrounding 
environment at night, hindering cooling [11]. There are several mitigation strategies for 
this phenomenon, and one of the most effective solutions, in addition to introducing 
greenery and water surfaces, is the replacement of existing pavements with cool pave-
ments [12,13] (Figure 2). These materials enable the maintenance of lower surface temper-
atures by absorbing and storing reduced amounts of solar radiation or enhancing water 
evaporation [14,15]. A combination of reflective and evaporative pavements can poten-
tially improve human thermal comfort conditions, since lower air temperatures aid in mit-
igating the UHI effect [16,17]. 

Figure 1. Workflow of the different phases.

The initial focus of this paper was to analyze the urban heat island (UHI) phenomenon
by investigating both its causes and the various potential mitigation solutions [3]. This
phenomenon is specifically defined as a thermal anomaly that occurs in urbanized areas,
where the temperatures inside the city are higher than those present in rural areas [4]. It
represents one of the most studied phenomena related to climate change and depends on
five main parameters: the scarcity of green and permeable areas; the climate and weather
conditions related to geographical location; the radiative and thermal properties of urban
materials; the urban geometries; and the anthropogenic heat [5,6]. Among the most signifi-
cant causes, there can be found alterations introduced by human intervention and land use.
The transformation of existing soil and vegetation into impermeable surfaces, characterized
by an increased density, promotes a buildup of heat caused by the reflection of incident
solar radiation [7,8]. In this scenario, one of the most important functions of green areas
inside urban environments is to screen solar radiation that is neither stored nor reflected,
thereby reducing air temperature through evapotranspiration [9]. This highlights the great
importance of the presence of green areas and trees. During the summer period, the full
extent of the UHI phenomenon is experienced, creating an uncomfortable microclimate in
urban areas [10]. The pavement absorbs solar radiation, stores the energy underground, and
releases it through convection and infrared radiation to the surrounding environment at
night, hindering cooling [11]. There are several mitigation strategies for this phenomenon,
and one of the most effective solutions, in addition to introducing greenery and water
surfaces, is the replacement of existing pavements with cool pavements [12,13] (Figure 2).
These materials enable the maintenance of lower surface temperatures by absorbing and
storing reduced amounts of solar radiation or enhancing water evaporation [14,15]. A com-
bination of reflective and evaporative pavements can potentially improve human thermal
comfort conditions, since lower air temperatures aid in mitigating the UHI effect [16,17].
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a climate characterized by heavy autumn rains and moderate summer drought, with very 
hot summers and warm winters [19]. The selected area belongs to the University of Padua 
and covers a significant surface area of approximately 50.000 m2. The area mainly consists 
of buildings used for student classrooms, laboratories, offices, and the university canteen, 

Figure 2. Urban heat island mitigation strategies.

With these assumptions, one of the primary purposes was to analyze the influence
of the existing pavement materials on environmental and climatic conditions and their
contribution to the generation of the urban heat island phenomenon. This analysis aimed
to evaluate any potential benefits associated with the subsequent introduction of new
pavements with more innovative characteristics, such as whitetopping, colored asphalt,
permeable concrete, and permeable interlocking concrete blocks [18].

2. Case Study Identification

It was necessary to analyze, firstly, the main characteristics of the selected case study
area, where the methodology was developed and tested. It is, specifically, the Piovego
North University area (Figure 3). It is located in Padua, a city in the Veneto region, in the
northeast part of Italy.
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Figure 3. (a) Padova localization (Google Maps); (b) study area, Piovego North University campus
(Google Maps).

Due to the phenomenon of global warming and climate change, temperatures are
changing, altering climate maps, and bringing local temperatures and conditions closer to
a climate characterized by heavy autumn rains and moderate summer drought, with very
hot summers and warm winters [19]. The selected area belongs to the University of Padua
and covers a significant surface area of approximately 50.000 m2. The area mainly consists
of buildings used for student classrooms, laboratories, offices, and the university canteen,
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with outdoor spaces. To ensure reliable simulations of the initial condition, it is crucial
to have a clear idea of the condition of the existing materials, collecting data regarding
their composition, their wear degree, and their mutations compared to new material, as
these are fundamental input data. Therefore, we directly conducted in situ extraction of
eight core samples to later subject the existing materials to laboratory tests, analyzing their
chemical composition and physical behavior. The core samples were extracted according to
the different types of materials identified during a survey.

This area was chosen because it is representative and can reflect many characteristics
of urban environments. This is a complex that has structural conformations that are quite
common in the area, and in Italy in general, for agglomerates that serve the same function.
This allows for comparable results for similar structures, and not only the study area.

Within the area, 76% of the surfaces resulted to be impermeable; 33% belonged to
the building roofs, and 43% had conventional materials known for their heat retention
properties, such as asphalt and concrete. The remaining 24% of the area was covered by
green surfaces (Figure 4). For the subsequent analyses, it is essential to highlight data on
the extension of these green areas, including the specific location of trees and information
about their main characteristics.
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3. Microclimatic Analysis

After the surveying phase of the current conditions of urban surfaces and climate con-
ditions, some large-scale microclimatic analyses were conducted to examine how different
existing materials may affect surface and air temperatures, as well as perceived human
thermal comfort [20,21]. For this purpose, a numerical model was built using ENVI-met
software [22], which allows for the simulation of various microclimatic scenarios. The soft-
ware was chosen because it is based specifically on the calculation of both thermodynamic
processes occurring at the ground surface, roofs, and walls of buildings, and fluid dynamic
characteristics, including airflow and turbulence, allowing the simulation of the wind
flow around structures and the determination of complex micro-scale thermal interactions
within urban environments [23–26]. The microclimatic conditions were analyzed for July
24th, representing a typical hot condition in Padova.
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The procedure of the model creation, analyzed with ENVI-met, started from an .osm
file of the target area. This specific file, directly exported from OpenStreetMap [27], permits
the creation of a 3D model based on spatial data, using mainly Grasshopper integrated
with the Urbano tool. This initial file expedited the creation of a detailed model, where
the building heights were adjusted, and the green and paved surfaces were subdivided
according to the different typologies. Through the components of Dragonfly tool, it was
then possible to assign appropriate materials from the ENVI-met library to all surfaces and
volumes, which could be modified as needed. Dragonfly, in fact, permits the connection
between the two different work environments, Grasshopper and ENVI-met. At this stage,
the model was connected to an .epw file [28], which represents a kind of database in which
all the climatic information, measured by satellite sensing stations, is recorded for each
station in the world. This file also includes georeferencing data for the model. This is a file
that can be downloaded online from several collections by selecting the necessary reference
station, and in the case described, the collection provided directly by Ladybug was used.
After connecting the 3D model with the climate information belonging to the actual location
of the area, the exportation of a readable model for the simulation environment resulted in
two files. The first one contains the purely geometric and physical information of the model,
in .INX format, and a second file contains all the climatic and environmental information
selected for the analysis (Figure 5).
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These two files were of fundamental importance for the subsequent simulations
conducted using the ENVI-met software. In the first image (Figure 5a), the model is read in
the Space section, and in the picture beside it (Figure 5b), the data are read in the ENVI-
guide section of the software. Using the ENVI-core section represents the following step.
This, in fact, permits the integration of the two previous parts described, analyzing each
voxel of the model together with the integrated information.

The key findings from the simulations are summarized as follows. Two simulation
scenarios were performed: the first corresponded to the actual situation in the area (AS),
whereas the second involved the replacement of pavements to mitigate their thermal
response to the local climatic conditions (CPS).

The first scenario highlighted the impact of pavements on generating the urban heat
island effect, allowing the visualization of peaks in surface and air temperatures reached
especially during the hottest hours of summer days. This permitted the identification of
the areas where pavement replacement interventions would be most beneficial. After these
analyses were related to the actual state of the area, the replacement of these pavements with
cool materials was considered. The total area subject to redevelopment is approximately
19.740 m2, with 11.890 m2 proposed to be redeveloped using reflective materials, and the
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remaining are assumed to be transformed into permeable surfaces [29]. The main materials
utilized in this process include whitetopping, colored asphalt, permeable concrete, and
permeable interlocking concrete blocks [30–33] (Figure 6).
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Figure 6. Regeneration project for paved surfaces.

Following the design phase of the new pavements, it was necessary to create a new
simulation scenario to compare it with the initial scenario and assess its effectiveness [34].
The Leonardo section of Envi-met was used to generate, in a subsequent phase, comparison
scenarios that considered the differences between the conditions before and after the
requalification interventions. This type of comparison was possible with various analyzed
parameters. These parameters could include surface temperature, air temperature, thermal
comfort indices, or other relevant factors.

The second simulation scenario resulted in an overall decrease in surface temperature
across the entire case study area, and the application of whitetopping provided the most
significant cooling effect. The following graphical representations were produced compar-
ing the results of the two scenarios (Figure 7). These visualizations helped the identification
of the areas where the replacement of pavements provided the greatest benefits.
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Through the analysis of two specific points within the area (P1 and P2), it was possible
to realize some more detailed temperature analyses to observe the trends over the course
of a whole day (Figure 8). Specifically, it was possible to highlight that during the hottest
hours, between 12:00 and 16:00, the results revealed significant temperature differences,
with variations ranging from 7.5 ◦C to 9 ◦C during peak hours. Even during the remaining
hours of the day, although the temperature differences were lower, improvements were still
observed overall. These findings demonstrated the effectiveness of pavement replacement
interventions in mitigating high temperatures and improving thermal conditions within
the studied area.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 17 
 

pavement replacement interventions in mitigating high temperatures and improving 
thermal conditions within the studied area. 

 

Figure 8. Differences in air temperature trends in AS and CPS, measured in P1 and P2. 

The changes in the outdoor environment not only affected surface temperatures but 
also had an impact on air temperatures [35]. The alterations in reflection phenomena 
caused variations in heat exchange between surfaces, which consequently influenced the 
convective transfer of heat from the ground to the air. As a result, the cooling effect result-
ing from lower surface temperatures led to a decrease in atmospheric temperature. Ana-
lyzing the trends in air temperature in the section, the most significant differences between 
the two scenarios were observed during the hottest hours. The storage of thermal heat 
near buildings played a significant role in this context. The data obtained demonstrated 
the benefits derived from the replacement of materials in terms of reducing air tempera-
tures (Figure 9). The analysis highlighted the positive impact of pavement replacement 
interventions on the overall thermal conditions of the outdoor environment, particularly 
during the peak hours of heat. 

Figure 8. Differences in air temperature trends in AS and CPS, measured in P1 and P2.

The changes in the outdoor environment not only affected surface temperatures but
also had an impact on air temperatures [35]. The alterations in reflection phenomena caused
variations in heat exchange between surfaces, which consequently influenced the convective
transfer of heat from the ground to the air. As a result, the cooling effect resulting from lower
surface temperatures led to a decrease in atmospheric temperature. Analyzing the trends
in air temperature in the section, the most significant differences between the two scenarios
were observed during the hottest hours. The storage of thermal heat near buildings played
a significant role in this context. The data obtained demonstrated the benefits derived
from the replacement of materials in terms of reducing air temperatures (Figure 9). The
analysis highlighted the positive impact of pavement replacement interventions on the
overall thermal conditions of the outdoor environment, particularly during the peak hours
of heat.
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4. Solar Potential Study

The next step in the study involved the extension of the analyses to assess the solar
potential on a large scale, while also considering the transferability of the obtained data
to the urban scale. This required the development of a methodology that combines solar
potential simulation data with spatial data management in a GIS environment [36–38].

By utilizing a 3D model, it is possible to gather, through tools for Grasshopper such
as Ladybug and Honeybee, data on the solar potential of various surfaces, volumes, and
buildings [39]. However, one challenge with this relatively straightforward procedure
concerns the fact that the resulting data are significantly influenced by the type and level
of detail of the model used [40]. If the model is oversimplified, the data obtained, in
turn, will also be limited in their accuracy. On the other hand, when analyzing extensive
areas of cities, it is not feasible to incorporate a high level of detail into the model [41].
Striking the right balance between model complexity and practicality is crucial to obtaining
reliable results.

4.1. Simplified Solar Potential Value Moderation

The first procedure developed focuses on obtaining reliable data compared to the
real situation, calculating the solar potential using a simplified model. In this regard, a
methodology was developed that can take into account the data obtained through simu-
lations, supplementing the results with some corrective coefficients in order to make the
data as close as possible to reality. This is necessary because each building has particular
characteristics due to the presence of windows, balconies, shading, particular exterior
overhangs, and canopies. These factors affect both the area available for the installation
of new photovoltaic systems and their efficiency [42]. These specific conditions are not
considered at all by analyzing the solar potential using a simplified model. This could be
obtained from a spatial database and generated with scripts using, for example, the Urbano
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tool, starting from an .osm file (Figure 10). The comparison between the simplified and
actual situation highlighted a substantial difference.
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To avoid the problem related to the extreme simplification of the data, the proposed
strategy was to find some correction coefficients that, when multiplied with the simplified
input, can return a result very close to the solar potential calculated in a detailed model [43].
The formulated equation establishes a correlation between the real solar potential (SPs)
and the simplified solar potential (SPr). It takes into account the percentage of opaque
surface area (%oparea) as well as a previously calculated transformation coefficient (TCoeff ),
as described in a paper co-published by the research group of the ICEA department of the
University of Padua, coordinated by Professor Rossana Paparella [44]:

SPr = SPs · %oparea · TCoeff , (1)

The process of calculation of these indices involved visual and geometric surveys to
evaluate the properties of the various surfaces and areas available [45]. This process had
certain limitations, as it was neither immediate nor rapid. However, advancements in
technology such as the use of drones and photogrammetry could potentially streamline
and expedite the process. In reference to the mentioned case study, two particular buildings
were chosen to test this methodology. They comprise an office building and another one
with laboratories, situated adjacent to the first one on the east side of the intervention area.
For each building, the necessary values for calculating and defining the transformation
coefficient were determined for each facade. These values included the total surface area,
the area occupied by windows (glazed surface), and the area occupied by solid walls
(opaque surface). By considering these parameters, the percentages of glazed and opaque
areas for each facade were determined. Additionally, the solar potential was calculated
for both the application of a simplified model and a more detailed model, allowing for a
comparison of results (Figure 11).

To ensure consistency in the data, an arithmetic average was calculated based on
the geometric values obtained. This averaging process aimed to harmonize the different
conformational characteristics of the surfaces, taking into account their varying degrees of
restrictiveness. Once the transformation coefficient was determined, it was incorporated
into the calculation of the simplified solar potential, within the Grasshopper script. This
adjustment enabled the generation of more accurate data that reflected the actual char-
acteristics of the buildings. By comparing these adjusted results with the detailed solar
potential data obtained for the two selected buildings, the accuracy and reliability of the
output could be evaluated.
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4.2. Connection between Spatial Data and Solar Potential Values

In the second part of the methodology, the focus was on making the solar potential
data applicable and usable at the urban scale [46]. The aim was, therefore, to integrate
the calculated solar potential values for each surface area of every building with the basic
information provided in a source .osm file [47]. To achieve this, a code was developed in
Grasshopper that allowed the grouping of the solar potential values for each building. The
compiled list containing all the calculated values for each building was created. Subse-
quently, these data were integrated into the source .osm file, which served as the base for
the urban model (Figure 12). This integration process facilitated the incorporation of solar
potential information into the overall urban analysis database.
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In order to have a single data value that could be easily read and utilized in other
software, the calculated solar potential values for each building were summed up. This
sum was then used to overwrite the source .osm file, which was enriched with the new
simulated solar potential information for each building. This enabled the export of the
information to various spatial data processing software, such as Qgis [48] (Figure 13). The
significance of this process lies in the creation of a sort of solar cadaster, where data on
the solar potential of all buildings are consolidated into a single database. This database
format ensures that the solar potential information is accessible and readable for various
stakeholders, including individual building owners and public administrations involved
in urban planning and energy management.
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5. Active and Passive Building Interventions

In the final phase of the study, to further develop the methodology and design an
energy requalification project, a specific building within the study area was chosen. The
selection aimed to allow for more comprehensive considerations, particularly in terms of
implementable solar active solutions. Among the buildings in the study area, the office
building was chosen for further analysis.

To begin the energy requalification project, a detailed energy diagnosis of the office
building was conducted using EDILCLIMA—EC720 software [49]. This software was
chosen because it could bring results about the energy diagnosis of the buildings. In this
case, the building’s energy performance class was very low, highlighting the need for
energy improvements/requalification measures to enhance energy efficiency (Figure 14).
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The value of the building’s overall non-renewable energy performance index, repre-
senting the annual non-renewable primary energy requirement for all provided services
by the technical systems, amounts to 249.08 kWh/m2 annually. The building’s energy
performance, which represents the qualitative index of the energy requirements to maintain
internal comfort, indicates how effectively the building thermally insulates the internal
environments in both summer and winter compared to the outside. In this case, the energy
performance class was determined to be low for both seasons, indicating a need for energy
improvement measures.

Additionally, in this case, the main geometric parameters were calculated, with a
focus on identifying the usable area for installing new systems. The facade has a distinct
configuration due to the presence of pilasters, which create shading on the adjacent surfaces,
which are positioned on a recessed plane. The building, dating back to the 1960s–70s,
possesses the following characteristics:

- Eight floors above ground with reinforced concrete frames and floors;
- Flat tiled roof (absent in a section of the roof given by a protruding body);
- Facades characterized by external reinforced concrete walls without plaster with

variable sections, and with pilasters characterized by a marked vertical trend; among
these, the presence of single-glazed iron windows and glass doors on the ground floor
can be highlighted;

- Three lifts, with the capacity for four people.

Based on the analyses and simulations conducted in the previous phases, several
regenerative interventions were designed to improve the energy performance of the office
building. These interventions include the following:

1. External Envelope: The introduction of an external envelope involves adding a layer
of 120 mm thick rock wool insulation. Around the pilasters, the insulation thickness
is reduced to 60 mm.

2. Windows and Doors Replacement: The existing windows and doors will be replaced
to enhance thermal performance and reduce heat loss.

3. Photovoltaic Modules: Custom-made photovoltaic modules will be installed on
both the roofs and facades of the building. On the south facade, the installation
area was carefully determined, considering the shading caused by adjacent trees.
Additionally, panels will be placed at a 57◦ angle above each window to provide
additional protection from the sun and horizontal rainfall. The obstacle given by the
adjacent bodies causes a variable shadow in the lower strip of the west facade that
reaches up to the upper elevation of the roof of the adjacent body (12.76 m). Therefore,
the portion above this height was considered for the insertion of the panels. On the
roof, panels will be mounted on two large metal sheet structures to optimize the space,
oriented towards the south.

These interventions collectively result in significant improvements in the energy
performance of the building. As a result, the building achieves an energy class of A4, which
is substantially higher than the initial energy performance class (Figure 15).

These measures enhance energy efficiency, reduce energy consumption, and promote
sustainability within the building. In this particular case, the building’s non-renewable
global energy performance index is measured at 22.24 kWh/m2 annually. The energy per-
formance indicates that the building exhibits a high energy performance during the winter
season, whereas its performance level during the summer season is considered average.
The planned photovoltaic system, therefore, has a total nominal power of 157 kW. Based on
this capacity, it is estimated that the system will consume approximately 157.230 kWh/year.
The projected electricity production from the photovoltaic system is estimated to be around
169.024 kWh/year, taking into account various inputs and monthly production variations.
It is important to note that the quantitative results obtained for the solar potential esti-
mation are calculated with caution over a one-year time frame. Additionally, it is worth
highlighting that the application of photovoltaic systems only on building facades or roofs
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is not the only possibility. There are increasingly innovative methodologies emerging that
integrate photovoltaic systems into various elements of urban design and less conventional
building elements. These approaches aim to enhance energy efficiency and maximize the
utilization of solar energy resources in urban environments.
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6. Conclusions and Future Developments

The development of this methodology aims to provide different approaches for eval-
uating microclimatic conditions and simulated solar potential values, and we promote
its replicability in other case studies, as well. To summarize the main results achieved in
the three different phases (Figure 16), it is important to highlight that in the case of the
microclimatic analyses, the introduction of cool materials in urban areas demonstrates clear
improvements in terms of microclimatic conditions, particularly in reducing surface tem-
peratures and mitigating the urban heat island effect; in the case of solar potential analyses,
the use of correction coefficients helps in obtaining more reliable solar potential values com-
pared to simplified models. This approach considers specific characteristics of individual
buildings and areas, enhancing the accuracy of the results; and in the design phase, the
implementation of new photovoltaic systems, replacement of windows, and introduction
of insulation material can lead to a significant improvement in energy performance.
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However, it is important to acknowledge certain limitations associated with the
methodology that, in some situations, may compromise the results obtained. In the mi-
croclimatic analysis phase, the model used is highly simplified due to restrictions in the
Envi-met software. While this allows for faster simulations, it may not capture specific
characteristics of individual buildings and areas, allowing for an incorrect simulation of the
surface temperatures. In the solar potential analysis phase, the identification of surfaces and
materials relied solely on visual analyses, which can be a laborious and time-consuming
process. This process can also lead to inaccuracies that alter the calculation of actual avail-
able solar potential. Additionally, the placement of photovoltaic panels in the design phase
was conducted in an approximate manner, which may affect the precision of the results
about their production. These limitations should be taken into account when applying
the methodology, and they can be further addressed through advancements in software
capabilities, data collection methods, and modeling techniques. It is also important to
highlight that the interference between all these types of analyses represents an important
future work: to try to integrate better all the results.

In the described context, future research developments can certainly be addressed;
firstly, towards the identification of the different kinds of interference that could be present
between mitigation systems and the applied PV panels. It is crucial to evaluate the in-
tegrated behavior between different active and passive systems. While implementing
mitigation systems and PV panels can be beneficial, potential negative aspects such as glare
from over-reflective surfaces and heat emissions from photovoltaic surfaces should also be
considered. Further research can focus on optimizing the balance between these systems
to maximize overall benefits. To expedite the process of surface and material detection,
utilizing drones and implementing photogrammetry and deep learning techniques can be
beneficial. These technologies can enhance efficiency and accuracy in identifying suitable
areas for photovoltaic installations and other interventions [50,51].

Finally, to gain a more comprehensive understanding of the benefits derived from
building improvements, it is important to compare energy production and consumption.
Evaluating the real self-sustainability of buildings involves analyzing the balance between
energy production from PV systems and energy consumption by the building itself. This
assessment provides valuable insights into the overall energy performance and sustain-
ability of the building. By addressing these aspects, future developments can enhance the
methodology, improve analysis accuracy, and provide a more comprehensive assessment
of the energy performance and sustainability of buildings in urban environments.
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