
Citation: Hu, H.; Wang, Y.; Tong, W.;

Zhao, J.; Gu, Y. Path Planning for

Autonomous Vehicles in Unknown

Dynamic Environment Based on

Deep Reinforcement Learning. Appl.

Sci. 2023, 13, 10056. https://doi.org/

10.3390/app131810056

Academic Editor: Daniel Villanueva

Torres

Received: 17 July 2023

Revised: 28 August 2023

Accepted: 31 August 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Path Planning for Autonomous Vehicles in Unknown Dynamic
Environment Based on Deep Reinforcement Learning
Hui Hu 1, Yuge Wang 1, Wenjie Tong 1, Jiao Zhao 1,* and Yulei Gu 2

1 College of Transportation Engineering, Chang’an University, Xi’an 710064, China; huhui@chd.edu.cn (H.H.);
gege525@163.com (Y.W.); twj202308@163.com (W.T.)

2 College of Automobile, Chang’an University, Xi’an 710064, China; gylei001@chd.edu.cn
* Correspondence: jiaozhao@chd.edu.cn

Abstract: Autonomous vehicles can reduce labor power during cargo transportation, and then
improve transportation efficiency, for example, the automated guided vehicle (AGV) in the warehouse
can improve the operation efficiency. To overcome the limitations of traditional path planning
algorithms in unknown environments, such as reliance on high-precision maps, lack of generalization
ability, and obstacle avoidance capability, this study focuses on investigating the Deep Q-Network
and its derivative algorithm to enhance network and algorithm structures. A new algorithm named
APF-D3QNPER is proposed, which combines the action output method of artificial potential field
(APF) with the Dueling Double Deep Q Network algorithm, and experience sample rewards are
considered in the experience playback portion of the traditional Deep Reinforcement Learning (DRL)
algorithm, which enhances the convergence ability of the traditional DRL algorithm. A long short-
term memory (LSTM) network is added to the state feature extraction network part to improve its
adaptability in unknown environments and enhance its spatiotemporal sensitivity to the environment.
The APF-D3QNPER algorithm is compared with mainstream deep reinforcement learning algorithms
and traditional path planning algorithms using a robot operating system and the Gazebo simulation
platform by conducting experiments. The results demonstrate that the APF-D3QNPER algorithm
exhibits excellent generalization abilities in the simulation environment, and the convergence speed,
the loss value, the path planning time, and the path planning length of the APF-D3QNPER algorithm
are all less than for other algorithms in diverse scenarios.

Keywords: deep reinforcement learning; autonomous vehicle; path planning; DQN algorithm

1. Introduction

As autonomous driving technology advances, it significantly transforms the logistics
industry. Autonomous vehicles eliminate the need for human drivers and utilize sensors
and navigation systems to precisely plan and execute routes, enabling them to avoid
congestion and traffic delays effectively. This enhances the overall efficiency of logistics
operations. Moreover, autonomous driving technology enables real-time monitoring of
vehicle location, status, and transportation processes, offering users more precise logistics
information. This capability assists in optimizing transportation networks, enhancing
supply chain efficiency, and providing decision-makers with a better basis for making
informed decisions.

In 2012, Google conducted a test of its self-driving vehicle in Nevada, USA, covering
a distance of 1.4 miles, which marked a significant milestone in the advancement of
autonomous driving technology. In 2014, Tesla introduced the first generation of its self-
driving system, known as Autopilot. In 2016, Google established Waymo, a company
focused on developing commercial self-driving vehicles [1,2]. Subsequently, autonomous
driving technology gradually made its way into the logistics industry. Amazon introduced
its drone program called Prime Air to explore the feasibility of drone delivery. Companies,

Appl. Sci. 2023, 13, 10056. https://doi.org/10.3390/app131810056 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810056
https://doi.org/10.3390/app131810056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131810056
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810056?type=check_update&version=1

Appl. Sci. 2023, 13, 10056 2 of 21

such as Nuro, Marble, Amazon (with its Scout autonomous logistics vehicle), and Einride
(with its autonomous electric logistics vehicle in Sweden), entered the market and began
regular operations in the autonomous logistics sector. In China, logistics platforms, such as
Jingdong, Meituan, and Cainiao, have implemented autonomous vehicles for operational
testing on university campuses and closed parks. Startups, such as New Stone and Wisdom
Walker, have also ventured into the autonomous delivery field. Companies, such as
Shunfeng and Jingdong, have been involved in the research and development of drones
and have conducted trial operations. Suning’s electric autonomous vehicle, Wolong No. 1,
is now in normal operation. Cainiao Logistics is actively conducting experiments related to
autonomous urban logistics delivery. The application of autonomous driving technology
in the logistics industry undoubtedly brings opportunities and challenges to the field.

Traditional path planning for autonomous vehicles can be categorized into local and
global planning algorithms based on the scope of required environmental information [3].
Global path planning involves acquiring environmental information in advance and gener-
ating a map. The algorithm plans the path based on the starting and target poses on the map,
as well as the positions of static and dynamic obstacles. Meanwhile, local path planning
focuses on the immediate surroundings of the vehicle, utilizing sensor information to avoid
static obstacles, predict the trajectory of sudden dynamic obstacles, and find feasible paths.
In dynamic environments, autonomous vehicles often require global and local path plan-
ning. They use the global path as a general direction while dynamically avoiding obstacles
and performing short-distance path planning with the assistance of local path planning [4].
Based on algorithmic principles, path planning methods can be classified into raster map-
based, sampling-based, and bionic heuristic-based approaches [5–11]. Map-based methods
include algorithms, such as Dijkstra’s algorithm, A*, and D*. Sampling-based methods
encompass the RRT algorithm, PRM algorithm, and APF method. Bionic heuristic-based
methods include genetic, particle swarm, neural network, and ant colony algorithms.
However, existing path planning algorithms, such as A*, APF, and DWA still have certain
limitations. The DWA algorithm, for instance, is only applicable to omnidirectional mobile
autonomous vehicles as it requires the vehicle to perform in-place rotation for obstacle
avoidance and path replanning. The APF algorithm faces challenges of unreachable targets
and local minima. Meanwhile, the A* algorithm may result in unsmooth planning paths
with excessive turns. The artificial potential field method is a path planning method with
a simple principle, concise mathematical model, smooth path, and high computational
efficiency and is commonly used in local obstacle avoidance movement. The artificial
potential field method is favored because it requires less external information, a faster
computation speed, and smoother planning paths, but there are problems such as insuffi-
cient planning ability in complex environments, and local minima and unreachable goals.
Moreover, all three types of path planning algorithms rely on pre-established maps, which
limits autonomous vehicles in exploring unknown environments.

The rapid development of deep learning, driven by the continuous advancements
in computer hardware, has found extensive applications in various fields, including au-
tonomous vehicles and computer vision. DRL, a combination of deep learning and re-
inforcement learning techniques, has gained significant attention [12]. In this approach,
an intelligent agent interacts with an unknown environment (DRL), taking actions based
on feedback from reward signals to achieve predefined goals [13]. The concept of rein-
forcement learning dates back to the early 20th century [14]. In 1992, Watkins introduced
the Q-Learning algorithm, which marked a significant milestone in the development of
reinforcement learning algorithms. The Q-Learning algorithm utilizes a Q-table to store
the expected reward values for different actions in each state, enabling the agent to make
optimal decisions in various states [15]. Rummery G and Niranjan further improved upon
Q-Learning by introducing the Sarsa algorithm, an on-policy Q-Learning algorithm that
performed better in learning control problems. However, as the complexity of the prob-
lems in terms of states and actions increases, maintaining a Q-table becomes increasingly
challenging, leading to the problem of dimensional catastrophe. To address this issue, in

Appl. Sci. 2023, 13, 10056 3 of 21

2013, Mnih et al. introduced the Deep Q-Network (DQN) algorithm, which combined the
Q-Learning algorithm with convolutional neural networks. The DQN algorithm overcomes
the problem of dimensional catastrophe by utilizing end-to-end mapping and simulating
the Q-table model through neural networks. This breakthrough marked a new era in
reinforcement learning [16]. In 2015, Nair A proposed the distributed DQN, which utilized
a distributed approach to handle neural networks and experience replay buffers, thereby
further improving learning efficiency [17].

Hasselt et al. introduced the Deep Double Q-Network (DDQN) to address the overes-
timation problem in the DQN algorithm. By utilizing two structurally identical networks,
one for action selection and the other for Q-value estimation, the DDQN effectively miti-
gates the issue of overestimation that arises with single networks [18]. Wang et al. proposed
an enhanced version of the DQN called Dueling DQN. This architecture incorporates a
convolutional layer to extract input states, followed by a fully connected layer that splits
the output into two parts: the value function and the action advantage function. This
separation enables better learning of the value function [19]. To enhance the stability of
the algorithm during training, Anschel et al. suggested calculating the average value of
previously learned Q-values [20]. This approach reduces the variance of the approximation
error, further improving algorithm stability. Dong Yongfeng et al. developed the DTDDQN
network, which combined the Averaged-DQN and DoubleDQN algorithms while lever-
aging prior experience to reduce the discrepancy between estimated and true values [21].
Hausknecht et al. merged the DQN algorithm with LSTM networks, thereby allowing
the LSTM network to learn and retain state information from moments before and after
time t. This memory chain facilitates faster decision-making [22]. Schaul et al. proposed
preferential empirical replay, where samples were selected from the replay pool based on
their Time Difference error (TD-error) values as probabilities. This approach accelerates
convergence [23]. Building upon priority experience replay, Liu Panfeng introduced an
experience replay mechanism based on the entropy of state information to ensure sample
diversity [24]. Bae et al. devised a multi-path planning algorithm for autonomous vehicles
based on the DQN, enabling path planning in multiple environments [25]. Lei et al. ap-
plied the DQN algorithm to path planning, with the neural network taking environmental
information acquired by the vehicle’s sensors as an input and outputting the state-action
Q-value, achieving end-to-end mapping [26]. Lei et al. applied the Double DQN network to
path planning in unknown environments. They continuously adjusted the target and start-
ing positions during training to enhance the algorithm’s generalization ability in diverse
location environments [27]. Tiong proposed the deep deterministic policy gradient (DDPG),
a DRL algorithm for automatic driving simulation. DDPG models the path, following
the control, reward function, actor-network, and critic network [28]. Du introduced the
concept of maximum comfortable speed to represent the vertical ride comfort of roads.
They designed a DRL algorithm to learn comfortable and energy-efficient speed control
strategies [29]. Li et al. proposed a probabilistic model-based risk assessment method for
evaluating driving risks using location uncertainty and distance-based safety indicators.
They also developed a risk perception decision algorithm that utilized DRL to find strate-
gies with the least expected risk. The proposed approach was evaluated using the CARLA
simulator in two scenarios involving static obstacles and dynamically moving vehicles.
The results demonstrate that the method can generate safe driving strategies which outper-
form existing approaches [30]. This paper discusses the use of a Hardware-In-Loop (HIL)
simulation interface for wheeled mobile robots [31].

Traditional global path planning suffers from too many turning points and is not
smooth, which is not conducive to unmanned vehicles [32]; meanwhile, local path planning
in dynamic environments, with the help of the global path as a direction, also requires
dynamic obstacle avoidance and short-range path planning in real time [33]. Traditional
path planning algorithms such as the A* algorithm developed based on Dijkstra’s algo-
rithm [34], the artificial potential field algorithm, DWA algorithm, etc., have certain features
and advantages for the actual unmanned vehicle path planning, but there are still some

Appl. Sci. 2023, 13, 10056 4 of 21

shortcomings, such as the traditional DWA algorithm requires that the vehicle can rotate
in place to achieve obstacle avoidance and path replanning for the traditional DWA algo-
rithm to carry out the local path planning, which is suitable for omnidirectional mobile
unmanned vehicles, and does not apply to the two-wheel-drive unmanned vehicles. The
traditional artificial potential field algorithm suffers from target unreachability and local
minimum problems, for example, the A* algorithm suffers from planning paths that are not
smooth and have too many turns. The common shortcoming of traditional path planning
algorithms based on raster maps, sampling-based path planning algorithms, and bionic
heuristic-based path planning algorithms is that they all need to build a certain map to
carry out the planning, which is a big limitation for unmanned vehicles exploring the path
planning in unknown environments.

To overcome the limitations of traditional path planning algorithms that rely on high-
precision maps and lack generalization and obstacle avoidance capabilities in unknown
environments, this study proposes a path planning approach for autonomous vehicles
based on DRL algorithms. DRL algorithms exhibit generalizability and do not require
pre-built maps or corresponding state-transfer equations. They can be trained and interact
with the environment to make path planning decisions. Building upon the traditional
DQN algorithm and its derivatives, this study enhances the network structure, algorith-
mic components, and content to improve network convergence and enhance algorithm
generalization performance. Using the Ubuntu operating system and Robot Operating
System (ROS), we created obstacle-free, obstacle-rich, and complex dynamic simulation
environments in the Gazebo platform. Comparative experiments were conducted among
the improved DQN, traditional DRL, and traditional map-based path planning algorithms.

2. APF-D3QNPER Algorithm Design
2.1. Design Ideas

DRL algorithms typically employ a random experience replay mechanism, which can
result in the repeated sampling of low-value experiences, slowing down the convergence
speed. To address this issue, the priority experience replay mechanism can be used.
However, the traditional prioritized experience replay mechanism tends to prioritize
experiences with larger TD errors, which can lead to situations where experiences with
smaller TD errors in the replay pool remain unchanged under the new network parameter
structure and cannot be updated. Additionally, the traditional prioritized experience replay
mechanism does not consider the return of experience samples, overlooking valuable
information that could aid network updates and lead to slow convergence and potential
local optima. To overcome these limitations, we propose an experience replay mechanism
based on sample experience reward value and resampling. This approach ensures that each
sample is included in the replay process while reducing the number of training iterations
in non-essential states.

In complex dynamic environments, traditional DQN networks face challenges in
making optimal obstacle avoidance decisions for obstacles that dynamically appear in
unknown locations. To enhance the algorithm’s generalization and obstacle avoidance
capabilities, we propose an action output method based on the APF algorithm. In addition
to utilizing deep vision and LiDAR as network inputs, we incorporate the APF algorithm
as an additional network input to provide prior information for path planning robustness.

The APF algorithm, as a traditional path planning algorithm, can have excellent
performance in obstacle avoidance ability without training; meanwhile, the D3QNPER
algorithm, as a deep reinforcement learning algorithm, has excellent path planning ability
and good obstacle avoidance ability, while it needs to spend time for model training. In the
initial stage of D3QNPER algorithm training, the convergence result can be accelerated if
there is guidance for path planning from the APF algorithm. In the action output stage,
combining the action output mechanism of APF and D3QNPER algorithms makes the
unmanned vehicle have excellent obstacle avoidance ability.

Appl. Sci. 2023, 13, 10056 5 of 21

2.2. Experience Sample Return Mechanism Considering Sample Priority

In this paper, we prioritize each empirical sample based on its return rt and TD-error
as follows:

ϕi = δt + σrt + ε, (1)

where ϕi is the priority of the experience sample i; δt is the TD-error; rt is the return value
at moment t of the corresponding experience sample; σ is the weight of rt; and ε is a very
small positive number that prevents the sample from not being sampled when ϕi tends
to 0.

The empirical samples in the empirical playback pool are prioritized ϕi in descending
order to obtain the probability of defining sample i sampling, as shown in Equation (2).

P(i) =
ϕαs

i

∑k ϕas
k

, (2)

where P(i) is the probability of sampling sample i, as is the priority parameter, and the
sampling is random when α = 0.

To eliminate the bias caused by sampling, importance sampling is used.
The scale factor ωi for importance sampling is

ωi =

(
1
N
× 1

P(i)

)βs

, (3)

where β grows to 1 with the number of training rounds. When βs = 1, at the end of the
training, the use of the scaling factor is unbiased to participate in the network parameter
update to ensure that the algorithm can converge stably.

To enhance the stability of the algorithm, the scaling factor is normalized as follows:

ωi =
ωi

max(ω)
. (4)

In the back propagation phase, the scale factor ωi is applied to the gradient descent:

θt+1 = θt + α×ωi
[
r + γmaxa′Q

(
st+1, a′; θ−

)
−Q(st, at; θ)

]
∇Q(st, at; θ). (5)

2.3. Adaptive Greedy Factors

In the traditional DQN algorithm, the ε− greedy strategy is utilized. This strategy
involves balancing exploration and exploitation in the learning process. Initially, in the
early stages of learning, a higher value of ε is employed to ensure thorough exploration
of the environment, facilitating the acquisition of valuable experience. However, as the
optimization progresses and the agent’s performance improves, the excessive exploration
by the agent becomes less beneficial. It leads to the underutilization of valuable feedback
information, resulting in decreased planning efficiency. To address this issue, this paper
proposes an improved version of the ε− greedy strategy, as demonstrated in Equation (6).

ε =

 εmax
1

1+eµRL
sum

> εmax
1

1+eµRL
sum

others
, (6)

where εmax is the maximum random exploration probability. When 1
1+eµRL

sum
< εmax, the

exploration probability is a value less than εmax. µ is the exploration factor, that is, the
larger µ is, the more it tends to random exploration. RL

sum can be expressed as

RL
sum =

1
L

L

∑
i=0

Gi (7)

Appl. Sci. 2023, 13, 10056 6 of 21

It represents the average of the sum of the cumulative rewards of the previous
L rounds, ∑L

i=0 Gi is the cumulative reward at iteration to round i, and L is the total number
of iterations epi.

2.4. APF-Based Action Output

In simple environments, the DQN-based path planning algorithm can effectively uti-
lize lidar and deep vision information as inputs to the network model. Through continuous
interaction with the environment, the network parameters can be trained until convergence
is achieved. However, in complex environments, the optimization of a large number of
network parameters becomes more challenging, leading to slower or even difficult conver-
gence. In complex and unknown environment path planning scenarios, where dynamic
obstacles with unknown locations and unpredictable paths exist, DRL algorithms may
encounter states that were not encountered during the training process. As a result, the
planning results generated by these algorithms may yield unsatisfactory return values. To
solve this problem, an APF-based action output method is proposed.

In this paper, according to the combined force F of the artificial potential field algo-
rithm, the required outputs

(
vx, vy

)
of the unmanned vehicle are output from the x-axis

and y-axis directions, respectively; to ensure the dynamics constraints of the unmanned
vehicle, the combined force is firstly standardized, as shown in Equations (8)–(10).

Fnorm =
√

F2
x + F2

y (8)

Fx = Fx/Fnorm (9)

Fy = Fy/Fnorm (10)

where Fx and Fy denote the combined force in the x-axis and y-axis directions of the
unmanned vehicle, which is less than one for both after normalization.

According to the combined force, the velocity pair (vx, vy) is the output, as shown in
Equations (11) and (12).

vx = kx × Fx × vlim + (1− kx) ∗ vx0 (11)

vy = ky × Fy × vlim +
(
1− ky

)
∗ vy0 (12)

where kx and ky denote the weight parameters of the force field, and
(
vx0, vy0

)
denotes the

current velocity pair of the unmanned vehicle. According to the difference between the
angle of the velocity pair

(
vx, vy

)
and the yaw angle of the unmanned vehicle itself, the

required steering angular velocity wap f is calculated, and the steering angular velocity is
limited to the interval of (−wlim ,wlim); and the value of the linear velocity v in the direction
of the combined force of the velocity pair

(
vx, vy

)
is calculated, and the linear velocity

is limited to the interval of (−vlim ,vlim). The linear velocity (vap f , wap f) is limited to the
(−vlim ,vlim) interval as the final output of the APF algorithm.

First, we utilize the lidar information, along with the starting point and target point
location information, the autonomous vehicle’s positional information, and the vehicle
kinematic model as inputs to the APF algorithm. The APF algorithm outputs [vap f , wap f]
information, representing the desired linear and angular velocities of the autonomous
vehicle in that state. This output information from the APF algorithm is then employed as
prior knowledge in the DQN algorithm. It guides the direction of the optimization process
for the state action value function.

When the model training is finished, the DQN algorithm usually performs action
selection based on the maximum output of the state action value function, as shown in
Equation (13).

amax = maxaQ(s, a; θ) (13)

Appl. Sci. 2023, 13, 10056 7 of 21

where θ is the neural network model parameters; s is the state s, in which the intelligent
body is in; a is the action taken by the intelligent body in that state; maxaQ(st, a; θ) is under
the trained network model; and the DQN algorithm selects the action a that makes the
Q function maximum in state s, when a = amax.

Set the Q value threshold Qlimit, if the Q function value that corresponds to the action
amax selected for output by the algorithm in a state s is less than the threshold Qlimit,
then the action areal is the information output by the APF; otherwise, areal is the action
areal output by the neural network, as shown in Equation (14).

areal =

{
amax, Q(s, amax; θ) ≥ Qlimit[
vap f , wap f

]
, Q(s, amax; θ) < Qlimit

. (14)

The algorithm flow is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25

When the model training is finished, the DQN algorithm usually performs action se-

lection based on the maximum output of the state action value function, as shown in Equa-

tion (13).

 𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑎𝑄(s, 𝑎; 𝜃) (13)

where 𝜃 is the neural network model parameters; s is the state s, in which the intelligent

body is in; 𝑎 is the action taken by the intelligent body in that state; 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎; 𝜃) is

under the trained network model; and the DQN algorithm selects the action 𝑎 that makes

the 𝑄 function maximum in state s, when 𝑎 = 𝑎𝑚𝑎𝑥.

Set the 𝑄 value threshold 𝑄𝑙𝑖𝑚𝑖𝑡, if the 𝑄 function value that corresponds to the ac-

tion 𝑎𝑚𝑎𝑥 selected for output by the algorithm in a state s is less than the threshold 𝑄𝑙𝑖𝑚𝑖𝑡,

then the action 𝑎𝑟𝑒𝑎𝑙 is the information output by the APF; otherwise, 𝑎𝑟𝑒𝑎𝑙 is the action

𝑎𝑟𝑒𝑎𝑙 output by the neural network, as shown in Equation (14).

𝑎𝑟𝑒𝑎𝑙 = {
𝑎𝑚𝑎𝑥, 𝑄(s, 𝑎𝑚𝑎𝑥; 𝜃) ≥ 𝑄𝑙𝑖𝑚𝑖𝑡
[𝑣𝑎𝑝𝑓, 𝑤𝑎𝑝𝑓], 𝑄(s, 𝑎𝑚𝑎𝑥; 𝜃) < 𝑄𝑙𝑖𝑚𝑖𝑡

. (14)

The algorithm flow is shown in Figure 1.

Figure 1. Algorithm flow. Figure 1. Algorithm flow.

2.5. Network Structure of Improved DQN Algorithm

The network structure of the improved DQN algorithm is illustrated in Figure 2. The
input to the network consists of three components: visual image information, state infor-
mation, and APF action output. The state information incorporates lidar point cloud data
and vehicle state information θt, vt, wt. The visual image information is processed using
a convolutional neural network to extract relevant feature information. The lidar point

Appl. Sci. 2023, 13, 10056 8 of 21

cloud information within the state information is passed through a LSTM network, which
effectively captures dependencies across a long sequence of segments and strengthens
the correlation between data. The action pairs output by the APF algorithm, serving as
prior knowledge, undergo feature extraction through several fully connected layers. The
network architecture incorporates the Dueling DQN algorithm, with fully connected layers
producing the action dominance function and the value function. By combining these
outputs, the algorithm generates the Q-value matrix for the action set A corresponding to
the given state.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 25

2.5. Network Structure of Improved DQN Algorithm

The network structure of the improved DQN algorithm is illustrated in Figure 2. The

input to the network consists of three components: visual image information, state infor-

mation, and APF action output. The state information incorporates lidar point cloud data

and vehicle state information 𝜃𝑡 , 𝑣𝑡 , 𝑤𝑡. The visual image information is processed using

a convolutional neural network to extract relevant feature information. The lidar point

cloud information within the state information is passed through a LSTM network, which

effectively captures dependencies across a long sequence of segments and strengthens the

correlation between data. The action pairs output by the APF algorithm, serving as prior

knowledge, undergo feature extraction through several fully connected layers. The net-

work architecture incorporates the Dueling DQN algorithm, with fully connected layers

producing the action dominance function and the value function. By combining these out-

puts, the algorithm generates the Q-value matrix for the action set A corresponding to the

given state.

Figure 2. Network structure of improved DQN algorithm.

For visual image information, the improved DQN algorithm employs three convolu-

tional layers for feature extraction. The dimensions of these layers are 8 × 8 × 4, 4 × 4 × 32,

and 3 × 3 × 64, respectively. The number of output channels for the convolutional layers is

32, 64, and 64, respectively. The stride sizes for these layers are 4, 2, and 1, respectively.

The convolutional layers utilize the “SAME” padding scheme to handle the image edges.

Regarding the state information, the algorithm utilizes an LSTM network with a cell size

of 256. The LSTM network is responsible for capturing the dependencies in the sequence

of lidar point cloud data and reinforcing the correlation between the data segments. In an

unknown environment, the LSTM can capture state information at different time steps to

build a dynamic model of the environment. By passing current state, action, and reward

information to the LSTM, it can learn the time-varying characteristics of the environment,

enabling the intelligence to better understand the changes in the environment. The long-

term memory properties of the LSTM allow it to remember previous states and action

sequences so that long-term effects can be taken into account in path planning. This is

useful for making decisions in complex environments where path planning often requires

considering possible effects after multiple steps. LSTMs can consider both temporal and

spatial information, thus improving the spatio-temporal sensitivity of the algorithm. In

path planning, intelligence can predict possible future states and paths as well as select

the best action based on the current state and historical trajectories. For the APF value

information, two fully connected layers are employed for feature extraction. These layers

consist of 200 and 100 neurons, respectively. The rectified linear unit (ReLU) function

serves as the activation function for all layers. After processing the input data from the

visual image, state information, and APF value, the Concat function is used to flatten the

data into a one-dimensional vector. This vector is then split into two parts after passing

Figure 2. Network structure of improved DQN algorithm.

For visual image information, the improved DQN algorithm employs three convolu-
tional layers for feature extraction. The dimensions of these layers are 8 × 8 × 4, 4 × 4 × 32,
and 3 × 3 × 64, respectively. The number of output channels for the convolutional layers
is 32, 64, and 64, respectively. The stride sizes for these layers are 4, 2, and 1, respectively.
The convolutional layers utilize the “SAME” padding scheme to handle the image edges.
Regarding the state information, the algorithm utilizes an LSTM network with a cell size of
256. The LSTM network is responsible for capturing the dependencies in the sequence of
lidar point cloud data and reinforcing the correlation between the data segments. In an
unknown environment, the LSTM can capture state information at different time steps to
build a dynamic model of the environment. By passing current state, action, and reward
information to the LSTM, it can learn the time-varying characteristics of the environment,
enabling the intelligence to better understand the changes in the environment. The long-
term memory properties of the LSTM allow it to remember previous states and action
sequences so that long-term effects can be taken into account in path planning. This is
useful for making decisions in complex environments where path planning often requires
considering possible effects after multiple steps. LSTMs can consider both temporal and
spatial information, thus improving the spatio-temporal sensitivity of the algorithm. In
path planning, intelligence can predict possible future states and paths as well as select
the best action based on the current state and historical trajectories. For the APF value
information, two fully connected layers are employed for feature extraction. These layers
consist of 200 and 100 neurons, respectively. The rectified linear unit (ReLU) function serves
as the activation function for all layers. After processing the input data from the visual
image, state information, and APF value, the Concat function is used to flatten the data
into a one-dimensional vector. This vector is then split into two parts after passing through
a fully connected layer. The output size for the action part is 1 × 9, and for the value part,
it is 1 × 1. In visual image information processing, the relu activation function is mainly
used; in LSTM networks, both activation functions sigmoid and tanh are used.

The ReLU activation function was born in 2011 and has been widely used in deep
learning since its birth, as shown in Figure 3. The expression of the ReLU activation function
is shown in Equation (15), which speeds up the training speed of the network, and the
gradient is 1 when x > 0, which can solve the problem of gradient vanishing. But, when

Appl. Sci. 2023, 13, 10056 9 of 21

x ≤ 0, the function value is 0, and there is no activation effect; thus the function is not a
function centered on 0.

f (x) =
{

0 x ≤ 0
x x > 0

(15)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 25

through a fully connected layer. The output size for the action part is 1 × 9, and for the

value part, it is 1 × 1. In visual image information processing, the relu activation function

is mainly used; in LSTM networks, both activation functions sigmoid and tanh are used.

The ReLU activation function was born in 2011 and has been widely used in deep

learning since its birth, as shown in Figure 3. The expression of the ReLU activation func-

tion is shown in Equation (15), which speeds up the training speed of the network, and

the gradient is 1 when 𝑥 > 0, which can solve the problem of gradient vanishing. But,

when 𝑥 ≤ 0, the function value is 0, and there is no activation effect; thus the function is

not a function centered on 0.

𝑓(𝑥) = {
0 𝑥 ≤ 0
𝑥 𝑥 > 0

 (15)

Figure 3. ReLU activation function.

The model thinned out by the RELU function can better mine the pixel features in the

image that are beneficial for path planning, stabilize the convergence speed, and improve

the convergence effect. The improved DQN algorithm is shown in Table 1.

Table 1. Improved DQN algorithm flow.

Improved DQN Algorithm

Input: initialized empirical replay pool D, replay pool capacity N, 𝜖 parameters, discount

factor 𝛾, learning rate 𝛼, number of training rounds epi, number of steps per round T,

gradient descent minibatch as K, target network parameters update steps C

Output: Network parameters 𝜃 and θ−

Initialize target neural network and estimated neural network with parameters 𝜃 and
θ−
Initialize state s

for episode = 1:epi

for i = 1:T

Use the 휀 −greedy strategy to select action 𝑎𝑡 with 휀 probability; otherwise se-

lect 𝑎𝑡 = 𝑚𝑖𝑛𝑎𝐴(𝑠𝑡 , 𝑎; 𝜃)

Execute action 𝑎𝑡 in state 𝑠𝑡, the next state is 𝑠𝑡+1 and the reward value 𝑟𝑡 is

got

0

1

2

3

4

5

6

7

8

9

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3. ReLU activation function.

The model thinned out by the RELU function can better mine the pixel features in the
image that are beneficial for path planning, stabilize the convergence speed, and improve
the convergence effect. The improved DQN algorithm is shown in Table 1.

Table 1. Improved DQN algorithm flow.

Improved DQN Algorithm

Input: initialized empirical replay pool D, replay pool capacity N, є parameters, discount factor γ,
learning rate α, number of training rounds epi, number of steps per round T, gradient descent
minibatch as K, target network parameters update steps C
Output : Network parameters θ and θ−

Initialize target neural network and estimated neural network with parameters θ and θ−

Initialize state s
for episode = 1:epi
for i = 1:T

Use the ε−greedy strategy to select action at with ε
probability; otherwise select at = mina A(st, a; θ)

Execute action at in state st, the next state is st+1 and the reward value rt is got
Deposit samples (st, at, rt, st+1) into the sample pool D and the sampling pool
K− 1 samples

(
sj, aj, rj, sj+1

)
are drawn with the probability of random sampling in sample pool D

In state st+1, choose the action amax = mina A(st+1, a; θ)
Target value yj = rj + γ(A

(
st+1, amax; β, θ−

)
+ V

(
st+1; θ−

)
− 1
|A|∑a′ A(s, a′; β, θ))

Calculate TD-error δj and update priority P(j)← ϕ j = β1δi + β2ri + ε

The target network parameter θ is updated by gradient descent method according to the
loss function using MSE error

Update ε based on cumulative round rewards RL
sum

if T%C= 0
Update target network function θ ← θ−

end
end for
end for

Appl. Sci. 2023, 13, 10056 10 of 21

3. Simulation
3.1. Simulation Environment

To evaluate the effectiveness of the improved algorithm, a simulation experiment was
conducted using the Gazebo simulation environment. In this experiment, dynamic obsta-
cles, representing personnel vehicles, were simplified, while static obstacles included goods
and other items. Multiple path planning algorithms were tested to assess their efficiency
and the quality of their path planning in various environments. The simulation experi-
ment employed the following hardware configuration: CPU with a frequency of 2.9 GHz
and a dynamic acceleration frequency of 4.2 GHz, 16 GB of memory, GPU with a default
frequency of 1365 MHz, and a maximum Boost frequency of 1680 MHz. The software
platform consisted of the Ubuntu 18.04 operating system, Visual Studio Code develop-
ment environment, Python and C++ programming languages, Robot Operating System
(ROS) Melodic, Gazebo simulation platform, TensorFlow 1.12.0 deep learning framework,
CUDA 9.0, cuDNN, and the OpenCV 3.1.0.0 computer vision library, among others.

To fully verify the algorithm, obstacle-free environments, wide obstacle environments,
and complex dynamic environments were built separately, as shown in Figure 4a–c.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25

Deposit samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) into the sample pool D and the sampling pool

K−1 samples (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) are drawn with the probability of random sampling

in sample pool D

In state 𝑠𝑡+1, choose the action 𝑎𝑚𝑎𝑥 = 𝑚𝑖𝑛𝑎𝐴(𝑠𝑡+1, 𝑎; 𝜃)

 Target value 𝑦𝑗 = 𝑟𝑗 + γ(A(𝑠𝑡+1, 𝑎𝑚𝑎𝑥; 𝛽, θ
−) + 𝑉(𝑠𝑡+1; θ

−) −
1

|𝐴|
∑ 𝐴(𝑠, 𝑎′; 𝛽, 𝜃)

𝑎′
)

Calculate TD-error 𝛿𝑗 and update priority 𝑃(𝑗) ← 𝜑𝑗 = 𝛽1𝛿𝑖 + 𝛽2𝑟𝑖 + 휀

The target network parameter 𝜃 is updated by gradient descent method according

to the loss function using MSE error

Update 휀 based on cumulative round rewards 𝑅𝑠𝑢𝑚
𝐿

if T%C = 0

Update target network function 𝜃 ← θ−

end

end for

end for

3. Simulation

3.1. Simulation Environment

To evaluate the effectiveness of the improved algorithm, a simulation experiment

was conducted using the Gazebo simulation environment. In this experiment, dynamic

obstacles, representing personnel vehicles, were simplified, while static obstacles included

goods and other items. Multiple path planning algorithms were tested to assess their effi-

ciency and the quality of their path planning in various environments. The simulation

experiment employed the following hardware configuration: CPU with a frequency of 2.9

GHz and a dynamic acceleration frequency of 4.2 GHz, 16 GB of memory, GPU with a

default frequency of 1365 MHz, and a maximum Boost frequency of 1680 MHz. The soft-

ware platform consisted of the Ubuntu 18.04 operating system, Visual Studio Code devel-

opment environment, Python and C++ programming languages, Robot Operating System

(ROS) Melodic, Gazebo simulation platform, TensorFlow 1.12.0 deep learning framework,

CUDA 9.0, cuDNN, and the OpenCV 3.1.0.0 computer vision library, among others.

To fully verify the algorithm, obstacle-free environments, wide obstacle environ-

ments, and complex dynamic environments were built separately, as shown in Figure 4a–

c.

(a) (b) (c)

Figure 4. Simulation experiment environment. (a) Non-obstruction environment; (b) obstruction

environment; (c) complex dynamic environment.

In all environments, the dimensions of the vehicle are 0.42 m in length, 0.31 m in

width, and 0.184 m in height. Specifically, the obstacle-free environment has a size of 20

m × 20 m, and, at the beginning of each round, the starting position of the autonomous

vehicle is randomly determined, as is the target position. The obstacle environment con-

sists of an infinitely large map with a 20 m × 20 m obstacle area. It includes five static

squares with dimensions of 1 m × 1 m × 1 m as obstacles, along with ten dynamic squares

representing people, vehicles, and other moving obstacles in an open environment. The

Figure 4. Simulation experiment environment. (a) Non-obstruction environment; (b) obstruction
environment; (c) complex dynamic environment.

In all environments, the dimensions of the vehicle are 0.42 m in length, 0.31 m in width,
and 0.184 m in height. Specifically, the obstacle-free environment has a size of 20 m × 20 m,
and, at the beginning of each round, the starting position of the autonomous vehicle is
randomly determined, as is the target position. The obstacle environment consists of an
infinitely large map with a 20 m × 20 m obstacle area. It includes five static squares with
dimensions of 1 m × 1 m × 1 m as obstacles, along with ten dynamic squares representing
people, vehicles, and other moving obstacles in an open environment. The size of static
squares is 1 m × 1 m × 1 m. The complex dynamic environment is 15 m × 15 m in
size, with three square cubes with wheels of 1 m × 1 m × 1 m as dynamic obstacles,
and two static obstacles with a length of 0.54 m, a width of 0.31 m, and a height of
0.019 m. Black and wooden squares are simulation models of dynamic obstacles and static
obstacles, respectively. The simulation also includes blue dots representing the autonomous
vehicle, green dots representing the target points (transparent non-obstacles), red paths
representing the driving paths of the autonomous vehicle, and blue, green, and yellow
paths representing the driving paths of dynamic obstacles. At the start of each round,
the starting position of the static obstacle is randomly determined, whereas the dynamic
obstacle has a fixed starting point but follows a random walking path. The maximum linear
speed of the dynamic obstacles is 0.5 m/s. In traditional algorithms, the maximum linear
speed of the autonomous vehicle is set to 1 m/s, and the angular speed is 0.5 rad/s. The
experiment utilizes Jackal autonomous vehicles for path planning, which are equipped
with a single-line lidar, a binocular camera, an odometer, and two drive wheels. The point
cloud information dimension of the single-line lidar is 360◦, and its detection distance is
between 0.1 m and 3.5 m. The binocular camera captures RGB image information with a
resolution of 768 × 1024 × 3.

Appl. Sci. 2023, 13, 10056 11 of 21

3.1.1. State and Action Space Definition

Define a quadruple [θt, vt, wt, dt], where vt, wt represent the linear and angular velocity
information of the autonomous vehicle at time t, respectively; θt represents the angle
information of the autonomous vehicle relative to the target point; and dt represents the
distance information of the autonomous vehicle relative to the target point. The main
actions of the autonomous vehicle can be divided into combinations of discrete values of
linear velocity V and angular velocity W. The action space is defined to ensure that the
actions of the autonomous vehicle are coherent and comply with kinematic constraints, see
Table 2.

Table 2. State and action space definition.

Action Linear Velocity V Angular Velocity W

0 1 m/s −1 rad/s
1 1 m/s −0.5 rad/s
2 1 m/s 0 rad/s
3 1 m/s 0.5 rad/s
4 1 m/s 1 rad/s
5 0 m/s 0 rad/s
6 −0.5 m/s −0.5 rad/s
7 −0.5 m/s 0 rad/s
8 −0.5 m/s 0.5 rad/s

For the state space, we choose the visual image state information, its own position
and velocity state information, and APF algorithm action output state information. The
visual image state information can provide the unmanned vehicle with the situation of the
surrounding obstacles and provide some action basis for its path planning; the self-position
and velocity state information can provide the unmanned vehicle with its accurate state
and provide the initial conditions for the action output at the current moment. The action
space includes 9 discrete values, respectively, for the unmanned vehicle’s forward, stop,
and steering to provide a more comprehensive action to drive more smoothly.

3.1.2. Reward Function Definition

This article aims at the characteristics of reinforcement learning, combined with heuris-
tic methods to define a distance-based reward function, as shown in Equations (16) and (17).

The reward function mainly consists of two major modules; the first one is based on
the distance of the end point of the reward mechanism, and the second one is based on the
distance of the reward mechanism with the target obstacle. The reward mechanism based
on the distance can make the unmanned vehicle have better rewards when it is closer to
the target point, and negative rewards when it is far away from the target point or when it
is loitering; the reward mechanism based on the distance to the target obstacle can make
the unmanned vehicle have higher negative rewards when it is closer to the obstacle. The
reward function that combines the two enables the unmanned vehicle to reach the target
point quickly while staying away from the obstacle.

rt =

{
(r+rob) ∗ (dg−dt)

dg
dg ≥ dt

−1 dg < dt
, (16)

where dt =
√
(xt − xe)

2 + (yt − ye)
2 and dg =

√
(x0 − xe)

2 + (y0 − ye)
2 represent the

distance between the autonomous vehicle and the end point at time t and the distance
between the starting point and the end point, respectively. xt and yt represent the coordinate

Appl. Sci. 2023, 13, 10056 12 of 21

points of the autonomous vehicle in the global coordinate system. (x 0, y0) represents the
starting point coordinates, and (x e, ye) represents the end-point coordinates.

r =

20 Reaching the target point
−0.015 Rotate or remain stationary in place
0.01 Others

, (17)

where rt represents the immediate reward at time t, which is a function with the distance
function as the denominator and the reward function r+ rob as the numerator. For situations
where the autonomous vehicle encounters obstacles, does not move or spins out of the map,
or does not meet expectations, a negative reward is given as punishment. The autonomous
vehicle is rewarded when it reaches the target point. The farther the distance, the larger
the |rt|, the closer the distance, the smaller the |rt|. In other cases, a small negative value
is given to allow the autonomous vehicle to complete the target task in as few steps as
possible. To keep the autonomous vehicle as far away from obstacles as possible, the
dilation radii dmin1, dmin2, and dmin3 are set around the obstacles. This article sets their
parameter values to −0.3, −0.5, and −1, respectively. As the distance dob between the
autonomous vehicle and the obstacle decreases, the penalty value gradually increases to
−1, as shown in Equation (18).

rob =

−dmin3

4dob
dmin2 ≤ dob < dmin1

−dmin3
2dob

dmin3 ≤ dob < dmin2

−1 dob < dmin3
0 dob > dmin1

(18)

3.1.3. Algorithm Parameter Settings

The algorithm parameter settings and the sequence numbers of each algorithm are
shown in Tables 3 and 4, respectively.

Table 3. Parameter settings for path planning algorithm.

Parameter Meaning Value

εmax maximum greed factor 0.2
µ exploring factors 0.01
α learning rate 0.0001

as
importance adopts
priority parameters 0.4

βs
importance sampling scale

factor parameter 0.6

γ
reward discount

coefficient 0.98

σ
experience playback

reward weight 0.1

epi maximum number of
training rounds 300

Max_step maximum training steps 50,000

K gradient descent
parameter 32

C target network
update steps 5

Qlimit
lower limit of

action output Q value −0.1

vlim
upper limit of potential field

function velocity 1.0

wlim
upper limit of the angular velocity

of the potential field function 0.5

kx, ky
force field

weight parameters 0.7

Appl. Sci. 2023, 13, 10056 13 of 21

We defined Dueling DQN Algorithm as Algorithm 1, DQN Algorithm as Algorithm 2,
Double DQN Algorithm as Algorithm 3, D3QNPER Algorithm as Algorithm 4, APF-
D3QNPER Algorithm as Algorithm 5, A*+DWA Algorithm as Algorithm 6 and A*+TEB
Algorithm as Algorithm 7, as shown in Table 4.

Table 4. Algorithm number.

Algorithm Number Algorithm Name

Algorithm 1 Dueling DQN Algorithm
Algorithm 2 DQN Algorithm
Algorithm 3 Double DQN Algorithm
Algorithm 4 D3QNPER Algorithm
Algorithm 5 APF-D3QNPER Algorithm
Algorithm 6 A*+DWA Algorithm
Algorithm 7 A*+TEB Algorithm

3.2. Simulation
3.2.1. Non-Obstruction Scenarios

The starting point and end point of the autonomous vehicle are randomly selected in
an infinite map range. Since Algorithms 1–4 are all variants of DQN, and their performance
differences after training to convergence are not significant, we focus on comparing the
planning time and planning path length between Algorithms 4 and 5 in the obstacle-free
scenario. To conduct this comparison, we utilize five sets of starting and ending points as
test environments. For detailed results, please refer to Table 5.

Table 5. Environmental points.

Environment
Number

Starting Point
Coordinates (m)

End Point
Coordinates (m) Initial Angle (◦)

1 (1.12, −8.63) (−13.78, −3.08) 3.11
2 (1.44, 9.52) (−11.27, −7.50) −0.06
3 (−8.23, 9.23) (−4.69, −1.47) −2.50
4 (−12.36, 1.34) (12.70, −1.06) 2.64
5 (6.73, −1.30) (−7.72, 8.49) 0.56

The test was conducted using five sets of test environments, and each environment
was tested for 20 rounds. The results were averaged to obtain the performance met-
rics. Specifically, we compared the planning time and planning path length between
Algorithms 4 and 5 in these five test environments. The detailed comparison results can be
found in Tables 6 and 7.

Table 6. Planning time.

Env 1 (s) Env 2 (s) Env 3 (s) Env 4 (s) Env 5 (s)

Algorithm 4 13.420 13.566 4.828 6.713 6.870
Algorithm 5 7.743 5.527 3.876 5.668 3.897

Table 7. Planning path length.

Env 1 (m) Env 2 (m) Env 3 (m) Env 4 (m) Env 5 (m)

Algorithm 4 66.44 61.19 31.83 48.44 37.69
Algorithm 5 29.72 42.18 31.45 46.86 33.32

The walking paths of Algorithms 4 and 5 in the five rounds of random environment
tests are shown in Figure 5.

As can be seen from Tables 7 and 8, as well as Figure 5, in the five rounds of random
environments, the APF-D3QNPER algorithm (Algorithm 5) achieved an average driving

Appl. Sci. 2023, 13, 10056 14 of 21

time of 5.342 s and an average planning path length of 31.978 m. When compared with
Algorithm 4, the APF-D3QNPER algorithm demonstrated a 41.16% reduction in driving
time and a 34.85% reduction in planning path length. In an obstacle-free environment,
where the optimal solution is a straight-line distance from the starting point to the end point,
the planning route generated by the APF-D3QNPER algorithm exhibits closer alignment
with a straight line, resulting in improved performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 25

Figure 5. Five-wheel accessibility experiment path.

As can be seen from Tables 7 and 8, as well as Figure 5, in the five rounds of random

environments, the APF-D3QNPER algorithm (Algorithm 5) achieved an average driving

time of 5.342 s and an average planning path length of 31.978 m. When compared with

Algorithm 4, the APF-D3QNPER algorithm demonstrated a 41.16% reduction in driving

time and a 34.85% reduction in planning path length. In an obstacle-free environment,

where the optimal solution is a straight-line distance from the starting point to the end

point, the planning route generated by the APF-D3QNPER algorithm exhibits closer align-

ment with a straight line, resulting in improved performance.

Table 8. Static obstacle points information.

 Static Obstacle Number

 1 2 3 4 5

Coordinate (m) (4.0, 1.0) (3.8, 1.0) (−10.0, −8.0) (−10.0, 4.0) (7.0, 2.0)

3.2.2. Obstacle Environment Scenarios

In an obstacle-free environment, the APF-D3QNPER algorithm demonstrates a supe-

rior performance compared to other DQN and its derived algorithms. It achieves higher

reward values in shorter training times and exhibits relatively low total loss during the

training process. To further evaluate the obstacle avoidance ability of the APF-D3QNPER

algorithm, a comparison is made with Algorithm 4. By comparing the performance of the

APF-D3QNPER algorithm with Algorithm 4, we can verify the effectiveness of the APF-

D3QNPER algorithm in terms of obstacle avoidance.

Figure 5. Five-wheel accessibility experiment path.

Table 8. Static obstacle points information.

Static Obstacle Number

1 2 3 4 5
Coordinate (m) (4.0, 1.0) (3.8, 1.0) (−10.0, −8.0) (−10.0, 4.0) (7.0, 2.0)

3.2.2. Obstacle Environment Scenarios

In an obstacle-free environment, the APF-D3QNPER algorithm demonstrates a supe-
rior performance compared to other DQN and its derived algorithms. It achieves higher
reward values in shorter training times and exhibits relatively low total loss during the
training process. To further evaluate the obstacle avoidance ability of the APF-D3QNPER
algorithm, a comparison is made with Algorithm 4. By comparing the performance of
the APF-D3QNPER algorithm with Algorithm 4, we can verify the effectiveness of the
APF-D3QNPER algorithm in terms of obstacle avoidance.

In this simulation, the static obstacle is placed at a fixed position, as indicated in
Table 8. The dynamic obstacle also has a fixed starting position but follows a random
driving path. The minimum distance between obstacles is maintained at 5 m apart. To
assess the obstacle avoidance ability of the algorithm, five rounds of tests are conducted.

Table 9 shows dynamic obstacle points information.

Appl. Sci. 2023, 13, 10056 15 of 21

Table 9. Dynamic obstacle points information.

Environment Coordinate (m) Dynamic Obstacle Number

1 2 3 4 5

Env 1
cc −9.099 2.012 −13.483 0.199 −10.104
y −11.562 10.575 −11.825 −5.842 −0.648

Env 2
x −4.105 −5.356 1.036 −11.294 2.471
y −1.913 5.383 5.106 −3.613 −7.456

Env 3
x 9.870 1.162 5.208 −4.766 1.636
y 10.960 6.508 −10.065 −6.276 11.270

Env 4
x −10.723 13.674 14.438 11.899 2.262
y −8.629 −2.413 1.724 −11.664 −12.032

Env 5
x 6.089 −5.218 −13.275 9.756 1.148
y −6.932 3.602 −8.044 5.578 14.735

Table 10 shows dynamic obstacle points information.

Table 10. Dynamic obstacle points information.

Environment Coordinate (m) Dynamic Obstacle Number

6 7 8 9 10

Env 1
x −7.417 −11.573 −14.959 −5.253 14.099
y −3.343 6.833 7.881 −11.140 −3.405

Env 2
x 2.551 8.424 9.998 −9.033 9.428
y 10.639 8.505 −7.697 8.490 −12.164

Env 3
x 0.562 6.270 6.427 −13.812 12.791
y −10.467 11.200 7.159 2.218 2.460

Env 4
x 5.577 8.347 −14.126 10.805 14.843
y 2.145 5.429 5.661 −8.730 5.579

Env 5
x −11.071 8.007 11.488 −14.740 −12.999
y 11.938 1.794 −7.051 11.176 −1.302

The tests include five sets of test environments. We tested each environment for
20 rounds, took the average of the test results, and compared the planning time and
planning path length of Algorithms 4 and 5 in the five test environments, as shown in
Tables 11 and 12.

Table 11. Average planning time.

Env 1 (s) Env 2 (s) Env 3 (s) Env 4 (s) Env 5 (s)

Algorithm 4 16.753 13.705 9.011 10.362 12.854
Algorithm 5 6.161 9.355 10.476 9.194 11.643

Table 12. The average length of the planned path.

Env 1 (m) Env 2 (m) Env 3 (m) Env 4 (m) Env 5 (m)

Algorithm 4 39.753 52.673 40.101 54.611 43.505
Algorithm 5 29.344 48.182 31.453 48.134 33.324

In the conducted test, the APF-D3QNPER algorithm achieved an average driving
time of 9.365 s and an average driving path length of 38.082 m. When compared to
Algorithm 4, the APF-D3QNPER algorithm exhibited a 25.23% reduction in driving time
and a 17.44% reduction in planning path length. During the experiment, collisions between
autonomous vehicles occurred due to the presence of a large number of obstacles and their
random movements, resulting in planning failures. The failure rate of obstacle avoidance
serves as a crucial indicator to evaluate the obstacle avoidance ability of autonomous
vehicles. Table 12 provides the number of failures for Algorithms 4 and 5 across five
different environments.

Appl. Sci. 2023, 13, 10056 16 of 21

As shown in Table 13, in the obstacle environment, the overall average failure rate of
algorithm 4 is 13%, and the overall average failure rate of Algorithm 5 is 2%, which has a
relatively obvious improvement in obstacle avoidance ability.

Table 13. Failure times of path planning.

Env 1 (Times) Env 2 (Times) Env 3 (Times) Env 4 (Times) Env 5 (Times)

Algorithm 4 3 3 5 1 2
Algorithm 5 1 0 0 0 1

3.2.3. Dynamic and Complex Environmental Planning Scenarios

To further validate the generalization ability of the APF-D3QNPER algorithm and en-
sure its effectiveness in avoiding diverse obstacles within unknown complex environments,
this study will conduct simulations in a complex dynamic environment. This environment
will include three dynamic obstacles representing people walking and two static obstacles
representing fixed objects. Additionally, the number of walls will be increased to simu-
late a wall-filled environment. The performance of the APF-D3QNPER algorithm will be
compared with traditional map-based path planning algorithms to evaluate its planning
effectiveness and efficacy in such scenarios.

This article employs a fixed environment map with dimensions of 15 m × 15 m. The
starting positions of the dynamic obstacles are consistent across the environments, while
their driving paths are randomized. The positions of the static obstacles vary in the three
different environments. The dynamic obstacles maintain a fixed speed of 0.5 m/s, while
the maximum driving speed of the autonomous vehicle is set at 1 m/s, with an angular
speed of 0.5 rad/s. To ensure statistical robustness, each group of three environments is
tested twenty times, and the average results are taken as a reference. The complex dynamic
simulation environment is illustrated in Figure 6, and the positions of the three environment
groups can be found in Tables 14 and 15.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 25

Figure 6. Complex dynamic simulation environment.

Table 14. Static obstacle points information.

Environment Number Obstacle 1 Coordinates (m) Obstacle 2 Coordinates (m)

1 None None

2 (1.378, 0.743) (1.221, −2.801)

3 (2.462, −3.803) (−0.749, 0.336)

Table 15. List of dynamic obstacle points.

Dynamic Obstacle Number Coordinate (m)

1 (−0.482, 3.881)

2 (2.028, −1.370)

3 (−1.258, −5.761)

The path planning results are shown in Tables 16–18.

Table 16. The average length of planned paths between this algorithm and traditional algorithms.

 Env 1 (m) Env 2 (m) Env 3 (m)

Algorithm 4 26.433 26.543 24.278

Algorithm 5 25.233 25.512 24.459

Algorithm 6 26.122 25.389 24.513

Algorithm 7 24.183 25.329 22.627

Table 17. Planning time between this algorithm and traditional algorithms.

 Env 1 (s) Env 2 (s) Env 3 (s)

Algorithm 4 10.542 13.564 7.732

Algorithm 5 9.481 12.571 7.198

Algorithm 6 43.418 44.257 40.079

Algorithm 7 33.142 32.241 38.513

Table 18. Failure times of algorithm path planning.

 Env 1 (times) Env 2 (times) Env 3 (times)

Algorithm 4 3 4 3

Algorithm 5 1 1 0

Algorithm 6 6 5 7

Algorithm 7 5 5 6

Figure 6. Complex dynamic simulation environment.

Table 14. Static obstacle points information.

Environment Number Obstacle 1 Coordinates (m) Obstacle 2 Coordinates (m)

1 None None
2 (1.378, 0.743) (1.221, −2.801)
3 (2.462, −3.803) (−0.749, 0.336)

The algorithm proposed in this article builds upon the foundation of Algorithm 4 and
further enhances the planning effectiveness. In each environment, the average planning
length is approximately 25.07 m, and the average path planning time is 9.75 s. These results
demonstrate that the algorithm achieves shorter planning lengths and faster planning times
compared to other algorithms. Additionally, the algorithm exhibits fewer errors in terms of

Appl. Sci. 2023, 13, 10056 17 of 21

planning failures. Specifically, when compared to Algorithm 4, algorithm 5 showcases a
75.19% reduction in the failure rate, indicating a significant performance improvement. As
a result, the overall planning effect of the algorithm presented in this article demonstrates
clear advantages over alternative approaches.

Table 15. List of dynamic obstacle points.

Dynamic Obstacle Number Coordinate (m)

1 (−0.482, 3.881)
2 (2.028, −1.370)
3 (−1.258, −5.761)

The path planning results are shown in Tables 16–18.

Table 16. The average length of planned paths between this algorithm and traditional algorithms.

Env 1 (m) Env 2 (m) Env 3 (m)

Algorithm 4 26.433 26.543 24.278
Algorithm 5 25.233 25.512 24.459
Algorithm 6 26.122 25.389 24.513
Algorithm 7 24.183 25.329 22.627

Table 17. Planning time between this algorithm and traditional algorithms.

Env 1 (s) Env 2 (s) Env 3 (s)

Algorithm 4 10.542 13.564 7.732
Algorithm 5 9.481 12.571 7.198
Algorithm 6 43.418 44.257 40.079
Algorithm 7 33.142 32.241 38.513

Table 18. Failure times of algorithm path planning.

Env 1 (Times) Env 2 (Times) Env 3 (Times)

Algorithm 4 3 4 3
Algorithm 5 1 1 0
Algorithm 6 6 5 7
Algorithm 7 5 5 6

The planning results of Algorithms 4–7 in the three environments are shown in
Figures 7–10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 25

The algorithm proposed in this article builds upon the foundation of Algorithm 4 and

further enhances the planning effectiveness. In each environment, the average planning

length is approximately 25.07 m, and the average path planning time is 9.75 s. These re-

sults demonstrate that the algorithm achieves shorter planning lengths and faster plan-

ning times compared to other algorithms. Additionally, the algorithm exhibits fewer er-

rors in terms of planning failures. Specifically, when compared to Algorithm 4, algorithm

5 showcases a 75.19% reduction in the failure rate, indicating a significant performance

improvement. As a result, the overall planning effect of the algorithm presented in this

article demonstrates clear advantages over alternative approaches.

The planning results of Algorithms 4–7 in the three environments are shown in Fig-

ures 7–10.

Figure 7. Algorithm 4 planning results.

Figure 7. Algorithm 4 planning results.

Appl. Sci. 2023, 13, 10056 18 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 25

Figure 8. Algorithm 5 planning results.

Figure 8. Algorithm 5 planning results.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 25

Figure 9. Algorithm 6 planning results.

Figure 9. Algorithm 6 planning results.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 25

Figure 10. Algorithm 7 planning results.

In Figures 7–10, the visualization of the complex dynamic environment is depicted.

The black squares represent dynamic obstacles, while the wooden squares represent static

obstacles. The blue dots represent the simulation model of the autonomous vehicle, and

the green dots indicate the position of the end point. The red paths represent the driving

path of the autonomous vehicle, while the blue, green, and yellow paths represent the

driving paths of dynamic obstacles. In summary, when considering a complex dynamic

environment, map-based path planning algorithms demonstrate satisfactory obstacle

avoidance capabilities for static obstacles within the map. However, they often struggle

with avoiding dynamic obstacles, resulting in longer planning times and a higher likeli-

hood of planning failures. On the other hand, the algorithm proposed in this article exhib-

its significant advantages in avoiding both static and dynamic obstacles. It also achieves

shorter planning times, making it better suited for real-world planning scenarios.

In these obstacle scenarios, the start point and the end point used in this paper are all

randomly generated coordinate values, and the walking paths of the dynamic obstacles

are randomized. During the testing process, the unmanned vehicles using the APF-

D3QNPRE algorithm can avoid all the obstacles and arrive at the end point smoothly,

which fully demonstrates the generalization ability of the APF-D3QNPRE algorithm.

4. Conclusions

At present, traditional path planning algorithms for autonomous vehicles heavily

rely on high-precision maps to generate routes. However, in obstacle-free and expansive

environments, the mapping results may be inadequate, leading to suboptimal or even

non-feasible driving paths. Additionally, conventional DQN DRL algorithms tend to con-

verge slowly or fail to converge during training. To address these challenges, this article

presents the APF-D3QNPER algorithm along with an improved network structure and an

appropriate reward function. The algorithm is evaluated through simulation experiments

and further validated by implementing it in a real autonomous vehicle system to assess

its performance in unknown environments. The results demonstrate the algorithm’s su-

periority and its potential for practical applications.

The contributions and innovations of this paper include the following:

(1) To enhance the convergence ability of the traditional DRL algorithm, this study in-

troduces a modified approach for assigning rewards to experience samples during

the experience replay phase. Specifically, the TD error and a weighted sum are em-

ployed as sampling probabilities for prioritized experience sampling. This prioritiza-

tion method improves the overall convergence performance of the algorithm.

(2) By integrating an action output method based on the APF algorithm with the

D3QNPER algorithm, this study achieves improved convergence speed, as well as

enhanced obstacle avoidance and generalization capabilities for autonomous vehi-

cles operating in complex dynamic environments.

Figure 10. Algorithm 7 planning results.

In Figures 7–10, the visualization of the complex dynamic environment is depicted.
The black squares represent dynamic obstacles, while the wooden squares represent static
obstacles. The blue dots represent the simulation model of the autonomous vehicle, and the
green dots indicate the position of the end point. The red paths represent the driving path
of the autonomous vehicle, while the blue, green, and yellow paths represent the driving
paths of dynamic obstacles. In summary, when considering a complex dynamic environ-
ment, map-based path planning algorithms demonstrate satisfactory obstacle avoidance
capabilities for static obstacles within the map. However, they often struggle with avoiding
dynamic obstacles, resulting in longer planning times and a higher likelihood of planning
failures. On the other hand, the algorithm proposed in this article exhibits significant
advantages in avoiding both static and dynamic obstacles. It also achieves shorter planning
times, making it better suited for real-world planning scenarios.

In these obstacle scenarios, the start point and the end point used in this paper are all
randomly generated coordinate values, and the walking paths of the dynamic obstacles are
randomized. During the testing process, the unmanned vehicles using the APF-D3QNPRE
algorithm can avoid all the obstacles and arrive at the end point smoothly, which fully
demonstrates the generalization ability of the APF-D3QNPRE algorithm.

Appl. Sci. 2023, 13, 10056 19 of 21

4. Conclusions

At present, traditional path planning algorithms for autonomous vehicles heavily
rely on high-precision maps to generate routes. However, in obstacle-free and expansive
environments, the mapping results may be inadequate, leading to suboptimal or even
non-feasible driving paths. Additionally, conventional DQN DRL algorithms tend to
converge slowly or fail to converge during training. To address these challenges, this article
presents the APF-D3QNPER algorithm along with an improved network structure and an
appropriate reward function. The algorithm is evaluated through simulation experiments
and further validated by implementing it in a real autonomous vehicle system to assess
its performance in unknown environments. The results demonstrate the algorithm’s
superiority and its potential for practical applications.

The contributions and innovations of this paper include the following:

(1) To enhance the convergence ability of the traditional DRL algorithm, this study intro-
duces a modified approach for assigning rewards to experience samples during the
experience replay phase. Specifically, the TD error and a weighted sum are employed
as sampling probabilities for prioritized experience sampling. This prioritization
method improves the overall convergence performance of the algorithm.

(2) By integrating an action output method based on the APF algorithm with the D3QNPER
algorithm, this study achieves improved convergence speed, as well as enhanced ob-
stacle avoidance and generalization capabilities for autonomous vehicles operating in
complex dynamic environments.

(3) Adding an LSTM network to the state feature extraction network and inputting state
data between several frames before and after into the LSTM network simultaneously
further improves its adaptability in unknown environments and enhances its spa-
tiotemporal sensitivity to the environment.

This paper validates the effectiveness of the APF-D3QNPER algorithm through simu-
lation experiments. Currently, the action output of the algorithm is discrete with multiple
values. In future research, the consideration of continuous actions can be explored to
achieve smoother driving paths. For unmanned vehicles or small unmanned mobile robots,
the limited movement output will affect their maneuvering performance seriously. Con-
tinuous action can make the path smoother, reduce the jitter generated by the movement
and improve the comfort level, further improve the obstacle avoidance ability, and passing
performance, and protect the safety of the vehicle carrying people or objects. The D3QNPRE
algorithm is an improved algorithm based on the DQN, which outputs a limited Q-value,
and therefore cannot output continuous action; so, in the subsequent improvement process,
the combination of the policy function and the value function should be considered for the
deep reinforcement learning algorithm to solve it. Additionally, conducting experiments
in real-world environments can provide further insights and validation. In the future, the
APF-D3QNPRE algorithm can be applied to multiple domains in real-world scenarios. In
the field of autonomous vehicles, it can help autonomous vehicles with more accurate
path planning and decisions, enabling them to drive safely in different traffic situations,
avoid accidents, and choose the best route more efficiently. In the field of drones, they can
be used to plan the flight paths of drones so that they can accomplish tasks in complex
environments, such as search and rescue, agricultural inspections, and cargo transportation.
In the fields of logistics and warehousing, it can be used to optimize the transportation
path of goods and the operation process inside the warehouse to improve efficiency and
reduce costs. In the field of intelligent robots, it helps robots to perform tasks in various
environments, such as cleaning, food delivery, medical assistance, etc., while avoiding ob-
stacles and interacting with human users. Moreover, while the DRL algorithm introduced
in this paper primarily utilizes value functions for training, future research can explore
incorporating methods based on policy functions or a combination of policy functions
and value functions. These approaches have the potential to enhance the algorithm’s
adaptability to different environmental conditions.

Appl. Sci. 2023, 13, 10056 20 of 21

Author Contributions: Conceptualization, H.H.; methodology, Y.W.; writing—original draft, W.T.;
formal analysis, J.Z.; review and editing, Y.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China under Grant 2020YFB1713300 and the National Natural Science Foundation of China 72274024.

Institutional Review Board Statement: The study did not involve humans or animals.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: The data is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, X.; Gao, M.; Wang, X. A Summary of the current situation of driverless vehicles in the world. Comput. Knowl. Technol. 2019,

15, 189–190.
2. Wang, J.; Gao, J.; Zhong, X. Analysis of the development and problems of driverless vehicles. Automob. Parts 2020, 1, 89–91.
3. Jin, Y. Minimum time planning model of robot path for avoiding obstacles in the static field. Mach. Tool Hydraul. 2018, 4, 88–93.
4. Qi, Z. Study on Lane-Changing and Overtaking Control Method of Autonomous Vehicle; D. Yanshan University: Qinhuangdao, China,

2017.
5. Yu, Z.; Li, Y.; Xiong, L. A review of the motion planning problem of autonomous vehicle. J. Tongji Univ. (Nat. Sci.) 2017,

45, 1150–1159.
6. Abdallaoui, S.; Aglzim, E.; Chaibet, A.; Kribèche, A. Thorough review analysis of safe control of autonomous vehicles: Path

planning and navigation techniques. Energies 2022, 15, 1358. [CrossRef]
7. Cao, H.; Song, X.; Huang, Z.; Pan, L. Simulation research on emergency path planning of an active collision avoidance system

combined with longitudinal control for an autonomous vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 1624–1653.
[CrossRef]

8. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path planning and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints. IEEE Trans. Veh. Technol. 2016, 66, 952–964. [CrossRef]

9. Grandia, R.; Jenelten, F.; Yang, S.; Farshidian, F.; Hutter, M. Perceptive Locomotion through Nonlinear Model-Predictive Control.
arXiv 2022, arXiv:2208.08373. [CrossRef]

10. Domina, Á.; Tihanyi, V. LTV-MPC approach for automated vehicle path following at the limit of handling. Sensors 2022, 22, 5807.
[CrossRef]

11. Wang, X.; Liu, J.; Peng, H.; Qie, X.; Zhao, X.; Lu, C. A simultaneous planning and control method integrating APF and MPC to
solve autonomous navigation for USVs in unknown environments. J. Intell. Robot. Syst. 2022, 105, 36. [CrossRef]

12. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386.
13. Smart, W.D.; Kaelbling, L.P. Practical reinforcement learning in continuous spaces. In Proceedings of the Seventeenth International

Conference on Machine Learning, ICML, San Francisco, CA, USA, 29 June–2 July 2000; pp. 903–910.
14. Recht, B. A tour of reinforcement learning: The view from continuous control. Annu. Rev. Control Robot. Auton. Syst. 2019,

2, 253–279. [CrossRef]
15. Dcrhami, V.; Majd, V.J.; Ahmadabadi, M.N. Fuzzy Sarsa Learning and the proof of the existence of its stationary points. Asian J.

Control 2008, 10, 535–549. [CrossRef]
16. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
17. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; De Maria, A.; Panneershelvam, V.; Suleyman, M.; Beattie, C.;

Petersen, S.; et al. Massively parallel methods for deep reinforcement learning. arXiv 2015, arXiv:1507.04296.
18. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016. [CrossRef]
19. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning. PMLR, New York, NY, USA, 19–24 June 2016;
pp. 1995–2003.

20. Anschel, O.; Baram, N.; Shimkin, N. Averaged-DQN: Variance reduction and stabilization for deep reinforcement learning. In
Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 176–185.

21. Dong, Y.; Yang, C.; Dong, Y.; Qu, X.; Xiao, H.; Wang, Z. Robot Path Planning based on improved DQN. Comput. Eng. Des. 2021,
42, 552–558.

22. Hausknecht, M.; Stone, P. Deep recurrent Q-learning for partially observable MDPs. In Proceedings of the Association for the
Advance of Artificial Intelligence Fall Symposium, Palo Alto, CA, USA, 23 July 2015; pp. 29–37.

23. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.

https://doi.org/10.3390/en15041358
https://doi.org/10.1177/0954407015618533
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1109/TRO.2023.3275384
https://doi.org/10.3390/s22155807
https://doi.org/10.1007/s10846-022-01663-8
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.1002/asjc.54
https://doi.org/10.1609/aaai.v30i1.10295

Appl. Sci. 2023, 13, 10056 21 of 21

24. Liu, P. Research on Optimization Method of Deep Reinforcement Learning Experience Replay; D. China University of Mining and
Technology: Jiangsu, China, 2021.

25. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019,
9, 3057. [CrossRef]

26. Tai, L.; Liu, M. Towards cognitive exploration through deep reinforcement learning for mobile robots. arXiv 2016, arXiv:1610.01733.
27. Lei, X.; Zhang, Z.; Dong, P. Dynamic path planning of unknown environment based on deep reinforcement learning. J. Robot.

2018, 2018, 5781591. [CrossRef]
28. Tiong, T.; Saad, I.; Teo, K.T.K.; bin Lago, H. Autonomous vehicle driving path control with deep reinforcement learning. In

Proceedings of the IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
8–11 March 2023. [CrossRef]

29. Du, Y.; Chen, J.; Zhao, C.; Liu, C.; Liao, F.; Chan, C.Y. Comfortable and energy-efficient speed control of autonomous vehicles on
rough pavements using deep reinforcement learning. Transp. Res. Part C Emerg. Technol. 2022, 134, 103489. [CrossRef]

30. Li, G.; Yang, Y.; Li, S.; Qu, X.; Lyu, N.; Li, S.E. Decision making of autonomous vehicles in lane change scenarios: Deep
reinforcement learning approaches with risk awareness. Transp. Res. Part C Emerg. Technol. 2022, 134, 103452. [CrossRef]

31. Pop, A.; Pop, N.; Tarca, R.; Lung, C.; Sabou, S. Wheeled mobile robot H.I.L. interface: Quadrature encoders emulation with a
low cost dual-core microcontroller. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric
Systems (EMES), Oradea, Romania, 9–10 June 2023; pp. 1–4. [CrossRef]

32. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree
Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

33. Zhang, H.; Lin, W.; Chen, A. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
34. Hart, P.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app9153057
https://doi.org/10.1155/2018/5781591
https://doi.org/10.1109/CCWC57344.2023.10099122
https://doi.org/10.1016/j.trc.2021.103489
https://doi.org/10.1016/j.trc.2021.103452
https://doi.org/10.1109/EMES58375.2023.10171736
https://doi.org/10.1016/j.asoc.2020.106960
https://doi.org/10.3390/sym10100450
https://doi.org/10.1109/TSSC.1968.300136

	Introduction
	APF-D3QNPER Algorithm Design
	Design Ideas
	Experience Sample Return Mechanism Considering Sample Priority
	Adaptive Greedy Factors
	APF-Based Action Output
	Network Structure of Improved DQN Algorithm

	Simulation
	Simulation Environment
	State and Action Space Definition
	Reward Function Definition
	Algorithm Parameter Settings

	Simulation
	Non-Obstruction Scenarios
	Obstacle Environment Scenarios
	Dynamic and Complex Environmental Planning Scenarios

	Conclusions
	References

