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Abstract: We propose a DeiT (Data-Efficient Image Transformer) feature encoder-based algorithm for
identifying disease types and generating relevant descriptions of diseased crops. It solves the scarcity
problem of the image description algorithm applied in agriculture. We divided the original image into
a sequence of image patches to fit the input form of the DeiT encoder, which was distilled by RegNet.
Then, we used the Transformer decoder to generate descriptions. Compared to “CNN + LSTM”
models, our proposed model is entirely convolution-free and has high training efficiency. On the
Rice2k dataset created by us, the model achieved a 47.3 BLEU-4 score, 65.0 ROUGE_L score, and
177.1 CIDEr score. The extensive experiments demonstrate the effectiveness and the strong robustness
of our model. It can be better applied to automatically generate descriptions of similar crop disease
characteristics.

Keywords: agriculture; image captioning; rice pests and diseases; DeiT

1. Introduction

Rice is an indispensable food crop, with its total yield ranking third in the world.
Various diseases and pests [1–4] seriously affect the yield of rice. The image caption
generation technology (the goal of this technology is to enable computers to understand and
describe the content of images in natural language) has the ability to automatically generate
feature descriptions by capturing essential information in images. The application of this
technology in the diagnosis of rice diseases and pests can not only help farmers identify
the types of diseases and pests but also deepen their understanding of the characteristics
of diseases and pests through the generated descriptions. However, there are still some
difficulties in image caption generation technology for rice pests and diseases. First, due
to the lack of rice disease and pest data samples, it is not suitable to use big data learning
methods for model training. Second, the small proportion of the incidence site within the
overall image presents a challenge. Convolution and pooling operations in Convolutional
Neural Networks (CNNs) lead to a reduction in spatial resolution as the network deepens.
The receptive field [5] becomes larger, which is beneficial for capturing larger structures
but can make it harder to detect smaller details. Deep CNNs with numerous convolutional
and pooling layers may fail to capture crucial information from small targets within the
incidence site. Third, it is necessary to correctly handle the relationship between Computer
Vision (CV) modal data and Natural Language Processing (NLP) modal data and build a
cross-modal model for the high-level understanding of vision.

In previous studies, due to limitations in predefined sentence structures and phrases,
template filling methods [6–8] have been unable to handle complex scenes, resulting in a
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single description format and poor quality. The descriptions generated by retrieval [9,10]
methods lack diversity and novelty because they rely on text library description datasets. In
contrast, the descriptions generated by the approach based on the encoder–decoder struc-
ture [11] have higher accuracy and flexibility. The training process of this method is simpler
and more efficient for researchers, so it is more popular. The encoder takes in the input data
and processes it to extract important image features, and the decoder takes the encoded
representation from the encoder and generates the descriptions. This method generally
uses a CNN [12–16] as an encoder to automatically extract image features in the model, and
the decoder relies on the advantages of an RNN (Recurrent Neural Network) [17] in pro-
cessing sequential data to generate the predicted descriptions [11,18,19]. Long Short-Term
Memory (LSTM), proposed by Vinyals et al. [20], solves the gradient vanishing problem of
RNN. Thereafter, decoders mainly used LSTM and its variants [21–24]. However, there is a
problem with insufficient detail and consistency in the description generation guided by
global CNN features. Therefore, Xu et al. [25] introduced an attention mechanism between
the encoder and decoder so that the model can selectively focus on certain regions of the
image when generating each word. Lu et al. [26] further proposed an adaptive attention
mechanism, which allows the model to choose whether to focus more on visual or semantic
information in the process of generating descriptions. Anderson et al. [27] proposed an
attention mechanism combining bottom-up and top-down approaches based on biological
vision theory. Guo et al. [28] proposed using a GCN (Graph Convolutional Network) to
obtain visual relationships to generate descriptions that fit the image more closely through
the target semantic and spatial relations. It further narrowed the semantic gap between
image and text. Xie et al. [29] used ResNet18 as the image feature encoder and a LSTM
decoder with an attention mechanism to construct a model. They employed a CNN and
attention-based LSTM architecture to generate image descriptions in the field of rice pests
and diseases. Although its effect is good, there is still great room for improvement.

Recently, Transformer [30] has achieved great success in the field of NLP. Transformer
model architecture has been considered for applications in the field of CV: Li et al. [31]
used two independent Transformer encoders as the visual and semantic encoders of the
model, respectively, to obtain more accurate visual and semantic relationships. Huang
et al. [32] added the mechanism of AoA (Attention on Attention) to the Transformer to
avoid misleading irrelevant information. The Meshed-Memory Transformer proposed by
Cornia et al. [33] encodes image regions in a multi-level manner and uses the learned prior
knowledge by persistent memory vector modeling, allowing the Transformer architecture to
perform better on image description generation. However, all the above approaches require
an additional CNN to extract image features. The ViT (Vision Transformer) [34] divides the
image into image patches for input into the model, and it does not use any convolution
operations but only the architectural model of Transformer for the image classification
task. It demonstrates the remarkable ability of the Transformer in visual tasks without
the need for a CNN encoder. Liu et al. [35] designed the first completely convolution-free
architecture for image captioning using pre-trained ViT as an encoder and a standard
Transformer decoder for caption generation. The DeiT [36] architecture proposed and used
a teacher–student distillation training strategy for ViT, which solves the problem of poor
results of ViT models due to insufficient data volume and enables Transformer to obtain
superior results than the traditional convolutional methods in the vision domain. Overall,
the training cost of these image captioning models for the Transformer architecture is higher
than the CNN models.

Most of image captioning tasks use large public datasets and benchmarks such as
Flickr8k [37], Flickr30k [38], and Microsoft COCO [39] to evaluate model performance.
However, all of these datasets describe daily life scenarios. Therefore, there is a lack of
mature datasets oriented to the image descriptions of rice pests and diseases. Although
the accuracy of image description models trained on public datasets has been high, they
cannot be directly applied to the image captioning task of rice pests and diseases.
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In summary, we propose an image description generation method for rice pests
and diseases based on the DeiT feature encoder, focusing on the image captioning task
of 10 common rice pests and diseases. First, the traditional CNN + Attention + LSTM
architecture is replaced by the architecture of a completely convolution-free Transformer.
Second, the images are encoded using a distillation pre-trained DeiT feature encoder with
stronger global information extraction ability than a traditional CNN. Then, a decoder of
Transformer, with better parallelism and the ability to capture inter-sentence features, is
used to generate descriptions. Finally, Rice2k, an image description dataset for rice diseases
and pests, is constructed. The performance of the model is evaluated by comparative
experiments.

2. Materials and Methods
2.1. Research Framework

With the depth and development of deep learning research, the research content
is more complex for computer vision in agriculture. It has been extended from pest
and disease diagnosis [40,41] to image description tasks. The research framework of
the image captioning is shown in Figure 1. In the data acquisition and preprocessing
module, images of 10 types of rice pests and diseases were obtained from Baidu’s library
(https://image.baidu.com/ (accessed on 15 March 2022)) and field shots. The model uses a
sequence-to-sequence approach to segment the images into sequences of sub-image patches
for input to the encoder, and then the encoding results are input to the decoder for decoding
and prediction.
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2.2. Dataset Construction
2.2.1. Data Collection

There are many types of rice pests and diseases in the growth of rice, and the distri-
bution of the onset time is irregular. Thus, the 10 types of rice pests and diseases images
required for the experiment could not be obtained in a short time. Consequently, we
produced training data based on Baidu’s library. In addition, most of the web images were
taken at the typical time of disease onset, so the images of rice diseases and pests at the
typical time were finally selected for the study. Compared with manual work, Python web
crawler technology can collect more images in a short period of time and effectively reduce
the pressure of data acquisition. Overall, 10 types of rice disease and pest samples were
obtained from Baidu’s image library to construct Rice2k. Rice2k includes 7 diseases and
3 insect pests in typical periods.

https://image.baidu.com/
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2.2.2. Data Preprocessing

In total, 4160 original samples of 10 types of rice pests and diseases were obtained
after image acquisition. The images unrelated to pests and diseases were screened out, and
the image set was normalized as follows:

1. The images were named by serial numbers and saved as .jpg format images.
2. The Python code implemented a perceptual hashing algorithm [42,43] (it generates

compact digital signatures from multimedia data by emphasizing perceptually signifi-
cant features to enable efficient content-based similarity comparisons between media
files) to remove similar images without human intervention and reduce the workload
of image selection.

3. The noisy data that could not meet the requirements were manually eliminated.

Only 373 original samples remained after normalization. In order to prevent the model
from overfitting due to an insufficient sample size, we used data augmentation techniques
to make the training data more suitable for the actual rice field growth environment. These
techniques included brightness adjustment, flipping, and noise addition. After the data
augmentation transformations, the sample images were effectively expanded, and the data
diversity was enhanced. We obtained 2283 image samples, and the number of sample
images for 10 types of rice pests and diseases was distributed as shown in Table 1. Rice2k
was divided into an 8/10 training set, a 1/10 validation set, and a 1/10 testing set. The
training set consisted of 1832 samples, the validation set consisted of 229 samples, and the
testing set contained 222 samples. For evaluating the generalization ability of the model,
we used 342 images of rice pests and diseases in actual field environments for testing.

Table 1. Image quantity distribution of typical rice pests and diseases.

Category Latin Name Number of Sample
Images

Number of
Actual Field

Images

Rice bacterial blight Xanthomonas oryzae pv. Oryzae 179 34
Rice bacterial streak disease Xanthomonas oryzicoia pv. Oryzicola 372 45

Rice bakanae disease Fusarium moniliforme Sheld 150 19
Rice three chemical borers Tryporyza incertulas (Walker) 144 19

Rice brown spot Cochliobolus miyabeanus 264 48
Rice planthopper Laodelphax striatellus Fallén 252 34

Rice blast Pyricularia oryzae Cavara 276 46
Rice false smut Ustilaginoidea oryzae 240 41

Rice sheath blight Rhizoctonia solani 298 39
Rice thrip Stenchaetothrips biformis 108 17

2.2.3. Data Preprocessing

The image captioning dataset consists of two parts: the sample image and the five
corresponding descriptions. In this paper, we annotated 5 descriptions for each image and
saved them in JSON format. An example of the description part is shown in Table 2, where
each sentence includes the diagnosis of the pests and diseases and a brief description of
their features.

2.3. Experimental Platform

The experiments were conducted using Python 3.9.12 and PyTorch 1.10.0, running on
8 GB of RAM, with an Intel(R) Core(TM) i5-7300HQ CPU@ 2.50 GHz processor (The name
of the manufacturer is Intel, and the equipment was sourced from Hangzhou, China), with
an NVIDIA GeForce GTX1050 GPU (The name of the manufacturer is NVIDIA, and the
equipment was sourced from Hangzhou, China) and an operating system of Windows 10,
CUDA version 11.7. Both were optimized using the Adam (Adaptive momentum) algo-
rithm. Dropout was added to prevent overfitting of the model. In the training parameters,
the batch size was set to 64, the learning rate was 1 × 10−3, and the gradient threshold
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was set to 5. The model was trained through CPU for 20 rounds, which took 6.9 h, and the
model test took 12 min.

Table 2. Example of rice pest and disease image descriptions.

Image Manually Annotated Reference Sentences
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Bacterial blight

1. Bacterial blight of rice in which the leaves have yellow
stripes

2. Rice bacterial leaf blight, rice leaf with yellow stripes

3. Bacterial blight of rice in which the leaves have yellow
streaked lesions

4. Rice bacterial leaf blight, rice leaf lesions with yellow
stripes.

5. Bacterial blight disease of rice in which the leaves show
yellow stripe lesions.

3. Image Caption Model
3.1. Model Structure

The model framework of this paper is shown in Figure 2. We used the architecture of
CPTR [34]. Initially, the original image is divided into image patches and flattened prior to
being fed into the encoder. Subsequently, the visual features are extracted by the encoder
and are input into the decoder. Lastly, the decoder is used to learn the mapping relationship
between image features and syntactic features to generate the description text related to
the content of pest and disease pictures. The model considers the image description as a
sequence-to-sequence prediction task.
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3.1.1. DeiT

To compensate for the lack of data in the image description dataset of rice diseases
and pests, we used the distillation pre-trained DeiT [36] as the encoder of this model. The
DeiT model is small and effective. Using it as an encoder in the model can significantly
reduce the training time of the model on the rice pest image description generation task
and achieve great training results.
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The DeiT model was used for the image classification task. It was trained by the
teacher–student training strategy. The distillation training process is shown in Figure 3.
The teacher model is typically selected as a high-performing image classification model,
often a CNN-based model like RegNet. Meanwhile, the student model is based on the
fundamental structure of ViT (Vision Transformer). Compared with the ViT model, the DeiT
model has an additional distillation token through which the student model continuously
extracts from the teacher model to learn the generalization ability of the teacher model.
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There are two types of distillation methods, soft distillation and hard-label distillation,
of which soft distillation is:

Lglobal = (1− λ) LCE(ϕ(Zs),Y) + λτ2KL(ϕ(Zs/τ), ϕ(Zt/τ)) (1)

The loss is calculated from the output of the student model and the true label. The KL
(Kullback–Leibler) divergence loss is calculated from the output of the student model and
the output of the teacher model. λ is the coefficient that balances the KL divergence loss.
The cross-entropy (LCE) is on ground-truth label Y , and ϕ is the softmax function. Lglobal
guides the whole distillation training process.

The hard-label distillation is:

LhardDistill
global =

1
2
LCE(ϕ(Zs),Y) +

1
2
LCE(ϕ(Zs),Yt) (2)

The first loss is calculated from the output of the student model and the true label.
The second loss is calculated from the output of the student model and the teacher model.
LhardDistill

global is obtained by adding the two.

3.1.2. Image Feature Encoder

The encoder is DeiT, a hard distillation pre-trained image feature encoder whose
distillation training teacher model is RegNet.

The input image is initially adjusted to a fixed resolution X ∈ RH×W×3, and then the
adjusted image is divided into N patches, where N = H

P ×
W
P . P represents the patch size,

and we set P to 16. Subsequently, each patch is flattened in one dimension and reshaped
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into a 1-dimensional patch sequence Xp ∈ RN×(P2·3). The flattened patch sequences are
mapped to the latent space using a linear embedding layer, and a learnable 1-dimensional
position embedding is added to the patch features, which gives the final input to the DeiT
encoder: Pa = [p1, ···, pN].

The image feature encoder DeiT consists of a stack of Ne identical layers (Ne = 4),
each consisting of a multi-headed self-attentive (MSA) sublayer and a position feedforward
(FFN) sublayer. MSA contains H heads, each head hi corresponds to an independent scaled
dot product attention function, enabling the model to jointly focus on different subspaces.
The attention results of the different heads are then aggregated by a linear transformation
WO, the process of which can be expressed as:

MSA(Q, K, V) = ConcaI (h1, . . . , hH)WO (3)

The scaled dot product attention is a special kind of attention proposed in Transformer
model, which is calculated as:

Attention (Q, K, V) = So f tmax (
QKT
√

dk
)V (4)

where Q∈RNq×dk , K∈RNk×dk , and V∈RNv×dk are the query matrix, the key matrix, and the
value matrix, respectively.

The next positional feed-forward sublayer is implemented as two linear layers with
GELU activation function and dropout between them to further transform the features. It
can be expressed as:

FFN (x) = FC2(Dropout(GELU(FC1(x)))) (5)

In each sublayer, there exists a sublayer connection consisting of residual connections,
which are then layer-normalized.

xout = LayerNorm
(

xin + Sublayer
(

xin
))

(6)

3.1.3. Decoder

At the decoder, a sinusoidal positional embedding of the word embedding features is
performed. The result of the addition and the encoder output features are simultaneously
used as inputs. The decoder consists of a stack of Nd layers (Nd = 4), and each layer
contains a masked multi-headed self-attentive sublayer, a multi-headed cross-attentive
sublayer, and a position-forecasting sublayer. Using the output features of the previous
decoder layer, the next word is predicted by a linear layer with an output dimension equal
to the size of the vocabulary. Given a basic truth sentence y∗1 : t−1 and the prediction y∗t of a
headline model with parameter θ and minimizing the following cross-entropy loss:

LXE (θ) = −∑T
t=1 log

(
pθ

(
y∗t

∣∣ y∗1 : t−1
))

(7)

3.2. Evaluation Metrics

The Cross-Entropy Loss function defines the effect of the neural network model and
the goal of optimization. The convergence of the model is judged according to the decline
of the loss function.

The image captioning task eventually generates the description text, and the evalua-
tion metrics for natural language processing-related tasks are also applicable to it. There-
fore, we used the following evaluation metrics for common natural language processing-
related tasks to measure the performance of the model: BLEU (Bilingual Evaluation
Understudy) [44], METEOR (Metric for Evaluation of Translation with Explicit ORder-
ing) [45], ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) [46], and CIDEr
(Consensus-based Image Description Evaluation) [47]. The BLEU, including BLEU-1, BLEU-
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2, BLEU-3, and BLEU-4, measures the similarity between machine-generated descriptions
and human descriptions based on the number of consecutive words matched. The percent-
age of matched words is calculated to evaluate the effectiveness of the model’s predictions.
BLEU-1 assesses the accuracy of generated descriptions at the word level, while higher-
order BLEU measures the coherence at the sentence level. METEOR evaluates the accuracy
and recall of words in a sentence. It combines accuracy and recall metrics to provide an
overall assessment. ROUGE-L calculates accuracy and recall based on the longest common
subsequence, examining the adequacy of the generated descriptions. CIDEr focuses on
importance and calculates the TF-IDF (Term Frequency-Inverse Document Frequency)
weights of each n-gram. It measures the cosine similarity between the evaluated statements
and manually described statements. The higher the scores of the above indexes are, the
better the model prediction effect is.

4. Results and Analysis
4.1. Model Training

We trained the proposed model using the dataset Rice2k, and the loss function curve
of the training is shown in Figure 4. When the training reached about 20 rounds, the loss
value of the used model stabilized at 0.6 and did not decrease anymore.
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4.2. Ablation Experiments

The efficacy of the image description generation model was assessed using evaluation
metrics such as BLEU, CIDEr, ROUGE-L, and METEOR. We conducted a comparative
experiment using the proposed model and different CNN encoder models on Rice2k
and obtained the results shown in Table 3. Analysis of Table 3 reveals that the overall
performance of our model was superior on the Rice2k dataset, achieving the highest scores
from BLEU-1 to BLEU-4. Notably, the performance of our model exhibited a significant
enhancement of the CIDEr metric, attaining a score of 177.1, which is the highest score.
This indicates its rich semantic representation capabilities. The METEOR value indicates
a moderate level of performance, denoting a strong correspondence between the model-
generated description and the reference description. Furthermore, the model proposed
in this paper outperformed other models based on the ROUGE-L, reaching a score of
65.0, which suggests that it can autonomously generate more comprehensive descriptive
statements, which is particularly well suited for automated image description generation
tasks involving limited datasets.
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Table 3. Evaluation results of the ablation experiments.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR

AlexNet 72.1 59.1 50.9 44.8 162.8 63.8 37.3
VGG16 71.1 58.3 50.5 43.8 161.6 62.5 36.0

ResNet101 70.4 57.8 50.0 44.4 173.1 64.5 36.9
ResNet18 71.8 60.1 52.3 46.4 174.9 64.8 38.2

InceptionV3 70.9 58.7 50.7 45.0 172.4 64.8 38.2
MobileNetV2 71.7 59.5 51.5 45.3 174.1 64.3 37.5

DeiT 76.4 63.2 53.9 47.3 177.1 65.0 37.0

The encoders shown in the above table are pre-trained, and the decoders of the models with CNN encoders are all
Attention + LSTM structures.

4.3. Image Description Results

The image caption generation model proposed in this paper demonstrated a strong
performance, as evident from the selected prediction results shown in Table 4. Compared
to the method proposed by Xie [29], our approach can capture more intricate details of
plant diseases and pests. In image 1, our model not only accurately predicted the presence
of bacterial stripe disease but also described that the entire rice leaf exhibits a withered
yellow color, and the disease is serious. In image 2, our method precisely described the
yellow stripes indicating the occurrence of sheath blight in the middle section of the leaf.
Additionally, in image 3, our model accurately portrayed the grayish-white spots located at
the center of the leaf, which are symptomatic of blast disease. Some of the predicted image
descriptions align with the descriptions in the dataset, as depicted in image 4, where both
exhibited the description “The body of the planthopper is semicircular”.

To assess the generalization ability of the proposed model, we conducted simultaneous
tests on a total of 342 authentic field images. The corresponding evaluation metrics and
results are presented in Table 5. Inspection of the table reveals a slight decline in the
performance of all models across the seven indicators measuring image description quality
when applied to the new sample. Moreover, the values of the BLEU-1 to BLEU-4 indicators
exhibited a gradual decrease. Notably, our model attained the highest scores on all the
indicators. BLEU scores were still high. The results indicate a good grammatical and lexical
match between the generated texts and the reference texts. Our model achieved 112.0 CIDEr
and 54.1 ROUGE-L, which means that the key information between the generated texts of
our model and the reference texts was better matched, and the generated descriptions were
more diverse. In addition, the highest METEOR score indicates the overall high quality
and fluency of the generated descriptions. The highest scores of these various indicators
demonstrated superior performance when applied to the real-world image dataset captured
in the field.

The prediction accuracy of 10 types of pests and diseases in this model is shown
in Table 6, with an average accuracy of 87.67%. Notably, the accuracy for rice bakanae
disease was 52.63%, while the remaining categories pertaining to rice pests and diseases
exhibited remarkably high prediction accuracy. Specifically, five categories achieved a
perfect accuracy of 100%, which demonstrates the model’s proficient diagnostic capability
in identifying rice pests and diseases. The test outcomes are communicated to users in a
textual format and hold potential value as a point of reference for non-experts.
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Table 4. Prediction results of the image description models based on the DeiT feature encoder.

Image Predicted Results
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4. Planthopper

1. The body of the planthopper is semicircular.
2. The body of the planthopper is semicircular.
3. The planthopper has a pair of antennae.

1 is the annotated text of the dataset, 2 is the prediction result of the DeiT encoder model, and 3 is the prediction
result of the ResNet18 encoder model.

Table 5. Evaluation results on the actual field images.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR

AlexNet 63.6 47.0 37.4 30.8 103.9 51.2 29.6
VGG16 63.3 47.5 38.4 32.1 107.5 51.9 29.9

ResNet101 62.9 45.8 36.4 29.9 104.3 51.4 29.5
ResNet18 62.6 47.2 38.0 31.7 110.7 52.7 31.0

InceptionV3 63.8 47.1 37.8 31.5 109.2 52.0 30.2
MobileNetV2 65.0 47.9 38.0 31.0 107.9 52.2 30.1

DeiT 68.8 50.8 40.0 32.2 112.0 54.1 31.0

Table 6. Accuracy of category prediction on the actual field images.

Category Accuracy %

Rice bacterial blight 79.49
Rice bacterial streak disease 82.22

Rice bakanae disease 52.63
Rice three chemical borers 89.47
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Table 6. Cont.

Category Accuracy %

Rice brown spot 72.92
Rice planthopper 100.00

Rice blast 100.00
Rice false smut 100.00

Rice sheath blight 100.00
Rice thrip 100.00

Average 87.67

4.4. Discussion

Insufficient data pose a challenge in the study of various rice pests and diseases,
resulting in the impractical application of large-scale data learning methods. Utilizing a
Convolutional Neural Network (CNN) as the feature encoder for image feature extraction
presents limitations in terms of the perceptual field, primarily capturing localized informa-
tion. Addressing this limitation requires multi-layer stacking to obtain global information.
However, the adoption of deep networks may lead to the loss of smaller targets within
disease sites, ultimately yielding inaccurate predictions. In comparison, the Transformer
decoder exhibits enhanced semantic and long-distance feature extraction capabilities when
compared to the traditional LSTM decoder, allowing for the generation of more accurate de-
scriptions. Accordingly, we employed the convolution-free Transformer model architecture
and leveraged the DeiT encoder to capture comprehensive information from the images.
The proposed approach enables the generation of image descriptions for rice diseases and
pests by transforming sequences of image patches into word sequences. This methodology
facilitates the progression from categorizing rice diseases and pests to comprehending their
intricate characteristics, which not only achieves the diagnosis of the category but also
deepens people’s understanding of the disease symptoms.

The image description dataset of rice pests and diseases established in this paper
included three pests and seven diseases, fully considering various situations such as poor
lighting, shooting angles, noise interference, etc. To enhance the dataset’s fidelity, data
augmentation techniques were employed to simulate complex field environments, ensuring
a more realistic representation of the actual conditions in rice fields. Subsequently, the
model was trained using this dataset, and comprehensive evaluation metrics for image
description tasks were utilized to assess its performance in a comprehensive manner.
Field samples were also employed to verify the method’s feasibility. The experimental
results demonstrate that the model exhibited a remarkable capability to capture crucial
visual features, including shape, color, and texture, owing to the DeiT encoder’s robust
capacity to perceive and extract global information from images. Moreover, the model
utilized the Transformer’s decoder to effectively capture and learn syntactic features among
words within a sentence, generating corresponding description texts by leveraging the
interplay between image features and semantic attributes of words. With its powerful image
perception, understanding ability, and syntactic feature capture and learning capabilities,
this model outperformed the traditional CNN encoder model, achieving the highest scores
across all evaluation metrics when tested on the actual scene dataset obtained from rice
fields.

The research model presented in this paper holds considerable potential for diverse
applications, particularly in the realm of rice production. It can effectively assist individuals
with limited knowledge about diseases and pests of rice in accurately identifying the types
of diseases and pests and further deepening their understanding of symptoms through
descriptive text. Additionally, this model exhibits high training efficiency and demonstrates
promising outcomes even when trained with a small-size dataset. Consequently, its appli-
cation to other pests, diseases, or image description generation tasks offers the advantage
of reduced data collection requirements and training costs.
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However, it is important to acknowledge certain limitations within the agricultural
image description experiments conducted in this paper. Specifically, the scope of the
examined rice pest categories was relatively narrow, encompassing only 10 categories
when compared to other studies. Consequently, the direct application of this model for
the identification and description of other pests and diseases is not feasible. Moreover,
existing public datasets contain a vast number of samples accompanied by detailed and
diverse descriptions. Models trained on these extensive datasets generally exhibit strong
generalization capabilities for describing objects and scenes beyond the dataset. In contrast,
this model relies on a small dataset with a limited number of description texts, resulting in
a relatively simple and less diverse representation of descriptions. Furthermore, despite
the superior performance of the network model on the small-size dataset employed in
this study, a risk of overfitting remains. The average prediction accuracy of the model
on the actual field images was 87.67%, with substantial variations in accuracy observed
across different categories. This disparity in accuracy could be attributed to potential
shortcomings in the maturity of manually labeled description statements within the dataset.
Additionally, it is worth noting that the image descriptions generated in this study are
exclusively available in English and cannot be generated in other languages.

The subsequent research direction should be to consider expanding the dataset to
include not only rice pest species but also other crop pest species to reduce the limitations of
the model’s prediction capabilities. Augmenting the image data volume is essential, along
with expanding the descriptive dataset to enhance the diversity of sentence representations.
Additionally, incorporating multiple languages can contribute to improved generalization
and prediction accuracy, rendering the study more relevant and applicable in a broader
context. Moreover, considering advancements to the basic structure of the Transformer
model is recommended. Enhancements may involve refining the model’s architecture to
reduce computational complexity while maintaining its effectiveness. And the exploring re-
inforcement learning strategies can be beneficial in improving the description performance
of the model, particularly in practical application scenarios.

5. Conclusions

In this paper, we proposed a DeiT feature encoder-based image description method for
rice pests and diseases, constructed an image description dataset of 10 common rice pests
and diseases, and conducted experiments on it. The results of the experiments show that the
model has the ability to discriminate and describe the rice pests and diseases with the small
training dataset. The generated text and image content were consistent. The description
performance was stronger than that of the traditional convolutional method. This outcome
highlights the efficacy of incorporating a distillation pre-trained DeiT encoder, which
effectively resolves the challenge of the slow training of Transformer-structured models
on extensive datasets. It enables the application of the model to the task of generating rice
pest descriptions with limited data samples. Moving forward, future research endeavors
aim to expand the agricultural pest and disease dataset, further improving the model’s
generalization ability. Additionally, it is necessary to extend the model’s applicability to a
broader range of agricultural pest and disease image descriptions, thereby facilitating the
control of diverse pests and diseases and fostering agricultural development.
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