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Abstract: In addressing the challenge of tracking moving targets at sea, our focus has been directed
towards the development of a reconstruction methodology founded upon satellite orbital manoeuvres.
This endeavour has led us to devise a predictive model for manoeuvres within a geographic coor-
dinate system, alongside the creation of a three-phase orbital manoeuvre model. A Non-dominant
Sorting Adaptive Memetic (NSAM) algorithm is proposed in this paper, which is a two-layer multi-
objective optimization algorithm that retains the advantages of evolutionary algorithms based on the
population’s evolution and has an excellent local optimization ability of local search algorithms. The
proposed algorithm can be used to solve multi-objective optimization problems. By comparing the
target observation results before and after the satellite reconstruction simulation, it can be concluded
that the orbital manoeuvring can effectively improve the observation probability and observation
duration of the target at a certain speed. The orbital manoeuvre model created in this paper provides
a certain methodical support for the tracking problem of moving targets at sea.

Keywords: multi-objective optimization; memetic algorithm; moving target tracking;
constellation reconstruction

1. Introduction

Since the beginning of the 21st century, the competition in the global marine field
has become increasingly fierce, and the maritime issues are complex and changeable. A
question of how to speed up the construction of a maritime power and build a strong
maritime force has become the development theme of all countries. With the development
of modern information war, space has become the commanding height of reconnaissance
and surveillance. The reasonable use of satellites to carry out maritime target tracking will
enable the countries to take the lead in maritime military activities; thus, the maritime mov-
ing target tracking technology has become the focus of all the major countries. Compared
with land-based, sea-based, and air-based detection means, space-based detection satellites
have the advantages of wider coverage area, higher security, stronger concealment, and no
restriction of national boundaries [1].

Berry [2] defined the three phases of maritime moving target tracking as “search,
localization, and tracking”, and realized the tracking task of maritime moving targets
through the scheduled planning of satellites in each task phase. Xu [3] obtained the optimal
moving target tracking scheme by selecting and scheduling satellite observation strips and
transit windows based on a target’s prior information. Automatic Identification System
(AIS) assisted satellite images are used by Liu [4] to design a multi-feature track association
algorithm based on Iterative Closest Point (ICP) and Global Nearest Neighbor (GNN),
which provide a new method for tracking moving targets at sea. Shand [5] has realized
the target tracking by combining satellite sequence images with information on a ship’s
position. A multi-channel and multi-target search method, based on reinforcement learning,
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was proposed by Li [6] to solve the problem of satellite searching for moving targets at
sea. A nine-cell adjacent observation field of view algorithm for tracking moving targets of
high-orbit satellites was designed by Huang [7] to improve the utilization of the observation
field of view and save a number of satellite attitude manoeuvres. The sea manoeuvring
target has the characteristics of a wide range of movement and strong manoeuvrability.
Due to the limitation of the orbit period of the satellite movement, the overhead imaging
time cannot be controlled freely; thus, it is very difficult for space-based detection satellites
to track and monitor manoeuvring targets at sea. Missing imaging opportunity may lead to
the failure of the tracking task. Under this condition, if the satellite has the ability of in-orbit
manoeuvring for emergency reconstruction of satellite constellation according to mission
requirements, the moving target tracking task will be better completed. Furthermore,
Yuanzhuo Ci [8] proposed to use a “smart satellite” to solve the problem of tracking
moving targets. Yifan Xu [3] assumed that it is necessary to establish a joint scheduling
technology for moving target surveillance at sea suitable for smart satellites, since the
application of “smart” satellites increases the complexity of the scheduling problem. A
manoeuvring target search strategy based on satellite reconstruction phase-modulated
networking is proposed by Zhao [9]. Morgan [10] proposed to use the Biased Random Key
Genetic Algorithm (BRKGA) to optimally solve the problem of moving target tracking at
sea, based on satellite reconstruction.

From previous studies, it can be seen that it is a popular trend to better solve the mov-
ing target observation problem using satellite constellation reconfiguration. In addition,
Weck [11] proposed the use of an auction algorithm for satellite constellation reconfigura-
tion. Paek [12] used genetic algorithms to optimize satellite constellation reconfiguration,
while a binary certificate linear programming formulation is used by Lee [13] to optimize
the constellation reconstruction process. Application of physical planning to reconfigurable
constellations for disaster observations is introduced by [14]. In general, the multi-objective
optimization algorithm is one of the best methods to solve the constellation reconstruction
problem at present, but the problem that it can easily fall into the local optimum cannot
be ignored.

In this paper, a constellation reconfiguration method based on satellite orbit manoeu-
vring to cope with the task of tracking moving targets at sea is proposed. The NSAM
algorithm is designed to solve the local optimal problem and realize the constellation
reconstruction optimization. In Section 2, the motion prediction model of the moving target
at sea will be introduced. In Section 3, the three-phase orbital manoeuvring method is
proposed, and its dynamic equation is given. A new multi-objective memetic algorithm
based on the NSAM is introduced in detail in Section 4. In Section 5, taking ship target
tracking at sea as an example, the effectiveness of the proposed method is proved by
comparing non-moving satellite tracking with moving target observation at sea by means
of simulation. Finally, the main findings are summarized in Section 6.

2. Manoeuvre Prediction Model for Moving Targets at Sea
2.1. Basis for Model Selection

At present, the prediction methods for moving target motion trajectory can be divided
into data-driven and behaviour-driven moving target trajectory prediction methods [15].
The data-driven moving target trajectory prediction method is used to explore the hidden
target behavioural characteristics behind the data using massive historical data and pre-
dicting the target’s movement trend by fusing and matching with the current location data.
There are four main categories of data-driven moving target trajectory prediction methods:
probabilistic statistics, neural networks, deep learning, and hybrid models. The behaviour-
driven moving target trajectory prediction method is used to predict the trajectory of a
certain period of time in the future according to the relevant motion characteristics of the
moving target. There are two main categories of behaviour-driven moving target trajectory
prediction methods: kinetic modelling and intent recognition. Data-driven methods based
on massive historical trajectory data have greater potential for application in long-time
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trajectory dynamics prediction. The behaviour-driven approach is more explanatory and
novel, but it requires too much information on the environment and target state and has the
best results only in specific scenarios. Since the environmental complexity is large and the
target state uncertainty is strong in the process of observing moving targets at sea; hence,
this paper adopts a data-driven moving target trajectory prediction method based on data.

The typical data-driven marine moving target motion prediction methods mainly
include the dead estimation method, curve fitting method, and typical path method. The
navigation position prediction method has higher requirements for the prior information
of a manoeuvring target and is more accurate in judging the potential area of the target.
Therefore, the navigation position prediction method is adopted in this section to estab-
lish a manoeuvring target prediction model. Next, model inference is performed in two
dimensions, a two-dimensional planar coordinate system and a three-dimensional spatial
coordinate system. Three-dimensional spatial model reasoning is more complicated, but
the reasoning idea is basically the same as that in the two-dimensional coordinate system.
The predictive model reasoning in the two-dimensional planar coordinate system is first
extended to the three-dimensional spatial coordinate system after the reasoning is sufficient.

2.2. Manoeuvring Prediction Model of Moving Target in Three-Dimensional Space
Coordinate System

Refer to the formula in [3]. The initial state of the moving target is known as initial
position γ(lonγ, latγ), target velocity V, course angle β, velocity range ±∆V, and course
angle range ±∆β. The possible movement area is a fan-shaped area in which movement
time is ∆t, with the initial position as the center of the circle; with (V − ∆V) · ∆t and
and (V + ∆V) · ∆t as the upper and lower boundary; and (β− ∆β, β + ∆β) as the azimuth
range. Since the target velocity v and course angle α follow the Gaussian distribution:

v ∼ N
(

V, σ2
V

)
, α ∼ N

(
β, σ2

V

)
(1)

the target speed and course angle probability density can be expressed as:
f (v) = 1√

2πσV
e
− (v−1)2

2σ2
V

f (α) = 1√
2πσβ

e
− (α−β)2

2σ2
β

(2)

Build the polar equation, set the movement time ∆t, distance of movement r, and
course angle α. The joint probability density function with r and α can be expresses
as follows:

f (r, α) =
1√

2πσr
e
− (r−1)2y2

2σ2
ε · 1√

2πσβ

e
− (σ−β)2

2σσβ (3)

It can also be converted to rectangular coordinate equation as follows:

f (x, y) =
1

2πσrσβ
exp

(
−∆l2

2σ2
r
− ∆θ2

2σ2
β

)
(4)

The target deviates from the mean distance ∆l and deviation from the mean position
angle ∆θ can be expresses as follows:{

∆l =
∣∣∣√x2 + y2 −V∆t

∣∣∣
∆θ =

∣∣arctan y
x − β

∣∣ (5)
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Set the target position is (xn, yn) at tn. After ∆t, the motion distribution probability
density function of moving to the R region at tn+1 is established as follows:

P((xn, yn), R, tn+1 − tn) =
1

2πσrσβ

∫ ∫
R

exp(−∆l2

2σ2
r
− ∆θ2

2σ2
β

)dxn+1dyn+1 (6)

2.3. Manoeuvring Prediction Model of Moving Target in Two-Dimensional Space
Coordinate System

In reality, the environment of the moving target at sea is the Earth’s surface; therefore,
it is necessary to extend the prediction model to the three-dimensional coordinate system.
As shown in Figure 1, set the initial position at tn as A(xn, yn, zn) and the position at tn+1
as B(xn+1, yn+1, zn+1). The spherical angle ∠CAD is the mean course angle β; arc length ÂC
is the mean distance of the moving target ÂC = V(tn+1 − tn). The target deviates from
the mean distance ∆l and deviation from the mean position angle ∆θ are determined by
geometric relations:

∆l =
∣∣∣∣ _AB

∣∣∣∣− ∣∣∣∣ _
AC
∣∣∣∣ = RCarccos

(
xn+1xn + yn+1yn + zn+1zn

R2
C

)
−V(tn+1 − tn) (7)

∆θ = ∠CAD−∠BAD (8)
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Therefore, in the three-dimensional space coordinate system, the probability that the
moving target moves from position A at tn to position B at tn+1 is established as follows:

Pr(A, B, tn+1 − tn) =
1

2πσrσβ
exp

(
−∆l2

2σ2
r
− ∆θ2

2σ2
β

)
(9)

The probability of target distribution transferred to a certain region can be solved
using integration.

3. Modelling of Three-Phase Orbital Manoeuvring Method
3.1. Initial Orbital Model

For the better functioning of the observation satellite, the low Earth orbit (LEO) was
chosen as the initial orbit. The orbital parameters were downloaded from the UCS Satellite
Database. The selection of constraints is based on the observation target area to ensure that
the orbit covers the latitude region of +/− 20 degrees in the South China Sea, using the
orbital parameters given in Table 1.
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Table 1. Spacecraft orbit parameters.

Parameter Value Unit

Altitude 703 km
Inclination 40 deg
Right ascension of the ascending node at epoch 0 deg
Argument of latitude at epoch 0 deg

During orbital motion, there are many perturbations in LEO of which the J2 term per-
turbation of the Earth’s oblateness is one of the most dominant long-term perturbations [16].
It directly causes long-term changes in the satellite’s Right Ascension of the Ascend-
ing Node (RAAN), Argument of Latitude (AOL), perigee radial angle, and flat perigee
angle [17–19]. For more accurate modelling of orbital motion, the J2 effect should be consid-
ered, while the remaining latitudinal harmonics are more than 100 times smaller than the
J2 perturbation [20]. Therefore, they are not considered in this paper. Other perturbations
include atmospheric drag, third body effects, and solar radiation pressure. Atmospheric
resistance is the most important [21].

Set the preliminary orbit as
.

Ω1, argument of perigee as
.
ω1, average rate of abnormal

change as
.

M1, and average angular velocity of the satellite as n1. The period of the initial
orbit is established as follows:

Tp1 =
2π

n1 +
.

M1 +
.
ω1

(10)

.
Ω1,

.
ω1, and

.
M1 are expressed as the following:

.
ω1 = ξn1

(
4− 5 sin2 i

)
(11)

.
Ω1 = −2ξn1 cos i (12)

.
M1 = −ξn1

(
3 sin2 i− 2

)
(13)

among which ξ = 3R2
e J2

4r2
1

, Re represents the mean radius of the Earth, and J2 = 1.082626

×10−3 [22].

3.2. Three-Phase Orbital Manoeuvring Model

There is a common feature in all previous studies of constellation deployment: energy
fuel consumption minimization was one of the most significant criteria [23]. Therefore,
low-thrust technology is used to reduce the fuel consumption of orbital manoeuvring in this
paper [24]. A three-phase orbital manoeuvre model is used in this paper. The manoeuvring
strategy corresponding to the model is to use the natural orbital motion of the satellite to
achieve the desired changes in the observation of the satellite’s subsatellite points. The
natural disturbance size of satellite orbit is related to the satellite height; therefore, the
disturbance is used to achieve the desired change of satellite orbit and change the satellite
height, to achieve the change of ground orbit. Figure 2 shows the three-phase orbital
manoeuvre model.

• Phase 1: the satellite maintains a constant acceleration using constant low thrust,
causing the satellite orbit to increase or decrease in altitude relative to the initial orbit
to a transfer orbit.

• Phase 2: satellites maintain a constant altitude in transfer orbit by counteracting the
effects of atmospheric drag with thrust.

• Phase 3: the satellite is moved to the desired final altitude by using the same constant
low thrust as in the first phase to give the satellite constant acceleration.
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3.3. Orbital Manoeuvre Parsing

As introduced in Section 3.1, the three-phase manoeuvre is based on perturbations to
achieve desired changes in the satellite orbits. Satellite perturbations will directly cause
long-term changes in the RAAN and AoL. Therefore, analytical expressions are created
by using RAAN and AoL as functions of the total time required for manoeuvring and
the total velocity change (∆V). In order to create a complete analytic formula that can be
solved quickly, it is necessary to consider the long-term orbit disturbance, which mainly
includes four aspects: Earth’s non-spherical gravitational field, additional gravitational
field, atmospheric drag, and disturbance caused by solar radiation [25]. In order to create a
better analytical expression, this paper assumes that the satellite thrust offsets the influence
of atmospheric drag in the first phase of manoeuvring, and the influence of atmospheric
drag is considered in the third phase of manoeuvring. In addition, other disturbances
are ignored since they are far smaller than atmospheric drag disturbances. The analytic
expression obtained is established as follows:

Ωtotal =
∫ a1

a0

dΩ
da

da +
∫ t2

t1

dΩ
dt

dt +
∫ a3

a2

dΩ
da

da (14)

utotal =
∫ a1

a0

du
da

da +
∫ t2

t1

du
dt

dt +
∫ a3

a2

du
da

da (15)

Ωtotal and utotal are representative of the total change in RAAN and AOL:

dΩ
da

= −3nn′R2
e J2

4a2 A
cos i (16)

dΩ
dt

= −3nR2
e J2

2a2 cos(i) (17)

du
da

=
nn’

2A

(
1 +

3R2
e J2

4a2

(
4− 5 sin2 i

))
(18)

du
dt

= n +
3nR2

e J2

4a2

(
4− 5 sin2(i)

)
(19)

Equations (17) and (19) are the expressions for RAAN and AoL over time for the
second stage. Equations (16) and (18) are the expressions of RAAN and AoL as a function
of the satellite half-length axis for the first and third phases, respectively, where J2 is the
second zonal harmonic coefficient of the gravitational coefficient of the Earth, Re is the
mean radius of the Earth, and a is the mean semi-major axis.

The first stage manoeuvre time is established as follows:

t1 =

√
µ
(

a5/2
0
{

20a2
1 + 3J2R2

e
[
2− 3 sin2 i

]}
+ 3a5/2

1 J2R2
e
[
3 sin2 i− 2

]
− 20a5/2

1 a2
0

)
20a5/2

0 a5/2
1 A

(20)
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The speed change of the first stage manoeuvre is established as follows:

∆V1 =

∣∣∣∣√ µ

a1
−
√

µ

a0

∣∣∣∣ (21)

µ is the standard gravity parameter of the Earth. The maneuvering time and velocity
change of the third stage are obtained by replacing a0 and a1 with a2 and a3 in the formula
of manoeuvring time and velocity change of the first stage.

4. Non-Dominant Sorting Adaptive Memetic Algorithm (NSAM)
4.1. Basic Structure of the NSAM

Moscato [26] defined the Memetic Algorithm (MA) in 1989, which was initially im-
proved on the basis of Genetic Algorithm (GA). He combined the GA with local search
to solve the Travelling Salesman Problem (TSP). In recent years, with the successful and
high-performance application of the two-layer search architecture of memetic algorithm
on solving complex real-world problems, the concept of memetic algorithm has attracted
widespread attention from the academic community [27]. Memetic algorithms are no
longer a specific algorithm, but generally refer to a class of population-based heuristics.
Algorithms of this type combine the evolution algorithm with the local search algorithm, so
that it cannot only retain the advantages of the evolutionary algorithm based on population
evolution during operation, but also has the excellent local optimization ability of the local
search algorithm.

The NSAM algorithm is a two-layer modal approach comprised the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and Adaptive Large Neighborhood Search (ALNS).
The two-layer optimization approach not only allows the population to quickly reach the
Pareto frontier using an evolutionary mechanism, but also quickly reproduces progeny
solutions by improving the quality of the searched solutions using the ALNS. Thus, the
generation of local optimal solutions is avoided. The NSGA [28] is a genetic algorithm
based on Pareto optimal concept proposed by Srinivas et al. in 1995. Deb [29] proposed
the NSGA-II algorithm on the basis of this algorithm. The algorithm greatly reduces the
computation time by using fast non-dominated sorting (the elite strategy) to ensure the
excellent individuals can have a higher probability of being retained; the crowding degree
method replaces the fitness sharing strategy to ensure individual diversity in the population.
This makes the NSGA-II algorithm more suitable for solving multi-objective optimization
problems. The ALNS is a heuristic local search method proposed by Pisinger [30] in 2007.
On the basis of the neighbourhood search, this method adds the measurement of operator
effect. By means of roulette, the better operator of destroy and repair will be automatically
selected to optimize the solution.

This two-layer architecture plays a significant role in solving highly complex and
large-scale constellation reconstruction problems. The flow chart of the NSAM is shown in
Figure 3. The algorithm’s code framework is shown in Algorithm 1.

Algorithm 1 NSAM algorithm

Input: target trajectory, satellite parameters, initial population size (IPS), offspring population size (OPS), and
maximum iterations (MaxIter)
Output: elitist solutions (ES)

1 Repeat: generate initial solution
2 According to the input elements to generate initial solutions
3 End: until parent population size = IPS + OPS
4 The solutions were optimized by selection, crossover, and mutation in NSGA− I I
5 Select and update elite solutions with elite strategies in NSGA− I I
6 ALNS: improve the solutions
7 Select destroy operators and repair operators according to the adaptive layer
8 Based on the current elitist solutions, use operators to update populations
9 Combine the offspring solutions and the current elitist solutions
10 Update the elite solutions and update the scores and weights of operators in the adaptive layer
11 End until iteration achieves MaxIter
12 Output
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Output: elitist solutions (ES) 

1 Repeat: generate initial solution 
2 According to the input elements to generate initial solutions 
3 End: until parent population size = IPS + OPS 
4 The solutions were optimized by selection, crossover, and mutation in 𝑁𝑆𝐺𝐴 − 𝐼𝐼 
5 Select and update elite solutions with elite strategies in 𝑁𝑆𝐺𝐴 − 𝐼𝐼 
6 ALNS: improve the solutions 
7 Select destroy operators and repair operators according to the adaptive layer 
8 Based on the current elitist solutions, use operators to update populations 
9 Combine the offspring solutions and the current elitist solutions 

10 Update the elite solutions and update the scores and weights of operators in 
the adaptive layer 

11 End until iteration achieves MaxIter 
12 Output 

Figure 3. Flow chart of NSAM algorithm.

4.2. Design of Destroy Operator and Repair Operator

Destroy operators and repair operators are used to optimize the generated elite popu-
lation. The destroy operator changes the population composition by deleting some target
solutions, while the repair operator takes some solutions from the non-elite solutions to
repair the parent solutions to generate a new population. In this paper, we designed six
kinds of destroy operators and five kinds of repair operators.

4.2.1. Destroy Operators

All destroyed operators are uniformly stored in set B, and three different types of
destroy operators are defined as follows:

R-destroy: randomly selects solutions for the existing population and deletes them.
Max-destroy: calculates the single solution by summing elements, sorts and deletes

the solution with the maximum value.
Rank-destroy: deletes all the solutions whose rank value is not 0.
∆V-destroy: traverses ∆V in the solutions, sorts and deletes the solution with the

maximum ∆V.
Distance-destroy: traverses the distances to the target in the solutions, sorts and deletes

the solution with the maximum mean distance to targets accessed.
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Access-destroy: traverses the targets access time in the solutions, sorts and deletes the
solution with the minimum targets access time.

4.2.2. Repair Operators

Save all non-elite solutions in set F. Solutions are selected from the set F and inserted
into the destroyed population to generate a new population, and five different types of
repair operators are defined as follows:

R-repair: randomly selects several solutions from the set F and inserts them into the
destroyed population.

Min-repair: calculates the single solution by summing elements, sorts and inserts the
solution with the minimum value.

∆V-repair: traverses ∆V in the solutions, sorts and inserts the solution with the
minimum ∆V.

Distance-repair: traverses the distances to the target in the solutions, sorts and inserts
the solution with the minimum mean distance to targets accessed.

Access-repair: traverses the targets access time in the solutions, sorts and inserts the
solution with the maximum targets access time.

4.3. Adaptive Strategy Design and Termination Criterion Design

Six kinds of destroy operators and five kinds of repair operators were designed in
Section 4.2. Each operator has a score and weight, and the score and weight are updated
according to the performance of the operator; thus, affecting the probability of the operator
being selected. The update methods of the operator scores and weight are described as
the following:

Set πd
i and πr

i as the scores of the ith destroy operator and repair operator; ωd
i and ωr

i
as the weight of the ith destroy operator and repair operator. The score of all heuristics is
set to zero at the start of each segment. We set the weights of the destroy operator πd

i = 1
6 ;

the weights of the repair operator are the same as ωr
i =

1
5 . The score is used to judge the

validity of the operator, the weight is used to determine the probability of the operator
being selected, and the weight is updated according to the score of the operator. As for
destroy operators and repair operators, each ϕ times iteration as a stage, and the scores
of all selected operators are updated according to the returns of the new solutions at the
end of each iteration. At the end of each phase, the weights of all operators are updated
according to the scores accumulated by the operators in this stage, and the operator scores
are initialized. The update equation for operator weights is shown:

ωi = (1− ρ)ωi + ρ
πi

∑H
i=1 πi

(22)

where ρ ∈ [0, 1] is the operator weight update coefficient and means the degree to which the
operator is affected by historical data. The operator performance is graded in the iteration
process: the higher the score the better the operator’s performance. The four kinds of
changing score scenarios are set as follows:

If the new solution is better than all the other solutions: σ1.
If the new solution is better than one of the current dominant solutions: σ2.
If the new solution is dominated by the current solution but accepted under certain

criteria: σ3.
If the new solution is inferior and does not satisfy the acceptance criteria: σ4.
If only the optimal solution is accepted in the search process, the risk of falling into

the local optimal will be generated. Therefore, the simulated annealing method is used to
accept the inferior solution with a certain probability. After getting the new weight, the
operator is selected by way of roulette so that the probability of the operator being selected
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is proportional to the weight, and the probability of each operator being selected is shown
as follows:

pi =
ωi

∑H
j=1 ωj

(23)

We defined the maximum number of iterations Maxlter at the beginning of the evolu-
tion which is the unique termination criterion of the algorithm.

5. Simulation Experiments
5.1. Parameter Setting

The simulation experiment background design: 27 October 2022 00 : 00 : 00, The ship
was found at the position (11.7◦ N, 132.0◦ E), and the trajectory of the ship was shown in
Table 2 below:

Table 2. Ship’s location at 0.5 day intervals.

Date Time Latitude Longitude

27 October 2022 00.00 11.7 132.0
27 October 2022 12.00 11.3 131.1
28 October 2022 00.00 11.4 129.9
28 October 2022 12.00 12.1 127.2
29 October 2022 00.00 13.8 124.1
29 October 2022 12.00 13.7 121.7
30 October 2022 00.00 15.4 119.9
30 October 2022 12.00 16.1 118.3
31 October 2022 00.00 15.8 117.2
31 October 2022 12.00 16.8 117.0
1 November 2022 00.00 18.4 116.2
1 November 2022 12.00 19.1 115.9
2 November 2022 00.00 20.4 116.0
2 November 2022 12.00 21.0 115.1
3 November 2022 00.00 21.8 114.2

The 3U CubeSat satellite equipped with an electrospray propulsion system [31] is
selected and the satellite’s parameters are shown in Table 3.

Table 3. Satellite’s physical and orbit parameters.

Parameter Value Unit

Mass 4 kg
Thrust 0.35 mN
The field of view of the satellite diameter 200 km

The parameters of the simulated Earth experiment are shown in Table 4.

Table 4. The Earth’s simulation parameters.

Parameter Value Unit

Mean Earth radius 6371 km
Earth rotation rate 7.29212× 10−5 rad/s
Coefficient of the Earth’s gravitational zonal
harmonic of the second degree 0.00108270 -

Earth’s standard gravitational parameter 3.986× 1014 m3/s2

Flattening factor of Earth 0.00335281 -

The parameter settings of the algorithm are shown in Table 5.
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Table 5. The NSAM’s algorithm parameters.

Parameter Meaning Value

IPS Initial population size 1150
OPS Offspring population size 800
MaxIter Maximum iterations 300

σ1
The score of the new solution is better than
all the other solutions 3

σ2
The score of the new solution is better than
one of the current dominant solutions 2

σ3

The score of the new solution is dominated
by the current solution, but accepted under
certain criteria

1

σ4
The score of the new solution is inferior and
does not satisfy the acceptance criteria 0.5

5.2. Reconfiguration Analysis
5.2.1. Analysis of the Results

A multi-objective optimization using a single satellite for a moving target at sea was
performed and the set of non-dominated solutions obtained is shown in Figure 4. The
dominated solutions obtained through the optimization are shown in Figure 4.
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Many observation schemes are obtained through optimization. It can be concluded
that, we can increase the observation time at the same average observation distance by
increasing the delta-v. Similarly, for the same access time, the target was observed at a much
closer distance by increasing the delta-v. The balance relationship between manoeuvrability,
mean distance to the moving target, and total observation time is obtained.

The observation of moving targets at sea by non-moving satellites and moving satel-
lites is shown in Table 6. Table 6 gives a detailed description of the access situation of the
target. It can be seen that in the case of no manoeuvring of a single satellite, as shown in
the Table 6a, the second target point cannot be observed, and the total observation time of
the target is relatively short. Compared with a non-dominated solution after manoeuvring,
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all the target points can be observed through manoeuvring, and the observation time is
larger when the mean distance difference is small.

Table 6. Comparison between non-manoeuvring and manoeuvring.

(a)

Target Number
Non-Manoeuvring

Delta-V (m/s) Mean Distance
(km)

Total Access Time
(s) Target in View

1 - 85 30 Yes

2 - - - No

3 - 86 10 Yes

4 - 59 40 Yes

5 - 76 50 Yes

Summary 0 m/s 76.5 130 -

(b)

Target Number
Manoeuvring

Delta-V (m/s) Mean Distance
(km)

Total Access Time
(s) Target in View

1 2.06 90 50 Yes

2 0.24 91 30 Yes

3 4.968 84 30 Yes

4 4.172 59 60 Yes

5 0.466 71 60 Yes

Summary 11.91 m/s 79 230 -

5.2.2. Experimental Platform Results Diagram

The results of this paper are verified on the IEAT-C platform. The experimental
platform architecture diagram is shown in the Figure 5.
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Its core components are as follows:
STK: provide satellite and the simulation environment of the Earth, the satellite, and

ground target data and calculated data.
Ray: provide distributed computing capabilities, perform parallel or asynchronous

tasks, and interact with the underlying STK to obtain simulation data.
K8s: underlying computing resource management and application hosting capabilities,

STK components and Ray components are hosted on top of it.
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Web: divided into frontend and backend, providing simulation environment, input
and output interaction of calculation and visualization ability.

Based on the historical trajectory of the moving target, the satellite’s manoeuvring
method is designed to achieve the original design intention of tracking the moving target.
Inputting the manoeuvre parameters of the satellite and the geodetic coordinates of the
target, the NSAM algorithm is used to calculate the maximized access time, minimized
manoeuvre, and shortest access distance of the satellite to the target. According to the
obtained dominant solution, the orbit parameters of the three-phases are obtained on the
simulation platform, as shown in Table 7, while the effect diagram is shown in Figure 6:

Table 7. Three-phase orbit parameters.

Track Name Altitude (km) Inclination (deg)

Right Ascension
of the Ascending
Node at Epoch
(deg)

Argument of
Latitude at Epoch
(deg)

Initial orbit 703 40 0 0

Transfer orbit 720 40 0 0

Final orbit 715 40 0 0
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6. Conclusions

In this paper, a reconfigurable constellation is designed to accomplish the task of track-
ing moving targets at sea. Therefore, the moving target prediction model is used to predict
the trajectory of a moving target at sea. Then, with the consideration of orbital disturbance
and the minimization of fuel consumption, a three-phase orbital manoeuvring method is
designed. The NSAM algorithm is proposed to intelligently generate feasible solutions.
The optimization algorithm plays an important role in constellation reconstruction selects
the best possible trajectory option and plans the best manoeuvres. In other words, the
trajectory parameters are optimized by the algorithm to obtain the global optimal mean
distance, total access time, and ∆V. Finally, the tracking situation of targets with or without
orbital manoeuvring is compared, and the experiment is verified on the self-designed IEAT-
C experimental platform. The results of this study show that the satellite manoeuvring
reconstruction with low thrust can realize the tracking of sea targets and collect target data
with better quality and quantity.

This paper mainly focuses on the methodology of constellation reconstruction. The
research on the NSAM algorithm is still limited to the design and application of the
algorithm’s structure. The comparison of algorithm’s performance has not been studied
in depth. Furthermore, the advantages and disadvantages of the NSAM algorithm in the
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field of multi-objective optimization algorithms should be deeply studied. In addition, the
number of satellites and the number of orbits should be increased to prove the universality,
scalability, and adaptability of the method.
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