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Abstract: Aiming to address the issue of low efficiency and a high false-detection rate in artificial
defect detection in nitrile medical gloves, CCA-YOLO was proposed on the basis of YOLOv5 to
realize the detection of tear and scratch defects. CCA-YOLO added a small-target detection layer to
the YOLOv5 network backbone and further proposed an innovative channel coordinate attention
mechanism. According to the different characteristics of tears and scratches, focal and efficient IoU
loss and α-IoU loss functions were introduced to further improve the positioning accuracy. The
data enhancement method was used to generate a dataset of nitrile gloves, which was divided into
datasets for horizontal angular tear detection, vertical angular tear detection, and scratch detection.
The problem of class imbalance with few defect samples was solved. Our experiments show that
CCA-YOLO can effectively identify tear and scratch defects in nitrile medical gloves in the self-made
datasets. Compared with YOLOv5, the mean average precision (mAP) of the three models for
horizontal angular tear detection, vertical angular tear detection, and scratch detection can reach
99.3%, 99.8%, and 99.6%, showing increments of 4.2%, 5.3%, and 12.4%, respectively, thereby meeting
the performance requirements of glove defect detection.

Keywords: α-IoU; coordinate attention; data enhancement; defect detection; focal and efficient
IoU; YOLOv5

1. Introduction

The rapid digitization of the global manufacturing industry and the impact of the
epidemic are increasing the global annual demand for nitrile gloves. With the continuous
expansion of the nitrile glove production scale, surface defects frequently occur during the
production process, and defect detection has become a major difficulty in the production
process. Common surface defects of nitrile gloves include tears and scratches [1].

Currently, defect detection in nitrile glove production has issues such as low efficiency,
a high false detection rate, and a high missed detection rate. In the early research on
surface defect detection in gloves, physical detection methods were mainly used for defect
detection [2]. In 2000, Sohn et al., tested pinhole defects in gloves, using brine to expand
gloves and soak them in brine through water load experiments and conductance tests [3]. In
2003, Murray identified pinhole defects in rubber gloves through air expansion and water
immersion experiments [4]. In 2016, Thang et al., used image processing techniques based
on the region of interest and integrated grayscale, morphology, threshold, hole filtering,
and noise removal for glove defect detection; the overall accuracy was only 81% [5]. The
machine-learning-based technology for detecting glove defects has developed gradually.
In 2016, Sun and Chen proposed a glove defect detection method based on machine vision.
The color space of image detection was changed from RGB to HSV, and a Canny edge
detector was used to extract the glove contour and detect the tearing condition [6]. This
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method is slow and requires cumbersome image processing; therefore, it is unsuitable for
defect detection in high-efficiency production. With the continuous development of deep
learning, two-stage target detection methods are becoming increasingly computationally
intensive owing to the complexity of the underlying network, number of candidate frames,
and complexity of the classification and regression subnetworks.

With the widespread application of deep learning, the accuracy and efficiency of object
detection have been considerably improved; moreover, future defect detection in nitrile
medical gloves is expected to primarily focus on defect target detection. On the basis of
many studies, object detection algorithms can be approximately categorized into two-stage
and one-stage object detection algorithms. The classical algorithms for two-stage target
detection include R-CNN [7], SPP-Net [8], Fast R-CNN [9], and Faster R-CNN [10]. In
2015, Liu et al. performed threshold segmentation to extract glove defects on the basis
of gray images using the different characteristics of gray color values of defects and non-
defects; however, this method could not be implemented during actual production [11]. In
2023, Mohd Anul Haq used deep-learning-based super-resolution to improve the spatial
resolution of HSI, broadening the idea for the research of computer vision to distinguish
materials [12].

In 2016, Redmon et al. proposed the “you only look once” (YOLO, also known as
YOLOv1) approach to overcome the inefficiency of the two-stage target detection algo-
rithm [13]. YOLO discards the candidate frame extraction branch of the algorithm and
directly implements feature extraction, candidate frame classification, and regression in
the same branchless deep convolutional network. This simplified the network structure,
enabling deep-learning-based target detection algorithms to meet the demands of real-time
detection tasks, given the computing power available at the time. With the emergence of
YOLO, deep-learning-based target detection algorithms started to have dual and single
stages. Between 2016 and 2020, the YOLO algorithm gradually evolved into YOLOv2 [14],
YOLOv3 [15], YOLOv4 [16], and YOLOv5, and since 2020, the YOLO family of algorithms
has gradually become a research focus for target detection. In 2021, Ge et al. proposed
YOLOX [17], which uses YOLOv3 as the base network for improvements, with three de-
coupled heads added to the output layer. In 2022, YOLOv6 was introduced, bringing the
re-param VGG structure to YOLO to increase its suitability for the use of GPU (Graphics
Processing Unit) devices. Almost simultaneously, YOLOv7 was proposed as a sequel to
YOLOv4; it mainly focused on model structure referencing and dynamic label assignment
issues. In the same year, YOLOv8 was further developed by the team that developed
YOLOv5; the main additions were structural algorithms, a command line interface, and
Python API. YOLOv8 is a step up in accuracy compared with YOLOv5 but a slight step
down in speed.

Compared with previous YOLO-series algorithms, the YOLOv5 algorithm offers
improvements in model size. The input terminal uses adaptive anchor frame calculation
and adaptive picture scaling methods, considerably improving detection performance.
Experimental proof indicates that YOLOv5 is the more classical algorithm in the current
YOLO series and is more suitable for defect detection in nitrile medical gloves. In 2022,
Jawaharlalnehru improved the YOLO algorithm by using pre-trained network classification
and multi-scale detection training and changing the screening rules of candidate boxes,
which can be effectively used for multi-scale target detection [18]. In 2022, Thang used the
YOLO model for training in Google Colab and successfully distinguished torn gloves from
normal ones [19] but failed to detect other defects. In the same year, H. Wang proposed the
glove defect detection algorithm YOLO-G [20], which used Ghostnet to replace part of the
structure of YOLOv5 but did not realize the defect detection of scratches and tears.

Since the YOLO algorithm was proposed, various network structures have been
continuously integrated into it to improve detection performance. However, only a few
studies have been conducted on defect detection in nitrile medical gloves. Most of the
defect detection methods involve physical detection and object detection realized through
a simple convolutional neural network. However, problems such as tedious processing,
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high requirements for hardware and the environment, inconvenient deployment, false
detection, and leakage detection still exist. To solve these problems, herein, CCA-YOLO
is proposed; this model can meet the performance requirements of glove defect detection.
The achievements of this study can be briefly summarized as follows.

(1) The receipt of nitrile medical gloves was created using 39,941 images after data enhance-
ment, effectively solving the problem of class imbalance with fewer defective samples.

(2) The CCA-YOLO algorithm was used for defect detection, and a small-target detection
layer was added to the YOLOv5 network backbone [21].

(3) On the basis of the spatial squeeze and channel excitation block [22] and coordinate
attention mechanism, an innovative channel coordinate attention (CCA) mechanism
was proposed to improve the detection of tears and scratch defects. This mecha-
nism can focus on the channel relationship in addition to the spatial relationship of
the network.

(4) On the basis of the different characteristics of tears and scratches, EIoU was introduced
to detect glove tear defects and α-IoU was introduced to detect glove scratch defects,
thus improving defect detection accuracy in one step.

2. Related Work

YOLOv5 is a fully convolutional network comprising a convolutional layer and batch
normalization layer, without a full connection layer. YOLOv5 provides four network
structures of different sizes: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, in ascending
order. Among them, the YOLOv5s network has the smallest volume and fast reasoning
speed but low detection accuracy, which is suitable for devices with low computing power.

The network structure of YOLOv5s comprises a backbone network, bottleneck layer
network, and detection layer [23]. The backbone network comprises a focus module
to extract the features of the input image data. The neck layer uses a path aggregation
network [24] for feature fusion, combining superficial graphic features with deep semantic
features to obtain more complete features. The CioU [25] function is used as the loss
function of bbox regression. The original network structure of YOLOv5s is shown in
Figure 1.

The YOLOv5 algorithm has been successfully improved and applied to defect de-
tection. Owing to the large downsampling multiple of YOLOv5, it struggles to learn the
feature information of small glove defect targets from deep feature maps, resulting in
the poor detection of small-target defects. Therefore, a small-target detection layer was
proposed to detect shallow and deep feature images after concatenation. This layer can
enhance the network detection of small glove defect targets and improve detection perfor-
mance. To overcome the problem of small defect targets, based on the original output layer,
Yu et al., added an output layer specifically for small-target detection using a cascading
network [26].

Attention mechanisms are resource allocation schemes that allocate computing re-
sources to more important tasks and solve the problem of information overload in cases
of limited computing power. In the process of the development of attention mechanisms,
channel attention (CA) mechanism coordinate attention has been proposed; it aims to
enhance the expression ability of the learning features of the mobile network [27]. The CA
mechanism can not only obtain long-range dependencies in the spatial direction but can
also enhance the expression of the location information of the features and increase the
global receptive field of the network. The CA mechanism can consider attention in both
channel and spatial dimensions to better pay attention to the defect features of glove tears
and scratches [28]. In 2023, Zhu et al., introduced coordinate attention in the backbone
network to enhance information interaction among all channels and make the network
focus on high-weight areas [29].
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Figure 1. YOLOv5s network structure.

Bounding box (bbox) regression is the basis of target detection, location, and tracking.
In recent studies related to bbox, IoU loss and its related variants were directly adopted
as location loss. The related variants of IoU loss are GioU, DioU, CioU, EioU, and α-IoU.
GioU could not directly reflect the distance between the predicted boundary box and real
boundary box [30]. In the case of DioU, the diagonal distance normalizes the distance
between the center points of the detection box and prediction box, but when the IoU value
is the same as the distance between the center points of the two boxes, it cannot distinguish
the distance between these boxes [31]. CioU consumes a certain amount of computational
power in the process of calculation. EioU calculates the differences in width and height
instead of the aspect ratio and introduces focal loss to solve the problem of the imbalance
between difficult and easy samples [32]. α-IoU allows more flexibility in achieving different
levels of bbox regression accuracy by adjusting the α to weight losses and gradients; EioU
and α-IoU can solve the problem of high surface noise in glove defect detection. Yixuan et al.
replaced the original CioU loss function with an EioU loss function to improve the ability
to extract surface defect features. Furthermore, Yinsheng et al. changed the loss function of
frame regression to α-IoU loss, further improving the accuracy of bbox regression.

3. CCA-YOLO Network Model
3.1. CCA-YOLO Structure

The feature extraction network of YOLOv5s was redesigned by adding the small-target
feature detection layer and the CCA mechanism proposed in this study. CioU was replaced
with the EioU loss function to improve the detection of tear defects. The α-IoU loss function
was used to improve the scratch defects detection accuracy. The structure CCA-YOLO is
shown in Figure 2.

3.2. Improvement of Small-Target Detection Layer

The main reason for the poor detection of small-target defects is the size of the target.
The original YOLOv5s model has only three target detection layers of different scales. In
the case of the 608 × 608 network input, the sizes of the three features are 19 × 19, 38 × 38,
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and 76 × 76. As shown in the feature mapping schematic in Figure 3, the largest feature is
responsible for detecting small targets, corresponding to 608 × 608; thus, the receptive field
of each cell feature graph is 608/76 = 8 × 8.
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If the width or height of the target in the original image is less than 8 pixels, it becomes
challenging for the network to learn feature information. Moreover, many images have
high resolutions, and simple subsampling can result in a large loss of data information if
performed using a high subsampling multiple. However, if the multiple is substantially
small, many feature graphs must be stored in the memory for network forward propagation,
which consumes considerable GPU resources and easily causes video memory explosion,
making normal training and reasoning impossible. The feature extraction layer for small
targets added in this study continues to perform upsampling and other types of processing
on the feature map after the 17th layer, so the feature map continues to expand. Meanwhile,
at the 20th layer, the obtained feature graph with a size of 160 × 160 is concatenated with
the second layer feature graph in the backbone network to obtain a larger feature graph for
small-target detection. At the 31st layer, a segmentation detection module is added and
four layers are used for detection, improving the accuracy of small scratch detection.



Appl. Sci. 2023, 13, 10173 6 of 16

3.3. Channel Coordinate Attention Mechanism

Coordinate attention encodes channel relationships and long-term dependencies
through precise position information. This encoding is divided into two steps: the co-
ordination of information embedding and coordinate attention generation [32]. As shown
in Figure 4, one-dimensional adaptive average pooling of input features in the x-axis and
y-axis directions was performed to obtain independent directional perception features
with x-axis and y-axis information retained, respectively. One spatial direction captures
long-range dependencies, whereas the other retains accurate position information.
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As shown in Figure 4 and Formula (1), the feature map is changed from [C, H, W]
to [C, 1, 1] using the global average pooling method, and the information is subse-
quently processed using two 1 × 1 × 1 convolutions, resulting in a C-dimensional vector.
The addition join does not add new dimensions without preserving the characteristics
of the previous layer. It is generally believed that the input mapping features U as a
combination and embedding of the global spatial information in vector z, encoding the
channel-related dependencies:

zk =
1

H×W∑H
i ∑W

j uk (1)

Using a sigmoid function to pass σ(ẑ) for normalization, ẑ is brought to the interval
[0, 1] to obtain the corresponding mask, and channel-wise multiplication is finally per-
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formed to obtain an information-calibrated feature map, emphasizing the useful features to
suppress the useless ones. The resulting vector is used to recalibrate or excite U to

ÛCCA = FCCA(U) = [σ(ẑ1)u1,σ(ẑ2)u2, . . . ,σ(ẑC)uC] (2)

σ(ẑi) indicates the importance of the channel being rescaled. As the network learns, this
activation is adaptively adjusted to ignore less important channels and emphasize the
important ones, improving the network performance by focusing on the key locations of
the image.

After optimizing the channel dimension, the two obtained one-dimensional features
are spliced in the W dimension and a convolution and nonlinear activation function are
passed; subsequently, the features are split in the channel dimension [31]. Two feature
graphs with long-range dependencies of specific spatial direction are obtained through
convolution and the sigmoid activation function. These two feature maps can be comple-
mentarily applied to the input feature map to enhance the target of interest. A feature
graph with attention weight in the width and height directions is obtained through feature
fusion. The experimental results show that CCA can effectively improve the accuracy of
the model while slightly increasing the number of computations.

3.4. Improvement of Loss Function

On the basis of multiple studies, in this experiment, the introduction of the EioU loss
function led to the better identification and detection of tear defects taken at vertical and
horizontal angles. The EioU loss function is defined as follows:

LEIoU = LIoU + Ldis + Lasp

= 1− IoU + ρ2(b,bgt)
c2 + ρ2(w,wgt)

c2
w

+ ρ2(h,hgt)

c2
h

(3)

This function includes overlap loss LIoU, distance loss Ldis, and width and height loss
Lasp. In the aforementioned equation, c represents the diagonal distance that can wrap
the minimum rectangles of two frames; (b, bgt) represents the distance between the center
points of two frames; cw and ch represent the width and height that can wrap the minimum
rectangles of two frames, respectively; and (w, wgt) and (h, hgt) represent the difference
between the width and height of the two boxes. EioU loss not only considers the distance
factor of the two rectangular boxes but also minimizes the difference between the width and
height of the two boxes. Therefore, the detection accuracy for smaller targets is improved
to a certain extent and the convergence stability of the model is enhanced.

From experimental research, it can be found that although the EioU loss function
can effectively improve tear detection accuracy, it cannot accurately identify small defects
such as scratches. Therefore, to address the characteristics of small scratch targets that are
difficult to identify and the high level of noise interference in the plant environment, the
experiment improved the loss function of the YOLOv5s model using α-IoU. Unlike other
variants, α-IoU is a new IoU loss function proposed for the existing IoU loss based on the
introduction of power transformation, with a power IoU term, an additional power regular
term, and a single power parameter α, which can considerably exceed the existing IoU
loss [32].

Common IoU losses are defined as follows:

LIoU = 1 − IoU (4)

The general form of the α-IoU is as follows:

Lα-IoU = 1 − IoUα (5)
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Ordinary IoU losses can be reduced to α-IoU losses through Box–Cox transformation:

Lα−IOU =
1
α
(1− IOUα),α > 0 (6)

Compared with LIoU, Lα−IoU increases the loss and gradient of high-IoU targets when
α > 1, thus improving the accuracy of bbox regression. The selection of α is crucial to the
loss of α-IoU. In most cases, the best effect is attained at α = 3. In this study, it was found
that α = 2 accelerated the learning of all positive IoU targets at AP50.

The calculation formula is as follows:

L2−IOU =
1
2

(
1− IOU2

)
=

1
2

LIOU
2 (7)

Common IoU loss is defined as the effect of penalty conditions on the properties of
vanilla α-IoU. Therefore, based on the analysis of vanilla α-IoU (4), it can be concluded
that the power transformation of Lα-IoU retains the key properties of LIoU, including non-
negativity, indistinguishable identity, symmetry, and triangle inequality. Additionally,
Lα-IoU also includes the following five characteristics: Order preservation ensures that LIoU
and Lα-IoU are both monotonic decreasing functions. Relative loss reweighting increases
the weighting factor monotonically (from 1 to α) with increasing IoU when α > 1 and can
help the model focus more on high-IoU targets to improve location and detection perfor-
mance [33]. Relative gradient reweighting monotonically increases the aforementioned
reweighting factor with increasing IoU when α > 1, which allows the model to learn targets
with adaptive velocities depending on the IoU of the target.

4. Experimental Results and Discussion
4.1. Creating a User-Defined Glove Dataset

Currently, there are no publicly available datasets on nitrile medical gloves. The
detection effect in real nitrile glove defect detection scenarios can be affected by complex
conditions such as light and angle. In this paper, the data collection work was carried out
on actual defect samples in the production workshop to ensure that the user-defined glove
dataset represents real variation in defects. To better detect small scratch and tear targets
and enhance the model generalization ability, defect data were enhanced before model
training. The image was preprocessed for defect data, including clipping, noise, dimness,
brightness, and rotation. The image obtained after data enhancement is shown in Figure 5.
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Table 1 shows that after 1000 iterations of training, the data-enhanced dataset im-
proved the generalization ability and robustness of the model. Upon noise, rotation, and
clipping data enhancements based on geometric transformation, the differences in scale,
position, and perspective between the training set and test set could be eliminated. By
adjusting the data enhancement based on color space transformation, such as brightness,
the differences in illumination, color, and brightness between the training set and test
set could be eliminated. The data enhancement method adopted in this study made the
amplified training data as close as possible to the real distributed data, thus improving the
detection accuracy.

Table 1. The data sheet of ablation experiment 1.

Dataset Data
Volume P (%) R (%) mAP@0.5

(%)
mAP@0.5:0.95

(%)

Original—horizontal 2235 90.6 92.6 95.1 68.7
Enhanced—horizontal 19,815 99.8 95.4 98.3 82.7

Original—vertical 1155 91.8 91.8 94.5 75.5
Enhanced—vertical 18,434 97.4 98.8 98.8 90.0
Original—scratch 497 85.1 83.3 87.2 33.6

Enhanced—scratch 2322 92.8 95.0 96.6 57.6

4.2. Evaluation Indexes

In this experiment, the mean average precision (mAP@0.5), parameters (Param), Giga
Floating-point Operations Per Second (GFLOPs), precision (P), recall (R), and Frames Per
Second (FPS) were used as the evaluation indexes of model performance. P and R were
found as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

where TP (true positive) indicates that the object to be detected in the image is correctly
identified and the IoU is greater than the threshold; Fp (false positive) indicates that the
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detection object is not correctly identified and the IoU is less than the threshold; and FN
(false negative) indicates that the target is not detected.

The calculation process of mAP is as follows:

mAP =
1
n∑N

0

∫ 1

0
Pn(r)dr. (10)

N is the number of target categories detected in the dataset and the mAP value of a certain
category. In particular, mAP@0.5 and mAP@0.5:0.95 are commonly used to evaluate the
model performance; mAP@0.5 focuses on the variation trend of model accuracy with the
recall rate, and mAP@0.5:0.95 pays more attention to the comprehensive performance of the
model under different IoU thresholds, reflecting the fitting range between the detection and
real frames. Unless otherwise specified, mAP in subsequent sections refers to mAP@0.5.

4.3. Experimental Results and Analysis
4.3.1. Experimental Comparison of Optimized Loss Functions

To verify its contribution to model improvement, the loss function used herein was
compared with other common loss functions. Figure 7a shows a comparison of the mAP
curves of YOLOv5s with EioU and other loss function models for tears, and Figure 7b
shows a comparison of YOLOv5s with α-IoU for scratches. The detection accuracy and
network performance improved with the increasing mAP value. With the same dataset, the
improved model after 100 iterations exhibited a higher recall value and higher mAP than
the model with the mainstream attention mechanism, representing a 2.9% improvement
compared with the YOLOv5s network.
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4.3.2. Experimental Comparison of Optimized CCA Mechanism

On the basis of the proposed CCA mechanism, the validity and rationality of the CCA
mechanism are verified in two cases. In the first case, the CCA mechanism was used to
replace the last C3 module in the backbone for the experiment, and in the second case,
the CCA mechanism was added after the SPP module for the experiment. Meanwhile,
to further verify its effectiveness in defect detection in nitrile medical gloves, this article
compared the proposed CCA mechanism with the mainstream attention mechanisms: SE,
CBAM, original CA, and ECA. As shown in Table 2, the CCA mechanism added after SPP
exhibits the best recall value and mAP and meets the requirements of defect detection in
nitrile medical gloves with a small increase in the values of the parameters.

4.3.3. Experimental Comparison of the Optimization Mechanism

To effectively analyze the performance of the improved model, the original and
CCA-YOLO networks were trained using the same training parameters and methods. To
strengthen the ability of the YOLOv5s model to extract spatial information features, this
study focused on redesigning the feature extraction network of YOLOv5s. Module A adds
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small-target feature detection, and module B introduces the CCA mechanism. Module C
replaces CIoU with the α-IoU loss function to improve the scratch detection accuracy, and
module D replaces CIoU with EIoU to improve the tear detection accuracy.

Table 2. The data sheet of ablation experiment 2.

Model P (%) R (%) mAP@0.5 (%)

YOLOv5s 93.8 90.1 90.1
SE 94.0 91.1 91.7

CBAM 92.8 91.1 90.9
ECA 92.5 91.2 90.2
CA 97.3 90.0 91.7

CCA (replace) 92.7 93.7 92.0
CCA (add) 94.3 96.1 92.6

The aim of this ablation comparison experiment is to verify the optimization of each
improvement module. From the experimental data in Table 3, it can be seen that under
the same experimental parameters, if the three types of datasets, vertical angle, horizontal
angle, and scratches, are placed in the same model for training, the mAP value is lower
than 80%, and the detection effect is poor. If the three models are trained separately
and independently, the mAP values are higher than 90%. Meanwhile, according to the
experimental results, it is found that, based on the different features of tear and scratch, the
introduction of EIoU to detect glove tear defects and the introduction of α-IoU to detect
glove scratch defects can improve the two-week defect detection accuracy, and the detection
effect is better.

Table 3. The data sheet of ablation experiment 3.

Datasets A B C D E P (%) R (%) mAP

Vertical + positive + scratch
√ √ √ √

80.8 81.9 78.3
Vertical + positive + scratch

√ √ √ √
81.3 83.7 79.8

Vertical
√ √ √ √

93.0 92.1 92.6
Vertical

√ √ √ √
90.4 93.6 90.7

Positive
√ √ √ √

94.3 93.7 92.8
Positive

√ √ √ √
94.1 91.1 91.6

Scratch
√ √ √ √

92.7 93.7 91.1
Scratch

√ √ √ √
94.3 93.7 92.8

Symbol “
√

” indicates that the module is used during the experiment.

Table 4 shows the dataset acquired at a vertical angle and generated under the condi-
tion of the same training parameters for 100 epochs.

Table 4. The data sheet of ablation experiment 4.

Model P (%) R (%) mAP Param GFLOPs

YOLOv5s 93.8 90.0 90.1 70.6 16.4
YOLOv5s + A 92.8 94.9 93.6 72.5 16.8
YOLOv5s + B 94.1 94.8 91.7 74.3 16.9
YOLOv5s + C 94.1 93.5 92.6 70.6 16.4
YOLOv5s + D 93.9 91.1 91.1 70.6 16.4

As shown in Table 4, the aforementioned changes improved the detection of small
scratch targets in nitrile gloves. In particular, mAP increased by 3.5% after the addition of
the small-target detection layer, by 1.6 percentage points after the addition of the CCA mod-
ules, and by 2.5 percentage points after the use of the α-IoU loss function. After using the
EIoU loss function, mAP increased by 1 percentage point. According to the data analy-
sis, the improved module positively affects the feature extraction capability with a small
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number of parameters, which further verifies that the improved model is more suitable for
defect detection in nitrile gloves.

To more objectively and accurately evaluate the detection effect of the CCA-YOLO
network on the vertical defect dataset, a confusion matrix comparison between YOLOv5s
and CCA-YOLO is shown in Figure 8. It can be seen from the figure that the true value is
close to the predicted value, and the ratio of damaged positive samples has increased by
25%, indicating that the accuracy of the model has been greatly improved.

After verifying the effectiveness and performance of each module, the proposed
algorithm was compared with the current mainstream target detection algorithms YOLOv3,
YOLOX, YOLOv5s, YOLOv7, and YOLOv8. Table 5 presents the comparison results,
indicating the training data generated by the dataset shot at a vertical angle and under the
condition of the same training parameters for 100 epochs.

Table 5. The data sheet of ablation experiment 5.

Model P (%) R (%) mAP@0.5 (%) FPS/fps

YOLOv3 84.7 97.5 90.8 31.9
YOLOv5s 93.8 90.0 90.1 37.1
YOLOX 89.7 91.9 92.1 36.2
YOLOv7 92.5 95.4 91.8 36.0
YOLOv8 94.3 92.1 92.5 38.7

CCA-YOLO 94.3 93.7 92.8 36.8

The experiments show that the algorithm achieves an mAP of 92.8% in the target detec-
tion task for nitrile medical gloves. Compared with the unimproved YOLOv5s algorithm,
this algorithm achieves a 2.8-percentage-point improvement in mAP, a 1.5-percentage-point
improvement in P, and a 3.7-percentage-point improvement in R. Compared with the more
stable and frequently used YOLOv7 algorithm, this algorithm exhibits higher P and mAP
values but lower recall. Compared with the YOLOv8 algorithm, CCA-YOLO performs
better in the P, mAP, and FPS values, while reducing the training time by more than half.

To further improve the training, the best weight feeding into the detection network
is obtained, and higher precision and a faster monitoring rate are achieved; high-quality
data samples were selected from 39,941 data enhancement images for training, the learning
rate of the initial training was set to 0.005, the number of picture batches was 32, and the
number of training epochs for each dataset was 1000. The training results are shown in
Table 6.

Table 6. The data sheet of ablation experiment 6.

Datasets Data Volume P (%) R (%) mAP@0.5 (%)

Horizontal tears 18,000 99.3 95.4 99.3
Vertical tears 18,000 99.7 99.7 99.8

Vertical scratches 2300 99.4 99.4 99.6

To better verify the detection performance of the proposed algorithm in cases of small
defect targets, the original YOLOv5s network and the CCA-YOLO network were used
herein to select some of the image data from the test set for testing, as shown in Figure 9.
Figure 9a,b compare three detection results, namely, horizontal tear detection, vertical tear
detection, and vertical scratch detection, respectively. Based on these figures, the detection
accuracy of the proposed algorithm is significantly higher than YOLOv5l. In Figure 9,
YOLOv5s misdetected horizontal tears and failed to accurately detect the target, whereas
the proposed algorithm accurately detected tear and scratch targets. This was mainly
because the detection layer for small targets, which was added to the proposed model,
improved its resolution and the coordinate attention mechanism enlarged the receptive
field. Moreover, the EIoU and α-IoU loss functions used for defect types improved the
prediction positioning accuracy and detection accuracy for small targets.
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5. Conclusions

Despite its remarkable achievements in defect monitoring, deep learning technology
cannot successfully be fully utilized for defect detection in nitrile medical gloves. Therefore,
herein, a CCA-YOLO algorithm for glove defect detection is proposed. A detection layer
for small targets was added to improve the detection accuracy for glove scratches. CCA
mechanisms were introduced to obtain a larger receptive field and further improve the fea-
ture extraction ability of the network for tear and scratch defects. Furthermore, to improve
the positioning accuracy and reduce the target omission rate, the EIoU was introduced to
detect glove tear defects and α-IoU was introduced to detect glove scratch defects. With the
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experimental equipment unchanged, the mAP values of the three defect detection models
for the detection of horizontal tears, vertical tears, and scratches reached 99.3%, 99.8%, and
99.6%, respectively, exhibiting increments of 4.2, 5.3, and 12.4%, respectively, compared
with those of the original YOLOv5s. On the basis of the considerably improved mAP, the
frame rate reached 36.8 FPS in the experimental environment, meeting the requirements
of the real-time detection of glove defects. CCA-YOLO is very applicable to small-target
detection and can solve most of the defect detection problems, and thus, can be extended
to the industrial surface defect detection field.

Our experiments show that the proposed algorithm exhibits a high accuracy and recall
rate as well as a small model size; furthermore, the algorithm can be easily deployed and
meets the requirements for detecting glove tears, scratches, and other defects. However,
there are a few limitations, mainly in the following two aspects:

(1) The performance of the model reaches a bottleneck using the current hardware;
however, in the actual application environment, the hardware requirements are higher
and there are more restrictions on the physical size or use environment. The complex
network structure increases the number of parameters and calculation complexity,
which is not conducive to the deployment of the model in practice.

(2) In practical applications, the defects of nitrile medical gloves are not limited to tears
and scratches. There are many types of defects with different characteristics; therefore,
the model needs to be further improved to detect more types of defects. Future studies
will aim to decrease the number of model parameters, increase the types of detected
defects, further reduce the consumption of labor costs, and accelerate the development
of the intelligent detection of defects in nitrile medical gloves.
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