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Abstract: Innovative drone-based technologies provide novel techniques to guarantee the safety
and quality of power supply and to perform these tasks more efficiently. Electric multirotor drones,
which are at the forefront of technology, face significant flight time limitations due to battery capacity
and weight constraints that limit their autonomous operation. This paper presents a novel drone
charging station that harvests energy from the magnetic field present in power lines to charge the
drone’s battery. This approach relies on a charging station that is easy to install by the drone on
an overhead AC power line without modifying the electrical infrastructure. This paper analyses
the inductive coupling between the energy harvester and the power line, electrical protection, the
power electronics required for maximum power point tracking and the mechanical design of the
charging station. A drone that perches on a cable, an end effector for installation procedures and the
charging maneuver are described, along with discussion of the robotic and electrical tests performed
in a relevant environment. Finally, a lightweight drone charging station capable of harvesting 145 W
of power from a 600 A line current is reported.

Keywords: drone charging station; inductive energy harvesting; drone perching on cables; aerial
robotic manipulation

1. Introduction

The European Union is pushing to reduce greenhouse gas emissions, with a long-term
strategy to achieve carbon neutrality by 2050. This goal will require widespread electrifica-
tion of processes, products and transportation, as well as an expansion of renewable energy
sources. Electricity generated from renewable energy is both efficient and environmentally
friendly, but it necessitates the expansion of power lines. Every year, significant human
and economic resources are necessary to inspect and maintain the electrical transmission
and distribution network. Innovative techniques are also imperative to ensure resiliency
and reliability, which guarantee the continuity of supply and service quality.

Currently, aerial inspections are primarily conducted via helicopters, with mainte-
nance requiring live line working to prevent electrical disruption. However, this method
is hazardous to personnel working on electrical equipment. Drones can be fitted with
cameras for visual and thermographic inspections to detect anomalous temperatures or
with LiDAR sensors to create 3D maps [1] and can operate in remote areas and harsh
environments [2]. These techniques for inspection enable both corrective and predictive
maintenance [3] and are suitable for use in high-, medium- and low-voltage overhead
lines [4–7]; substations; and protection and remote-control systems, among others. Tasks
related to grid maintenance include felling, pruning, clearing and removing elements of
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the forest area from the electrical overhead line. Additionally, drones can inspect areas that
are difficult to reach and provide a swift response in emergency situations.

In this context, aerial robotic manipulators offer cutting-edge technology to minimize
hazardous work and reduce maintenance costs. However, current electric multirotor drones
have limited flight times due to battery capacity and weight restrictions. Inspection and
maintenance tasks on the electrical grid require large batteries to support the payload and
autonomy of the cameras or manipulator, and commercial multirotor drones are typically
limited to minutes of flight before the battery runs out, limiting autonomous operations in
rural areas. As such, there is growing concern about energy consumption [8–12] and the
availability of charging stations [13–22] for extended maintenance and inspection tasks.

Multirotor drones typically necessitate manual battery replacement by the pilot for
connection to the charger. However, the literature has introduced various techniques for
automation of the charging process, which can be categorized based on whether they rely
on an electromagnetic field (EMF) or not [1,23–25]:

Non-EMF-based techniques for in-flight charging:

• Gust soaring [26];
• PV-integrated [9];
• Laser beaming [27];
• Battery swapping or dumping [28].

EMF-based techniques for stationary charging up to several centimeters:

• Capacitive charging [29];
• Inductive charging [4,30–33];
• Magnetic resonant charging [34].

Overhead power lines are predominantly located in rural areas, which lack access
to energy sources that could facilitate the deployment of charging points. Harnessing
renewable energy such as photovoltaics to power drone charging stations is both costly and
weather-dependent. In contrast, transmission and distribution lines transport a significant
amount of energy. However, accommodating the necessary voltage levels is currently eco-
nomically challenging. Some papers suggest using energy harvesters placed on overhead
power lines to enable drone charging by taking advantage of the power grid itself [12,35–42].
However, the reported harvesting technology has significant power limitations and requires
further investigation.

This paper presents a novel design that addresses certain challenges, specifically
the charging power density and mechanical design. The proposed approach utilizes the
magnetic field generated by the alternating current in the power line to harvest energy.
A low-cost drone charging station is proposed based on inductive coupling with a split-
core harvester that charges the drone battery; both the charging station and the harvester
are equipotential to the line voltage. This research investigates the correlation between
energy extracted from the magnetic field and line current utilizing a DC/DC converter
equipped with a maximum power point tracking (MPPT) control algorithm to match load
impedance. The proposed easy-to-install drone charging station can be installed on an
AC overhead power line by a drone without the need for any alterations to the existing
electrical infrastructure.

This paper is structured as follows. Section 1 outlines the relevance of autonomous un-
manned drones for inspection and maintenance of transmission and distribution overhead
lines and presents a review of previous work. Section 2 examines the inductive coupling
between the energy harvester and the power line, as well as electrical protection, power
electronics for MPPT and the mechanical design of the charging station. Perching and
manipulation modules for the unmanned aerial vehicle are detailed in Section 3. Section 4
outlines energy harvesting and robotic manipulation experiments conducted in relevant
environments, while Section 5 provides a discussion of the proposal.
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2. Drone Charging Station Design and Development

The Aerial-Core H2020 [43] project included the research, design and development of a
technological demonstrator for assessment of energy harvesting technology for drone charg-
ing stations and their advanced capabilities (Figure 1) on overhead power lines, including
perching on cables and robotic manipulation. This section defines the design requirements
and discusses the inductive coupling technique in detail. Then, the document covers the
power electronics stages, which include a voltage rectifier with overvoltage protection
and a DC/DC charger equipped with the MPPT algorithm. Lastly, the mechanical design,
which is based on a clamp concept, is presented.
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Figure 1. Main local manipulation platform and charging station placed on the overhead power
line (top-right corner) during integration experiments at the ATLAS Centre (Jaen) for the Aerial-
Core project.

• Overhead power line specifications

High-voltage cables and towers designed for the European transmission and distribu-
tion grid reach up to 750 kV and 1 kA, respectively, but line voltages vary from country to
country, with most being 50 Hz AC, except for some high-voltage DC links. The diameter
of the overhead power cable varies based on power line current and length requirements.
For the design of drone charging stations, the specifications for overhead power lines
are constrained by the values shown in Table 1, which are based on established power
grid standards.

Table 1. Limit values considered for overhead power lines.

Overhead Power Line Value Unit

Power line voltage 1 <400 kV
Frequency 50/60 2 Hz

Power line diameter 9–24 mm
Current <600 A

1 The safety clearance must be observed when working on live overhead lines. 2 Non-European power systems
with 60 Hz are also considered.
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Operations on live power lines require compliance with power line safety clearances.
Additionally, the charging station was designed to minimize stress on the power line by
adjusting its weight, size and shape. Overhead power lines typically support installed
accessories such as bird diverters, line spacers or Stockbridge dampers. However, the
weight restriction imposed by drone payloads is higher than that of the power line. The
utilization of low-abrasion materials and the adjustment of the shape to deter birds from
nesting were also taken into account.

• Multirotor drone specifications

Professional unmanned aerial vehicles (UAVs) are used for electrical grid inspection
and maintenance due to their ability to carry equipment. To determine the average values
for commercial multirotor UAVs, the specifications shown in Table 2 are considered.

Table 2. Professional unmanned aerial vehicle reference specifications.

Aircraft Value Unit

Weight ≈15 kg
Payload <10 kg

Flight time
(payload-dependent) 10–50 min

Battery capacity 250–1000 Wh

The drone charging station and installation end effectors are designed to fit the
drone payload, while the charging station is integrated into the drone to minimize risks
during flight.

2.1. Energy Harvester

The charging station harvests energy from the alternating magnetic field around the
overhead power line. This magnetic field is generated by the current flowing through the
conductor. The harvester converts the present magnetic energy into electromotive force to
power electronic devices or batteries. In order to achieve a reasonable tradeoff between
weight and energy harvested, the energy harvesting charging station was designed to
deliver up to 150 watts. The harvester (Figure 2) consists of:

• A ferromagnetic core, which provides a path that concentrates the magnetic flux;
• The primary winding, which is actually the power line, powered by an AC source;
• A coil wound on the core (the secondary winding), which induces the current and

receives energy from the primary winding to deliver it to the load.

In addition, an auxiliary battery can be connected to decouple the harvested energy
from the charging process, which stores energy to ensure a fast charging process.
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The materials used in the ferromagnetic core should have high permeability to the
50/60 Hz magnetic field to provide a high level of magnetic induction. They should also
have low hysteresis loss to prevent overheating and minimize energy loss. Owing to its
high performance, permeability, price and manufacturing flexibility, a grain-oriented silicon
steel material was selected for the ferromagnetic core. The core is formed into thin sheets,
which are coated to provide high resistance between them to minimize losses due to eddy
currents. The core shape was defined to improve magnetic coupling while minimizing
overall weight and utilizing the window area for winding placement (patent pending
EP 3 605 793 A1).

The power cable constitutes the primary winding, which is formed by a single turn,
typically using a large-diameter cable. The core is designed with a sufficiently large window
area to accommodate a variety of commercial power cables. Conversely, the secondary coil
uses an enameled copper wire. The cable diameter was selected to carry the secondary
short-circuit current, considering the possibility of its temperature increasing due to the
power line overheating. The amount of energy harvested is not affected by the number of
turns in the secondary coil; hence, the number of turns was selected to match the induced
voltage and the drone’s battery voltage over the current range of the power line. A split
core was selected to ease the installation of the harvester on the power line. U-shaped cores
were determined to optimize inductive coupling while minimizing the window area.

A core model derived from Maxwell’s equations was used for the mathematical
representation of the harvester. The primary side current in the overhead power line is
denoted as Ip(t) and assuming sinusoidal AC and a secondary side current (Is(t)) in a coil
with Ns turns, the magnetomotive force measured in ampere-turns as seen by the core is
expressed as:

ATcore(t) = Ipsin(wt)− Ns Is(t) (1)

Then the magnetic field strength (H(r, t)) at a radial distance of r away from the center
of the overhead power line is expressed as:

H(r, t) =
ATcore(t)

2πr
=

Ipsin(wt)− Ns Is(t)
2πr

(2)

The magnetic flux density (B(r, t)) is determined by the B–H curve of the silicon
steel core. An Arctan function was used to model the B–H curve, where Bsat denotes the
saturation threshold of the ferromagnetic material, and α is a curve-fitting parameter.

B(r, t) = Bsat
2
π

arctan
(

H(r, t)
α

)
= Bsat

2
π

arctan
(

Ipsin(wt)− Ns Is(t)
2πrα

)
(3)

Simplifying the core shape in the induction equation for a toroidal core and denoting
the inner and outer radius and length of the toroidal core as ri, ro and l, respectively, the
induced voltage V(t) is expressed as:

V(t) =
∫ ro

ri
Nsl

∂B(r,t)
∂t ∂r =

NslBsat
2π2α

·
(

wIpcos (wt)−Ns
∂Is(t)

∂t

)
·ln

 r2
o+

(Ipsin(wt)−Ns Is(t))
2

4π2α2

r2
i +

(Ipsin(wt)−Ns Is(t))
2

4π2α2

 (4)

where Is(t) is assumed to be sinusoidal and dependent on the value of the load impedance.
A window area was defined in the core to place the coils and the grooved pads.

The window utilization factor was maximized to bring the ferromagnetic core as close
as possible to the power line. Finite element simulation was conducted to determine the
magnetic field within the ferromagnetic core. The core creates a magnetic path with low
reluctance, directing the existing magnetic field around the power line generated by the
current flowing through the conductor. The magnetic field is subsequently confined within
the core, creating an electromotive force in the secondary coil. When a charge is connected,
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the current induced in the secondary coil opposes the magnetic field in the primary coil,
resulting in a reduction in the magnetic field through the core, as shown in Figure 3.
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In contrast, without a load, the secondary coil generates a high peak voltage, and the
ferromagnetic core may be saturated by the primary magnetic field. The overvoltage stage
mitigates the mechanical stress on the core and prevents overvoltage of the electronics by
short-circuiting the secondary coil. As a result, no voltage is induced, and the magnetic
field through the ferromagnetic core is minimized.

2.2. Power Electronics

The designed drone charging station is with three power stages for the energy conver-
sion and management process includes (Figure 4):

• An electromagnetic induction energy harvester;
• A rectifier and overvoltage protection;
• A DC/DC converter with an MPPT charge controller.

The magnetic energy converted into electromotive force by the energy harvester has
a sinusoidal AC component with a typical frequency of 50/60 Hz. The amplitude varies
with the magnetic field and the load impedance. A rectifier circuit converts the AC voltage
to DC, and the overvoltage protection prevents damage to the power electronics due to
overvoltage. Two low-side MOSFETs short-circuit the harvester coil when the battery is
unable to drain the collected energy, and TVS diodes prevent voltage transients.

A buck–boost DC/DC converter provides a compact solution for multicell and multi-
chemistry drone battery charging applications. The buck–boost charger operates over a
wide input and output voltage range and offers high efficiency. An MPPT charge controller
is used to maximize the amount of current flowing from the energy harvester to the battery.
The maximum power varies mainly with the current on the overhead line; then, the MPPT
algorithm in the charge controller is used to extract the maximum available power from
the energy harvester under certain conditions.
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2.3. Mechanical Clamp Design

A clamping mechanism is proposed to ensure alignment and a minimum gap between
the ferromagnetic cores. Figure 5a shows the two parts of the clamp holding the cable,
while Figure 5b shows the clamp-closing mechanism located at the rear. This mechanical
design maximizes the flux concentration in an effective and low-reluctance magnetic
path, improving the energy-harvesting capability. In order to meet the requirements of
drone integration, effector manipulation and weather hazards, the mechanical design was
optimized to provide:

• Easy vertical docking of the charging station and the power cable;
• Low weight ≈ 5 kg;
• Strong clamping for harsh environments;
• Easy installation and robotic manipulation.
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During the installation process, the UAV brings the open clamp close to the cable.
Figure 6a illustrates how the shape of the claw guides the cable for accurate positioning.
As shown in Figure 6b, the ferromagnetic core achieves a low-reluctance magnetic path to
harvest energy from the magnetic field around the cable when the clamp is closed. A set of
interchangeable jaw pads ensures an efficient grip between the cable and the clamp, while
allowing the charger to be used on cables with different diameters. These grooved pads are
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designed to increase roughness and therefore friction, preventing the charger from rotating
on the cable.
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A two-part clamp design was defined to perform the opening and closing movements
of the clamp during the installation and removal maneuvers (Figure 7a). While the lower
half of the clamp remains fixed, the upper half can rotate around a fixed axis (Figure 7b).
A worm gear mechanism produces the rotation to move the clamp (Figure 8a). This
mechanism is designed to be operated by a single actuator. The servo rotary motion is
converted into linear motion via a screw-and-nut system mounted on the motor shaft. Each
rotation of the threaded rod produces a rotation in this threaded coupling, which, since
the axial movement of the rod is limited, results in movement along the axis of the clamp
guide (Figure 8b). The movement along the guide allows the clamp to open and close.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17 
 

During the installation process, the UAV brings the open clamp close to the cable. 
Figure 6a illustrates how the shape of the claw guides the cable for accurate positioning. 
As shown in Figure 6b, the ferromagnetic core achieves a low-reluctance magnetic path to 
harvest energy from the magnetic field around the cable when the clamp is closed. A set 
of interchangeable jaw pads ensures an efficient grip between the cable and the clamp, 
while allowing the charger to be used on cables with different diameters. These grooved 
pads are designed to increase roughness and therefore friction, preventing the charger 
from rotating on the cable. 

  

(a) (b) 

Figure 6. Ferromagnetic core located inside the clamp to achieve a low-reluctance magnetic path to 
harvest energy from the magnetic field around the cable and interchangeable jaw pads: (a) clamp 
opened; (b) clamp closed. 

A two-part clamp design was defined to perform the opening and closing movements 
of the clamp during the installation and removal maneuvers (Figure 7a). While the lower 
half of the clamp remains fixed, the upper half can rotate around a fixed axis (Figure 7b). 
A worm gear mechanism produces the rotation to move the clamp (Figure 8a). This mech-
anism is designed to be operated by a single actuator. The servo rotary motion is con-
verted into linear motion via a screw-and-nut system mounted on the motor shaft. Each 
rotation of the threaded rod produces a rotation in this threaded coupling, which, since 
the axial movement of the rod is limited, results in movement along the axis of the clamp 
guide (Figure 8b). The movement along the guide allows the clamp to open and close. 

  

(a) (b) 

Figure 7. Two-piece clamp with a hinged half that can pivot around a fixed axis to execute the open-
ing and closing movements: (a) clamp closed; (b) clamp opened. 

Figure 7. Two-piece clamp with a hinged half that can pivot around a fixed axis to execute the
opening and closing movements: (a) clamp closed; (b) clamp opened.
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3. Unmanned Aerial Vehicle Manipulation

The Main Local Manipulation Platform (MLMP) (Figure 9) is a general-purpose power
line inspection and maintenance UAV developed under the Aerial-Core project. The MLMP
combines several technologies, such as a system to perch on a power line, cable detection
algorithms, a robotic arm and end effectors to install accessories on overhead lines. The
MLMP was used to install and test the charging station described in this paper. This section
describes the MLMP modules involved in manipulating the charging station.
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3.1. Perching Module

The proposed module consists of an active perching mechanism with a specially
designed hook to safely perch on overhead power lines. Once the drone is positioned
under the cable, either by manual or autonomous commands, the perching module is
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responsible for controlling the system during the ascent phase and for attaching the drone
to the cable. This is achieved through a combination of the perching mechanism and
dedicated perception and control software. The perching mechanism provides the drone
with a reliable means of hooking in and out of the cable and allows the propeller motors to
be shut down while the drone is perched. This module also gives the UAV the ability to
move along the axis of the cable for precise installation of power line accessories.

The metallic fixing hook is designed to receive the electric arc during the approach
process. The drone’s electronics are shielded and connected to the same potential as the
chassis to reduce interference. After perching, the drone becomes equipotential to the
line. However, during installation, it is important to consider the electric company’s
safety parameters in terms of meeting the correct spacing between phases to prevent any
interference caused by the drone.

3.2. Manipulation Module

The manipulation module provides the system with the equipment and functionalities
to manipulate overhead power line accessories. Due to the morphological and operational
differences between accessories, a robotic arm integrated with the drone, in combination
with dedicated end effectors, is proposed to achieve a versatile module. The developed arm
is an anthropomorphic robotic arm with six degrees of freedom (DoF). In order to perform
complex manipulation operations, the robotic arm has a geared spherical wrist. The weight
of the arm is approximately 3 kg, with a payload of 3.5 kg.

Some constraints are considered for the manipulation of the charging station. To
reduce disturbances to the drone’s flight control system, the influence on the UAV’s center
of gravity must be considered. In addition, the weight exceeds the payload of the robotic
arm. To overcome these challenges, a novel approach to the transport and assembly of the
charging station is proposed. A support platform (Figure 9) fixes the charging station to
the front of the UAV during flight, close to its center of gravity, taking advantage of the
UAV’s payload and the large front area designed to carry additional tools.

This approach also reduces the stress on the robotic arm during flight, minimizing the
risk of malfunction. The charging station platform is located below the perching mechanism
to prevent interference during the perching maneuver. For this reason, the platform has
a lift to position the charging station on the cable during installation. The lift raises the
charging station by inserting the clamp into the cable and holding it in position. Finally,
the robot arm actuates the worm gear with an ad hoc end effector to close the clamp and
secure the charging station to the cable.

4. Results

A prototype charging station and an MLMP were manufactured and tested in several
environments. First, a laboratory test for energy harvesting characterization is addressed.
Then, experimental robotic manipulation and real power line testing are described.

4.1. Energy Harvesting

Experimental verification was conducted for energy-harvesting technology for aerial
drone applications along an overhead power line. The charging station’s characteristics
were analyzed using the test bench depicted in Figure 10. Testing revealed that the align-
ment of the core and the gap between the two halves have a significant impact on harvesting
capacity. The test bench replicates an ideal scenario with optimal alignment and force to
close the core with minimal impact from any resulting gaps. Table 3 defines the energy
harvester designed for the charging station and its electronic power specifications.
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Table 3. Charging station energy harvester specifications.

Power Line Value Unit

Current 0–600 A
Frequency 50 Hz

Core Value Unit

Weight 1089 g
Material Grain-oriented silicon steel
Width 40 mm
Height 45 mm
Length 60 mm

Thickness 12 mm

Coil Value Unit

Turns 60
Material Copper

MPPT Converter Value Unit

Input voltage 16–35 V
Output voltage 20–30 V

Nominal current 12 A

Battery Pack Value Unit

Voltage 24 V
Capacity 40 Ah

Chemicals Pb–acid

The test bench (Figure 10) is fitted with an autotransformer to control the current
induced into the primary coil by the current injector. The charging station harvests energy
from the magnetic field, and a rectifier converts induced AC to DC. An isolated DC/DC
charger with MPPT control delivers the energy to the battery. A wide range of 50 Hz line
current points was generated to assess the amount of energy that can be harvested by the
drone charging station, as well as the efficiency of the power electronics (Table 4, Figure 10).
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Table 4. Voltage (V), current (I) and power (P) in power electronic stages at several line currents.

Line current (A) 35.6 51 104 158 200 252 305 357 403 455 503 553 606

Harvester secondary
winding

V 15.45 15.91 17.36 17.73 17.93 18.2 18.43 18.65 18.86 19.08 19.26 19.48 19.65

I 0.332 0.505 1.161 1.878 2.448 3.158 3.877 4.554 5.153 5.792 6.378 6.95 7.53

P 5.1 8.0 20.2 33.3 43.9 57.5 71.5 84.9 97.2 110.5 122.8 135.4 148.0

DC input V 14.11 14.52 15.88 16.17 16.36 16.57 16.78 16.96 17.13 17.31 17.48 17.68 17.83

I 0.332 0.505 1.161 1.878 2.448 3.158 3.877 4.554 5.153 5.792 6.378 6.95 7.53

P 4.7 7.3 18.4 30.4 40.0 52.3 65.1 77.2 88.3 100.3 111.5 122.9 134.3

DC output V 24.15 24.16 24.2 24.25 24.3 24.35 24.43 24.49 24.54 24.62 24.67 24.76 24.81

I 0.079 0.185 0.605 1.06 1.422 1.872 2.33 2.76 3.141 3.548 3.919 4.284 4.654

P 1.9 4.5 14.6 25.7 34.6 45.6 56.9 67.6 77.1 87.4 96.7 106.1 115.5

Efficiency 37.2 55.6 72.6 77.2 78.7 79.3 79.7 79.6 79.3 79.0 78.7 78.3 78.0

The DC/DC converter starts working from 35 A on the power line, providing current
to charge the battery. The harvested AC power is rectified, then adjusted to the battery
voltage. The MPPT controller adjusts the load impedance to deliver the maximum available
power from the energy harvester to the battery under certain conditions. The charging test
was conducted during the bulk phase, when the current in the charger is not limited by the
battery capacity.

Thus, the battery starts charging at 35 A on the AC line. Figure 11 shows a linear
dependence between the line current and the energy harvested, which increases linearly
from 5 W harvested at 35.6 A to a maximum of 148 W harvested at 606 A on the line.
Furthermore, due to non-linearities in the power electronics, the efficiency is lower at lower
power levels. However, it can be considered as constant and equal to 80% in the range of
150–600 A AC line current.
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Figure 11. Energy harvested in different power stages and total power conversion efficiency (based
on Table 4).

Efficiency is determined by the rectifier and the DC/DC converter. The passive diode-
based rectifier generates a voltage drop, and the DC/DC buck/boost efficiency varies with
input and output current and voltage. The overall electronic efficiency is close to 80%.
These power losses, of which 42% are attributable to the rectifier stage and almost are
attributable 58% to the DC/DC converter, result in efficiencies of 91% and 86%, respectively
for these stages.
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Thus, an average 500 Wh battery would be charged from 20% to 80% in just 2 h using
the maximum power point of 148 W at 600 A. This charging time may be acceptable for
certain maintenance operations or fully autonomous tasks of the UAV. However, there
are other tasks that require coordination with operators or other elements for which this
charging time may not be feasible. To minimize or even eliminate these charging times,
inductive charging could be combined with battery swapping, or a small stationary battery
could be incorporated into the charging station. This stationary battery could store energy
while the drone is in flight and quickly transfer this energy to the UAV when needed.

4.2. Experimental Robotic Manipulation

Robotic manipulation experiments were conducted to demonstrate the application of
the charging station under various scenarios. The testing process was divided into three
phases: laboratory experiments, controlled outdoor mockup and real power line.

The first set of experiments was conducted in an indoor mockup equipped with a
five-meter section of power line suspended three meters above the ground by a metal
structure. The experiments shown in Figure 12 consisted of installing the charging station
using the robotic arm, the elevation platform and the end effector. First, the charging station
was attached to the MLMP; then, the MLMP was manually placed on the line (Figure 12a).
The installation of the charging station was carried out in a teleoperated mode, manually
controlling the movements of the elevation platform (Figure 12b) and the arm (Figure 12c).
Finally, the undocking maneuver was performed (Figure 12d).
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Figure 12. Indoor experiments installing the charging station using the elevation platform and the
robotic arm with end effector: (a) MLMP perched on the line; (b) elevation platform positions the
charging station on the cable; (c) robotic arm actuates the worm gear with an ad hoc end effector to
close the clamp; (d) undocking of the MLMP and the charging station.

In addition, a second experiment was performed to test the mechanical coupling
between the drone and the charging station when the station is installed and the drone is
charging its batteries.

The second set of experiments was conducted in a similar but larger mockup at
an outdoor facility at the ATLAS Tactical Centre in Spain. The same experiments were
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carried out as in the laboratory mockup but, this time, fully autonomously. The results
demonstrated the installation of the station and the coupling between the MLMP and the
charging station. More details about the results of the outdoor mockup can be found in
Supplementary Materials Video.

Finally, the third set of experiments was carried out on a real power line (Figure 13).
The aim was to perform a charging maneuver by coupling the MLMP to the station already
installed on the cable (Figure 13a). The MLMP performed the maneuver of approaching the
power line. The vehicle then perched on the line (Figure 13b) and moved along the cable to
approach the charging station (Figure 13c). Finally, the UAV performed the coupling of the
MLMP to the charging station (Figure 13d).
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Figure 13. Real power line experiments: (a) MLMP flight to overhead power line; (b) MLMP perched
on the line; (c) MLMP moving along the cable; (d) coupling of the MLMP with the charging station.

These tests validated the mechanical design of the charging station, MLMP and end-
effector integration in a real operational environment.

5. Discussion

This paper presents a novel charging station for drones that exploits power line
magnetic fields. We propose the use of an inductive harvester to charge the drone’s
battery. This approach is based on an easy-to-install charging station that can be deployed
by a multirotor drone on an overhead AC power line without modifying the electrical
infrastructure. A lightweight drone charging station capable of harvesting 145 W of
power at a 600 A line current is reported. This research provides evidence that harvesting
technology is suitable for powering multirotor drones with perching capabilities. The
results suggest that aerial robotic manipulators can provide a cutting-edge technology to
ensure the safety and quality of the electrical grid, minimize hazardous work and reduce
maintenance costs.

These results are part of the Aerial-Core project and establish a first approach for
research projects focused on aerial robotic manipulation on overhead power lines. Further
research is required to maximize energy density, improve energy harvesting and conversion
efficiency for drone charging stations and simplify the design of drone and robotic effectors.
The development of wireless coupling between charging stations and drones can help to
universalize this technology for multiple purposes. A long-term demonstrator in a real
environment is also required to provide further information for research.
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