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Abstract: The paper presents a proposed queuing model based on Kendall’s notation for the inter-
section of two streets in Panama City (53 East and 56 East). The proposed model is based on a set
of traffic lights that controls the flow of vehicles at the intersection according to a predetermined
schedule. The model analyzes the stability of the system and simulations are performed to evaluate
its performance. The main objective of the paper is to optimize the vehicle flow by minimizing the
waiting time for passage. In the study, it was observed that the current traffic light system on Calle 50
(50th Street) is unstable and oversaturated during weekdays, which generates large vehicle queues
with no estimated exit times. It was proposed to increase the system capacity to 1300 vehicles per
hour to achieve reasonable stability and provide a solution to improve traffic signal timing on 50th
Street. The need to increase the system capacity has been demonstrated and an optimal value has
been suggested. The evaluation of other models and the use of AI can further strengthen the system
and improve the prediction accuracy in different traffic scenarios.

Keywords: vehicular traffic flow; urban intersection; optimal traffic light control; congestion; queuing
theory; queuing network model; Kendall notation; optimization; simulation

1. Introduction

Steady population growth and urbanization has generated a significant increase in
the number of vehicles in cities, leading to traffic and congestion problems on roads and
intersections [1,2]. These difficulties are the result of increasing traffic demand compared
to the insufficient capacity of existing roads [3].

Intersections in urban centers are critical points where there is an accumulation of
vehicles competing for right-of-way. Currently, traffic management at these intersections is
performed in a static manner. The times assigned to traffic signals are constant and do not
adjust to changing traffic conditions in real time. This results in suboptimal performance,
as traffic signals may be assigning unnecessarily long or short green times, which interferes
with efficient traffic flow [4–6].

Inefficient traffic management has a significant impact on the quality of life of citizens;
long waits, delays and traffic jams generate considerable time loss and increase driver
stress. In addition, traffic congestion also has a negative impact on the environment due to
the emission of polluting gases and additional fuel consumption [7,8].

To address this problem, it is necessary to look for innovative solutions that optimize
traffic management at intersections. In this sense, this article proposes a mathematical
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model based on queuing theory for the analysis of vehicular flow in one of the most con-
gested arteries of Panama City. These mathematical models allow performing stability
analysis and estimating the optimal capacity of the queuing system to achieve a more
efficient traffic management. In addition, the use of artificial intelligence (AI) offers new op-
portunities to improve the accuracy and predictive capacity of traffic management models.
AI can analyze large volumes of real-time data and adjust traffic signal timings dynami-
cally according to traffic conditions, which can significantly improve the performance and
efficiency of traffic management at intersections [9–11].

After the application of the method (for a large number of cases and under real traffic
restriction systems), efforts are made to obtain temporal sequences for traffic lights that
allow them to operate in a coordinated manner and allow the passage of a large number of
vehicles through the intersection, thus reducing waiting times and queue lengths, allowing
the proposed model to serve as a basis for the approach of similar problems and for the
creation of better methods. The results may be of interest to researchers and practitioners
in the field of transportation engineering, and the methodology and approach of the paper
may serve as a valuable reference for similar studies in other cities facing similar problems.

The rest of the paper is as follows: Section 2, Related Research; Section 3, Theoretical
Context; Section 4, Methodology; Section 5, Problem Definition and Motivation; Section 6,
Mathematical Model; Section 7, Results and Discussion; Section 8, Conclusions; and finally
in Section 9, Future Work.

2. Related Research

This section discusses related research in the field of traffic flow optimization.
A study by Manh and Thi [12] focuses on determining the queue model and perfor-

mance measures of a motorcycle parking area during rush hours at Hanoi University of
Science and Technology (HUST), specifically the D3–D5 parking lot. Data collection is
done using the observation approach, which involves recording the number of arrivals
and service time. The arrival distribution and service time distribution are tested using the
one-sample Kolmogorov–Smirnov test with SPSS Statistics. The analysis of the collected
data reveals that the arrival distribution follows a Poisson distribution, while the service
time distribution follows an Exponential distribution. By applying Kendall Notation and
considering the results of the data analysis, the queue model for the parking lot is deter-
mined to be (M/M/4): (FIFO/∞/∞). This notation indicates that the arrivals and service
times both follow the Markovian process; the system has four servers, and the queue oper-
ates on a first-in, first-out (FIFO) basis with infinite queue capacity and infinite population
capacity. The proposed queue model aligns well with the actual observed queue model
at the D3–D5 parking lot. This finding provides valuable insights into understanding
the queuing behavior and performance of the motorcycle parking area during rush hours
at HUST.

The research of Liu et al. [13] proposes the development of a system that allows the
visualization of information posted on social networks about traffic incidents. Feature
engineering methods, such as vector counting and TF-IDF, were applied to process tweets
into structured data. Machine Learning models were created for traffic-related tweet
classification using SVM, Naïve Bayes, Random Forest, and XGBoost. The prediction
models resulted in a classification model that detects incident or non-incident tweets and a
categorization model that determines the type of incident (accident, hazard, or obstacle).
This system has advantages, such as speeding up the detection and visualization of traffic
incidents, which can significantly help the country’s traffic authorities and the public.

Antoine et al. [14] present a new queuing model with multiple servers aimed at
optimizing traffic signals to enhance the sustainability of urban mobility. The model
focuses on analyzing the queue information for different movement patterns based on the
arrival rate of cars on each road at the intersection. By utilizing queuing theory concepts,
the collected data is processed and evaluated. The performance metrics considered in this
proposed model include arrival rate, waiting time, average number of cars in the queue, and
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intersection utilization. These metrics are analyzed and assessed using ground truth data
to determine the effectiveness of the queuing model. The numerical results obtained from
the analysis are visually presented and indicate that the proposed approach of the queuing
model reduces delays by improving the throughput of the intersection. Consequently,
this leads to smoother traffic flow and decreased congestion for users of the Giporoso
intersection in Kigali. The findings highlight the potential benefits of implementing the
proposed queuing model in optimizing traffic signal operations and enhancing urban
mobility sustainability.

Li et al. [15] introduce the concept of a birth and death process to analyze vehicle
behavior and propose a traffic model based on queuing theory to simulate road traffic. They
specifically focus on two scenarios: the steady state and the congested state of the traffic
system. In the steady state, they obtain statistical variables such as the number of vehicles
and the waiting time for vehicles to pass through a specific section of the road. These
variables provide valuable information to drivers and contribute to their decision-making
process. In addition, the authors use the proposed model to simulate traffic conditions
and analyze the steady-state distribution of the number of vehicles. Comparison of the
theoretical results with the simulation results allows validating the effectiveness of the
model. Overall, the study demonstrates the applicability of the birth–death process and the
traffic model based on queuing theory to describe and simulate traffic behavior. The results
obtained confirm the validity and reliability of the proposed model, providing valuable
insights for understanding and predicting traffic dynamics.

The research of Gunes et al. [16] presents the analysis results obtained from real data
collected in the field. The study applies queuing models to analyze the collected data and
explores the impact of improving signal durations on the obtained results. By optimizing
the signal timings based on the data, the study examines the effects on parameters such as
queue lengths and overall time spent in the system. The findings indicate that improving
the signal durations leads to a reduction in queue lengths and the time consumed within
the system. By utilizing queuing models, the study provides valuable insights into the
relationship between signal timings and system performance, ultimately offering potential
solutions for mitigating traffic-related challenges in urban areas.

3. Theoretical Context

Over the last fifty years, a wide range of traffic flow theories and models have been
developed as tools to solve the economic and social problems arising from high vehicular
demand. Research aims to optimize the efficiency of existing traffic systems, thereby
increasing vehicle capacity [17,18].

3.1. Traffic and Vehicular Flow

Vehicular flow is the phenomenon caused by the flow of vehicles on a road, street, or
highway. It also has many similarities in other phenomena, such as the flow of particles
(liquids, gases, or solids) and pedestrians. In large cities, vehicular flow is present in almost
all spheres of people’s daily activities and causes numerous phenomena, among which
congestion stands out [19,20].

3.2. Queuing Theory, Kendall’s Notation

Queuing theory is the study of a technique based on operations research to solve
problems that arise in situations where waiting for shifts or queues are formed for the
provision of a service or execution of a job [21–23].

Among the most important terms that comprise the queuing theory [24–26] are “Cus-
tomers,” which refer to the entity that arrives at the system, such as: Cars waiting at a traffic
light, machines waiting to be repaired, airplanes waiting to land, among others. “Arrivals”
refers to the number of customers arriving at the service facility. “Service Rate” is used
to designate the service capacity, which can be provided by one server or by multiple
servers. “The Arrival Rate” describes in units of time the feeding of the system. “The
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Server” oversees providing the respective service to the client. “The Queue Capacity”
can be infinite or finite. Given the above, different queue models can be presented, with
corresponding efficiency measures that characterize the system [27–29].

D.G. Kendall suggested a valuable notation for classifying the vast diversity of different
wait-line models that have been developed [30]. Kendall’s notation of three symbols is as
follows: A/B/K, where A indicates the probability distribution of arrivals, B indicates the
probability distribution of service times, and K indicates the number of channels. Various
waiting line systems can be described depending on which letter appears in the A or
B position.

Commonly used letters are M, which designates a Poisson probability distribution
for arrivals or exponential probability distribution for service time; D, which designates
the fact that arrivals or service time is deterministic or constant, and G, which indicates
that arrivals or service time have a general probability distribution, with known mean and
variance [31,32].

3.3. Artificial Intelligence (AI) Application

Artificial intelligence (AI) can be key in optimizing vehicular flow. For example,
intelligent traffic control systems (ITS) use AI techniques to monitor traffic and adjust
traffic lights and signals in real time [33]. These systems can help reduce waiting times
and improve traffic flow at intersections. Intelligent transportation systems (ITS) can use
technologies such as traffic sensors, surveillance cameras, and navigation systems to collect
real-time traffic data and analyze it using AI techniques. ITS systems can automatically
adjust traffic lights, direct traffic to alternate routes, and provide real-time information to
drivers and pedestrians [34].

In recent years, intelligent transportation systems (ITS) has received considerable
attention due to increased road safety and efficiency demands in highly interconnected
road networks. As an essential part of ITS, traffic forecasting can provide support in many
aspects, such as road routing, traffic congestion control, applications, etc., and analyze how
traffic forecasting can improve the performance of these applications [35].

AI can predict traffic behavior and vehicular flow under different conditions. For
example, machine learning models can analyze extensive traffic data sets to identify patterns
and trends. These models can be used to predict traffic demand at different times of the
day and in different weather conditions [36].

Some practical cases of the use of artificial intelligence in the optimization of vehicular
traffic can be observed in the work of Guo and Yan [37]. They propose an intelligent network
control architecture based on SDN and artificial intelligence. The proposed architecture
consists of three modules: a network state collection/perception module, an AI intelligent
analysis module, and an SDN controller module. The experimental results demonstrate
that using SDN and artificial intelligence in operator networks can do intelligent network
control and traffic optimization more intelligently.

Nam Bui and Jung [4] propose a game–theoretic approach of cooperative games among
agents to improve traffic flow within a large network. For this purpose, a distributed
merge-and-split algorithm for coalition formation is presented. This algorithm is applied
to discover how to incorporate cooperation among agents to dynamically control the
traffic light at intersections. In addition, a traffic simulation framework is constructed to
evaluate our approach. With various parameters for traffic density, the proposed system can
effectively improve both uniform and non-uniform traffic flow. Through inter-controller
coordination, the waiting time of vehicles at intersections can be reduced by 15% to 25%
compared with previous methods (e.g., Green Wave coordination).

Yang et al. [1] propose multiagent reinforcement learning for traffic signals (MARL4TS)
to support traffic signal control and deployment. First, information about traffic flows and
multiple intersections is formalized as input environments for reinforcement learning. Sec-
ond, the authors design a new reward function to continuously select the most appropriate
strategy as control during multi-agent learning to track traffic signal actions. Finally, they
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use a supporting tool, Simulation of Urban Mobility (SUMO), to simulate the proposed
traffic signal control process and compare it with other methods. Experimental results
show that our proposed MARL4TS method is superior to the baselines.

Li et al. [6] propose a deep feature learning approach using supervised learning
techniques to predict the short-term traffic flow in the next multiple steps. To achieve
next-day traffic flow forecasting, an advanced multi-objective particle swarm optimization
algorithm is applied to optimize some parameters in deep belief networks.

The work of Shengdong et al. [38] aims to discuss problems such as complex object
types, large amounts of data collection, high transmission and computational demand,
and weak real-time control and scheduling capability in constructing modern intelligent
traffic information, physical fusion networks and cloud-based control. The underlying
theory for modern intelligent traffic network control system is a current research topic.
In the same way, the best design of the physical scheme is investigated to achieve an
integrated control system that allows to link the transport information in an intelligent
way. The scheme includes intelligent transportation edge control technology and intelligent
transportation network virtualization technology. Based on the intelligent traffic flow data,
various deep learning study methods are implemented in the cloud to predict the traffic
flow and congestion of urban roads.

4. Methodology

Figure 1 describes the development process of this mathematical model to optimize
the vehicular flow of Calle 50 in Panama City:
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The project begins by identifying the problem and the motivation for the study. This
step is essential, as it provides a clear understanding of the problem and helps create the
variables needed to develop the mathematical model.

The mathematical model is based on queuing networks, a mathematical tool used to
analyze and optimize the system’s performance involving queues or waiting lines. In the
context of the study, the queuing network is used to model the flow of vehicles. The system’s
performance is evaluated as a function of the waiting time experienced by the vehicles.

To check and verify the effectiveness of the mathematical model, simulations, and
tests are performed. These simulations create a computer model of the vehicle flow, which
allows for observing the system’s behavior under different conditions. By varying different
parameters, such as traffic volume, road capacity, and traffic control mechanisms, the
impact of each parameter on the waiting time experienced by vehicles can be evaluated.



Appl. Sci. 2023, 13, 10030 6 of 21

The research aims to optimize vehicle waiting time and improve traffic flow. This
can bring several benefits, such as reduced travel time, increased safety, and improved
fuel efficiency. The research can also help traffic planners and policymakers make more
informed decisions and implement more effective traffic management strategies.

• Summary: The problem and motivation of the study are identified; this will allow us
to create the necessary variables to develop the mathematical model based on queuing
networks and thus be able to perform the information analysis of the vehicular flow.
Finally, we perform tests and simulations to verify the optimization of the waiting
time experienced by vehicles.

5. Problem Definition and Purpose

Traffic congestion is a common problem in many cities, and Panama City is no ex-
ception. The increase in population has led to an increase in vehicle traffic, especially
during peak hours on weekdays. During these times, such as commute and lunch time,
the city center becomes chaotic and traffic congestion becomes a frustrating experience
for drivers. Despite the efforts made, such as the creation of exclusive lanes for the metro
bus and the implementation of the Panama subway, this problem has not been completely
solved [39–42].

In this context, this research focuses on addressing the problem of vehicular congestion
in Panama, specifically on 50th Street, which is one of the most used roads for vehicular
flow in the city (see Figures 2–4). The main objective is to develop mathematical models
using queuing theory to understand and analyze the current congestion situation on 50th
Street, particularly at the intersections of Street 53 East and Street 56 East [43].
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The proposed model seeks to reduce the time individuals spend daily in these ve-
hicular congestions. To achieve this, queuing theory techniques will be used to model
traffic flow at these intersections and establish optimal traffic signal timings. The goal is to
improve the efficiency of vehicular flow and reduce congestion on the 50th Street section.

By using mathematical models and queuing theory techniques, it is hoped to obtain
traffic signal timings that will help decongest the road and improve the driving experience
for citizens. This, in turn, could have a positive impact on reducing travel time, reducing
air pollution, and saving fuel. Ultimately, this research aims to provide recommendations
and practical solutions to address the problem of vehicular congestion in Panama City and
improve the quality of life of its inhabitants.
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6. Mathematical Model

The mathematical model proposed to address the problem of vehicular congestion on
50th Street is based on the implementation of an M/M/1 queuing system. This queuing
system is characterized by having exponentially distributed arrival and service times,
which means that the time intervals between the arrival of vehicles and the duration of
their service follow an exponential distribution.

In this model, the system is considered to have a single server, which implies that only
one vehicle can be served at a time. Queue discipline is governed by the FIFO (First In,
First Out) principle, meaning that vehicles are serviced in the order in which they arrive at
the intersection.

In addition, the size of the entry population is assumed to be infinite, implying that
the number of vehicles entering the system does not affect the arrival rate of new vehicles.
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This assumption is because vehicular congestion on 50th Street is primarily related to
intersection capacity and waiting times, rather than the total number of vehicles in the city.

By implementing this M/M/1 queuing model, we seek to understand and analyze
how traffic flow behaves on 50th Street and how it affects the waiting times experienced by
drivers. Through mathematical techniques and statistical analysis, important performance
measures such as arrival rate, average waiting time, and average number of vehicles in the
queue can be obtained (see Figure 5) [44,45].
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For the development of this model, we will use:

• Population: The population to be used in the model to be generated is all vehicles that
travel on the main avenues of Panama City.

• Sample: It will correspond to vehicles that circulate on the main road called Calle 50,
Aquilino de la Guardia and also at its bifurcation with Calle 56.—. January 2020 will
be considered, with a cycle of 180 s, from 3:00 p.m. to 6:00 p.m. (see Figure 6).
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• Variables: The independent variables we will use are: λ, the number of arrivals, and µ,
the number of departures or service rate. The dependent variables are:

ρ: average system utilization.
L: average number of vehicles in the service system.
Lq: average number of vehicles in the waiting queue.
W: average time elapsed in the system, including service.
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Wq: average waiting time in the queue.

The information will be provided by the Panama Transit and Land Transportation
Authority (ATTT). Here, we analyze the vehicular movement through two traffic lights,
044 and 045, located on Nicanor De Obarrio Avenue (50th Street), as shown in Figure 7.
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From Figure 5 we can see, in the blue circle, the REG-044 and REG-045 that correspond
the L04-044-08 and L04-045-08 counter, which provides the initial data for the queuing
theory model, the number of customers or vehicles entering the system per hour. The
queuing system study required a switch to a traffic network to understand the queuing
processes at both server input and output, as shown in Figure 8.
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7. Results and Discussions

For the stability analysis of the queuing system, we first adapted the traffic lights and
the streets where the queues are formed to a serial M/M/1 queuing system; the traffic
network was taken to a system where we have the queue vs. the servers (see Figure 9).

Applying Kendall’s notation to these data, this waiting system is characterized by the
fact that both the inter-arrival times and the service times are exponentially distributed,
and the number of servers is one after another (in series). We analyze the stability of the
vehicles entering the first traffic light at 50th Street to determine the % of the days of the
month where the system is stable.

Through MATLAB software, a function called tcola50 was made to run through the
vectors and generate the value of ρ, to see the days the system was stable. Moreover, thus
calculate a percentage in January where the system was stable for the first traffic light (see
Figure 10).
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7.1. Optimization of the Queuing System

1. Analysis for the month of January for a traffic light capacity of 1000 vehicles/h.

The analysis of the first server (traffic light 1) shows the results: stability of 22.58% and
instability of 77.42%. The results of the other variables analyzed on the days selected for
this server are shown in Table 1.

Table 1. Results of L, Lq W, Wq. For a capacity of one thousand vehicles. First Server. 3:00 p.m.

January Day 2020 L Lq W Wq

1 1.4510 0.8590 0.0025 0.0015
5 7.1301 6.2531 0.0081 0.0071
9 5.2112 4.3722 0.0062 0.0052

12 20.7391 19.7851 0.0217 0.0207
19 13.9254 12.9924 0.0149 0.0139
26 9.7527 8.8457 0.0108 0.0098
29 499 498.002 0.5 0.499
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In addition, the following information is obtained for this queuing system:

• The average number of vehicles in the queue is 18 vehicles per light change.
• The average time to be served is: 65 s, under the condition that it only occurs on

holidays and weekends.
• For the capacity of 1000 vehicles per hour, the system was 77% of the time over

saturated, with an average occupancy rate of 118%.
• The results of the Kendall notation were obtained on holidays and weekends with a

value of ρ < 1, and an average occupancy of 87% of the system.

Using the program, it was found that the average number of cars leaving the system
after being served by the server (traffic light 1) corresponds to 20% and 80%. The system
has four parallel lanes that continue, and one leaves the main road because the left lane
forks. Taking this information into account, the percentage of distribution that will be the
restriction to advance to the next server (traffic light 2) is calculated, and 100% of the cars
entering the system is divided by five to obtain this percentage.

From the results obtained in the first server, 80% of cars waiting to be served by the
second server (Traffic Light 2) are considered. In this second server, stability improves,
and 64.5% stability and 35.5% instability are obtained. Additionally, the following results
are obtained:

• The average number of vehicles in the queue is 11 vehicles per light change.
• The average time to be served is 40 s, under the condition of stability on holidays

and weekends.
• For the capacity of 1000 vehicles per hour, the system was 65% stable and 35% unstable.
• For the full month, the system had an occupancy level of 94%, which confirms the

improvement in stability.
• The system was at an average occupancy of 85% on days where the value of ρ is less

than 1, i.e., ρ < 1.

Additionally, stability and instability values were obtained for the capacity of
1000 vehicles at the 4:00 p.m., 5:00 p.m. and 6:00 p.m. schedules. The results obtained are
shown in Table 2:

Table 2. Stability and instability values for the capacity of 1000 vehicles during the hours of 4:00 p.m.,
5:00 p.m. and 6:00 p.m.

Server Hour Stability Instability

First traffic light 4:00 p.m. 23% 77%

Second traffic light 90% 10%

First traffic light 5:00 p.m. 74% 26%

Second traffic light 97% 3%

First traffic light 6:00 p.m 32% 68%

Second traffic light 97% 3%

From this second traffic light, we have two outputs. The second output corresponds to
cars leaving the second server and leaving the system (see Figure 11), and the third output
is not considered in this study.

2. Analysis for the month of January for a traffic light capacity of 1300 vehicles/h.

After several tests for the traffic light capacity of vehicles per hour, it was determined
that the value of 1300 vehicles per hour for µ is where a stability of more than 70% is
achieved. An improvement in stability of 77.4% was obtained and in instability of 22.6%.
By having a stable queuing system, it was possible to calculate the average values by means
of Kendall notation with a more accurate study of the system. For the first server (traffic
light 1) the following results were obtained:
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• The average number of vehicles in the queue is 13 vehicles per light change.
• The average time to be served is 37 s, if and only if the vehicle arrives when the light

is green and there is no vehicle waiting.
• The system had an occupancy level of 91% for the entire month. This confirms the

improvement in stability.
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It is observed that 20% of the vehicles leave the system after being served by the first
server, while 80% continue to be served by the second server (traffic light 2). This improves the
stability in this second server by 96.8%, with an instability of 3.2% and the following results:

• The average number of vehicles in the queue is 3 vehicles per light change.
• The average time to be served is 11 s, if and only if the vehicle arrives when the light

is green and there is no vehicle waiting.
• The system had an occupancy level of 72% for the entire month. This confirms the

improvement in stability.

The values obtained for L, Lq, W, Wq at 4:00 p.m., 5:00 p.m. and 6:00 p.m. are shown
in Table 3.

Table 3. Stability and instability values for the capacity of 1300 vehicles during the hours of 4:00 p.m.,
5:00 p.m. and 6:00 p.m.

Server Hour Stability Instability

First traffic light 4:00 p.m. 97% 3%

Second traffic light 100% 0%

First traffic light 5:00 p.m. 100% 0%

Second traffic light 100% 0%

First traffic light 6:00 p.m 97% 3%

Second traffic light 100% 0%

7.2. Simulation

For the simulation, a specific day in January was taken, 15 January 2020, for a capacity
of 1300 vehicles. For this day there are 1280 vehicles per hour, which is equivalent to 98%
of the system capacity. The Kendall notation has been used in theoretical analysis. For the
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first traffic light on this day, there are about 64 vehicles in the waiting queue at the first
server of the system (traffic light 1); each vehicle takes about 180 s (3 min) to be served.

With this data, in Excel, we simulate the movement of these vehicles (see Figure 12),
remembering that we are on the schedule from 3:00 p.m. to 4:00 p.m. and that each cycle
takes 180 s. Two green cycles of 60 s (1 min) and one red cycle of 60 s are included. Each
vehicle has their random arrival, and the time between arrivals is calculated, observing that
their arrivals are very close to three vehicles every 3 s, which causes the queue to fill up
with vehicles when in the red-light cycle with an average of 180 vehicles.
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The time in the system is analyzed. At the beginning of the system, each vehicle takes
about 180 s to be attended; however, as the seconds advance, the queue increases, and the
last vehicles must wait approximately 60 min to be attended to, either to leave the server or
to continue to the second traffic light.

7.3. AI Predictive Model

Currently, statistical, and artificial intelligence (AI) techniques are increasingly being
used in combination with numerical models to generate more accurate predictions in
various areas. In the context of queuing theory, one of the most widely used AI techniques
is linear regression (LR) prediction [46–48].

LR is a data analysis technique that predicts the value of unknown data by using
another related and known data value. It mathematically models the unknown or depen-
dent variable and the known or independent variable as a linear equation [43,49–51]. The
regression model consists of an approach to model the relationship between a dependent
scalar variable “Y” and one or more explanatory variables named “X” and then to plot a
line that will indicate the trend of a set of continuous data, whose formula is:

Y = mX + b

where Y is the result, X is the variable, m is the slope (or coefficient) of the line, and b is the
constant or also known as the “point of intersection with the Y-axis” on the graph (when X = 0).

In the context of queuing theory, linear regression can be used to predict variables
related to the performance of a queuing system, such as average waiting time as a function
of independent variables such as customer arrival rate and server capacity, among others.
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By applying linear regression to data collected from a queuing system, more accurate
estimates and forecasts of system behavior and performance can be obtained [34,52,53].

Linear regression is just one of many statistical and AI tools that can be used in
combination with queuing theory to analyze and optimize the performance of queuing
systems. These techniques provide a solid foundation for understanding and making
informed decisions about traffic management, urban planning, and other areas related to
congestion and vehicle flow in cities [31,38,54,55].

The predictive models are obtained using simple linear regression using the demand
data of each traffic flow intensity from 3:00 p.m. to 6:00 p.m. provided by Autoridad de
Tránsito y Transporte Terrestre of Panamá (ATTT) [56]. Table 4 shows the data used to train
the model.

Table 4. Maximum demand from traffic flow intensity by hours.

Date 3:00 p.m. 4:00 p.m. 5:00 p.m. 6:00 p.m.

1 January 2020 592 577 650 620
2 January2020 1437 1453 1270 1117
3 January2020 1348 1240 1029 1071
4 January2020 1127 929 877 945
5 January2020 877 778 699 809
6 January2020 1452 1219 938 1127
7 January2020 1754 1281 844 1103
8 January2020 1300 1156 865 1083
9 January2020 839 787 634 739

10 January2020 1183 1167 947 1116
11 January2020 1162 1076 902 888
12 January2020 954 824 701 802
13 January2020 1326 1236 928 1247
14 January2020 1316 1286 993 1301
15 January2020 1280 1216 926 1138
16 January2020 1287 1147 866 1053
17 January2020 1118 1142 1027 1150
18 January2020 1197 1096 991 952
19 January2020 933 871 774 870
20 January2020 1228 1245 1024 1047
21 January2020 1165 1135 979 1077
22 January2020 1226 1203 1010 1143
23 January2020 1171 1214 1031 1113
24 January2020 1263 1196 905 1072
25 January2020 1189 1042 853 923
26 January2020 907 856 704 777
27 January2020 1265 1164 985 1170
28 January2020 1169 1134 1097 1108
29 January2020 998 1138 753 1015
30 January2020 1225 1159 965 1185
31 January2020 1192 1140 1015 1169

The demand of the model variables w, x, y and z is obtained by applying simple linear
regression on the data set that constitutes the traffic flow intensity demand for each hour.
The variables used for the intensity are:

I15H—traffic flow intensity demand at 3:00 p.m. (15 h)
I16H—traffic flow intensity demand at 4:00 p.m. (16 h)
I17H—traffic flow intensity demand at 5:00 p.m. (17 h)
I18H—traffic flow intensity demand at 6:00 p.m. (18 h)

The models for each intensity are as follows:

w = i1 + m1I15H
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x = i2 + m2I16H

y = i3 + m3I17H

z = i4 + m4I18H

where i1, m1, i2, m2, i3, m3, i4, and m4 are the coefficients of the linear regressions of
the intensities.

Predictive models are obtained using simple linear regression and the demand values
of each intensity.

These data were stored in Pandas DataFrame and were programmed using
Python [27,39,57–61]. During the training of the models, 80% of the data for training
and 20% of the data for testing were used. Tables 5–8 and Figures 13–16 show the values
resulting from the model training for each intensity.

Table 5. Results of the prediction model for traffic flow intensity demand at 3:00 p.m.

Date Traffic Flow Intensity Demand Prediction

1 January 2020 592 699.61208
7 January 2020 1754 1323.617801
8 January 2020 1300 1212.821331
12 January 2020 954 918.545905
18 January 2020 1197 1159.639025

Table 6. Results of the prediction model for traffic flow intensity demand at 4:00 p.m.

Date Traffic Flow Intensity Demand Prediction

2 January 2020 1453 1501.728419
9 January 2020 787 804.933475
10 January 2020 1167 1147.852999
12 January 2020 824 878.337974
21 January 2020 1135 1182.911864

Table 7. Results of the prediction model for traffic flow intensity demand at 5:00 p.m.

Date Traffic Flow Intensity Demand Prediction

4 January 2020 877 845.417087
5 January 2020 699 758.486939
12 January 2020 701 754.012594
18 January 2020 991 849.891432
23 January 2020 1031 952.801386

Table 8. Results of the prediction model for traffic flow intensity demand at 6:00 p.m.

Date Traffic Flow Intensity Demand Prediction

1 January 2020 620 575.04631
9 January 2020 739 717.509395
22 January 2020 1143 1096.252718
25 January 2020 923 1110.151556
28 January 2020 1108 1078.879171
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The coefficient of determination (r2) is used to evaluate how well the data of each
model fit. In this, a value of 1 is equivalent to an optimal fit. The coefficients of determina-
tion (r2) for each traffic flow intensity demand for hours are shown in Table 9.

Table 9. Coefficients of determination (r2) by traffic flow intensity demand for hours.

Traffic Flow Intensity Demand at: Coefficient r2

3:00 p.m. 0.7148
4:00 p.m. 0.9713
5:00 p.m. 0.6423
6:00 p.m. 0.7262

8. Conclusions

An M/M/1 queuing model based on Kendall notation was proposed to solve the
problem that currently exists in the synchronization of traffic lights on 50th Street in Panama
City. The mathematical model included a stability analysis of the system, performing the
analysis with two capacities of the system until achieving the stability of the queuing
system at 1300 vehicles per hour.

For the AI component, we measured the accuracy, as shown in Table 9. We are
considering evaluating other models to make the AI component even more robust, which
will be studied in future research. Evaluating other models can help identify the strengths
and weaknesses of the current model and compare its performance with other models in
different scenarios. In addition, it can also improve the ability of the current model to make
more accurate and valuable predictions in more diverse situations.

The algorithm developed in MATLAB was based on a stability analysis, which shows
the stability and instability for January 2020. The stability analysis found that the system
is not saturated on holidays and weekends. On weekdays, we observed that the system
is oversaturated with the capacity currently having the traffic light cycle of 50th Street.
With this, we can analyze that the current scheduling system of 50th Street is an unstable,
oversaturated queuing system, which would generate large queues with non-estimated
departure times.

A simulation was carried out in Excel over a single day. The chosen day was at 98% of
its capacity. The results obtained are that the approximate duration in the queuing system
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is 0.002 s in the best scenario with 0 elements in the queue and with waiting times of up to
60 min. Regarding the service capacity of the system, several system stability analyses were
carried out, where the current traffic light capacity is insufficient for the number of vehicles
passing through the road at the 3:00 p.m. peak hour. The first analysis is of a capacity
of one thousand vehicles per hour (current capacity), giving us a stability of 22.58% and
an instability of 77.42%. With this capacity, the system was so saturated that it was not
feasible to apply the model. Starting with a capacity of one thousand vehicles per hour, we
continued analyzing one hundred at a time until we reached a capacity of one thousand
three hundred vehicles per hour (suggested capacity). With this capacity, we obtained a
stability of over 70%. Compared with the previous capacities, this result is feasible, and the
system analysis could be carried out using Kendall’s notation.

For the waiting time in the system, two scenarios were analyzed:

• Scenario 1. Vehicle capacity of 1000 vehicles per hour; in this scenario, employing
only Kendall’s notation model, it would be possible to estimate the average waiting
values on holidays and weekends in January at 3:00 p.m., where a short queue with an
average of 18 vehicles waiting for each cycle and a waiting time of 65 s on average was
determined. In the rest of the days, the queuing system becomes unstable, and it would
not be possible to estimate the waiting times in the system employing this model.

• Scenario 2. For a capacity of 1300 vehicles per hour, the service time for each vehicle is
37 s, having at least 13 vehicles in the queue in the best-case scenario where the light
is green, and no vehicles are stacked in the queue. The capacity was analyzed from
3:00 p.m. to 4:00 p.m. every day of January 2020. It was observed that, at that time,
there was more congestion. A vehicle could take between 2 to 60 min to be served.

9. Future Work

Considering the limitations and potential weaknesses of the current model, future
research focuses on the evaluation of alternative queuing models. This analysis can help
identify the strengths and weaknesses of the different models and compare their perfor-
mance under various scenarios. By selecting the most suitable model, the overall robustness
and accuracy of the AI component can be improved by leveraging advanced techniques
and algorithms, contributing to better synchronization and optimization of traffic signals at
50th Street.

The stability analysis conducted for January 2020 provided information on system
performance during vacations, weekends, and weekdays. As future research, it is intended
to include analysis of system stability for a wider range of time periods and to consider
additional factors that may affect traffic flow, such as weather conditions and special events.
This expanded analysis will provide a more complete understanding of system behavior
and help develop effective strategies for traffic signal scheduling.

Once the model has been validated and refined, a next step would be to focus on
applying and testing it under real-world conditions on 50th Street. This would involve
collaborating with relevant authorities and stakeholders to collect real-time traffic data,
monitor system performance, and evaluate the effectiveness of the proposed model in
improving traffic flow and reducing congestion.

As traffic patterns and road conditions evolve over time, it is essential to continuously
monitor system performance and update the model accordingly. This would ensure that
traffic signal timing remains optimized and efficient to cope with dynamic traffic demands
on 50th Street.
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