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Abstract: For biological groups, the behaviors of individuals will have an impact on the alignment
efficiency of the collective movement. Motivated by Vicsek’s pioneering research on self-organized
particles and other related works about flocking behaviors, we propose two mathematical models
based on the local information of individuals to include more realistic details in the interaction
mechanism between individuals and the rest of the group during the flocking process. The local
information of the individual refers to the local consistency, representing the degree of alignment with
its neighbors. These two models are the self-introspection model, where the process of orientation
adjustment of one individual is ruled by the degree of local consistency with the neighborhood, and
the credit evaluation model, where the average orientation of the neighborhoods is weighed using
the local consistency of the interacting individuals. Different metrics are calculated to analyze the
effects of the model parameters and flocking parameters on groups. Simulation calculations indicate
that the two improved models have certain advantages in terms of alignment efficiency for the group.
Finally, the optimal model parameters are determined, and the effects of random noise on groups
with a single behavior and mixed behaviors are analyzed. The results confirm that individuals with
mixed behaviors still possess robustness against noise. This research would contribute to the further
interdisciplinary cooperation that involves biology, ethology, and multi-agent complex systems.

Keywords: self-organized; flocking; swarm; collective dynamics; Vicsek model; interaction
mechanism

1. Introduction

Collective behavior occurs throughout real biological systems, from cells [1] and
bacteria [2] to fish [3], birds [4], mammals [5], and even humans [6]. The amazement of the
collective motion is that the simple interactions between neighbors result in a variety of
collective behaviors with coordinated patterns. Self-organized flocking is one of the most
common collective behaviors of animals, which helps animals to escape from unsuitable
climates [7], avoid predators [8], and reduce the hesitation time of individuals so as to win
more foraging opportunities and rest time [9]. The collective motion of biological entities
has garnered attention from experts across various fields, underscoring the paramount
importance of studying individual behaviors.

Over the years, the research on collective behavior in nature mainly focus on two
aspects: tracking experiments and theoretical modeling. Experts who pay attention to
tracking experiments are generally committed to finding or explaining the collective char-
acteristics of specific biological species at the macro level [10–12], while the study of local
microscopic interactions between individuals is still a great challenge. For the research

Appl. Sci. 2023, 13, 10361. https://doi.org/10.3390/app131810361 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810361
https://doi.org/10.3390/app131810361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3772-8340
https://orcid.org/0000-0002-4484-8885
https://doi.org/10.3390/app131810361
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810361?type=check_update&version=1


Appl. Sci. 2023, 13, 10361 2 of 20

on the interaction mechanism between individuals and neighbors in a group, theoretical
modeling provides an effective way to capture this interactive behavior in detail [13,14]. In
particular, there are many similarities between the amazing collective behavior in nature
and that in statistical physics, which greatly inspired researchers to describe collective
behavior in biology within the conceptual framework of statistical physics [15,16]. From the
perspective of statistical physics, theoretical modeling also obtains the global characteristics
from the local interaction of individuals.

However, it needs to be pointed out that the interaction between individuals in theoret-
ical modeling does not originate from physical laws but should follow complex biological
processes. Most tracking experiments and theoretical modeling in the past believed that
the local interaction behaviors between individuals in a group are identical [17,18]. In the
well-known Vicsek model proposed in 1995 [17], the system can be seen as a complex
network with interactions between individuals [19,20] in which individuals are repre-
sented by nodes, and the edges between nodes represent interactions between individuals.
The interactions between individuals are assumed to follow an identical simple rule. Al-
though the interaction rule follows such a relatively simple assumption, the Vicsek model
is definitely a pioneering work that provides a framework for research on heterogeneous
individuals and interaction mechanisms. Over the past several decades, there has been
a diverse exploration from the viewpoint of statistical physics on how to accelerate the
alignment of particles. Mishel George et al. [18] proposed two improved Vicsek models,
namely the overcorrected Vicsek model (OVM) and the gradient-adjusted Vicsek model
(GAVM). It has been validated that these improved models have certain advantages in
terms of convergence efficiency. Building on this research, Zhao et al. [21] further enriched
the model’s content. Zou et al. [22] studied a self-propelled multi-agent system, empha-
sizing the influence of the visual angle between neighbors and the central individual on
collective behavior. Through simulation calculations, they found that optimal parameters
exist to achieve consistency in the self-driven system. Strategies for adaptively adjusting
speed have also attracted widespread attention. Zhang [23] and Zhao [24] improved the
original model to be variable in speed and, compared with the original model, concluded
that the convergence time has a certain advantage. Previous research has mostly focused
on improving the system’s convergence time, often overlooking the role of the mathe-
matical model itself in describing the behavior of biological entities. Actually, in recent
years, it has become widely acknowledged that most biological individuals in a group
may have different cognitive abilities when interacting with neighbors [25]. Individual
heterogeneity represented by nodes with different properties can affect collective behavior,
and previous studies have shown that collective systems with heterogeneous individuals
can improve the performance of collective motion [26–28]. Similarly, from the perspective
of complex networks [29,30], social interaction represented by edges between nodes is
also heterogeneous; that is, there are differences in interaction mechanisms [31], which
also conform to real biological behavior. Some research on theoretical modeling considers
that the interaction behavior between individuals and neighbors should be variable with
time [32]. Therefore, the social networks of real biological groups should be weighted,
which is reflected in the different levels of attention of individuals to their neighbors [33,34],
thus leading to different interaction strengths. Such an interaction mode has been proven to
have an important impact on collective movement, and it is even closely related to effective
information transmission between natural creatures [35,36].

From the above considerations and inspiration, more detailed models are still needed
to depict the interaction behaviors of real biological individuals. To this end, in this
paper, we propose a framework consisting of two novel mathematical models to study
the flocking behavior under different interaction mechanisms. Our two proposed models,
the self-introspection model (SIM) and the credit evaluation model (CEM), focus on two
different interaction mechanisms: self-introspection and credit evaluation, respectively.

The self-introspection mechanism is motivated by the fact that some biological individ-
uals can recognize the difference in orientations between themselves and neighbors within
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the scope of perception due to empirical learning [34,37] and thus make an appropriate
adjustment based on their own states. In our first model, the SIM, self-introspection is
reflected in the orientation adjustment of the individual. If the local alignment perceived
by individuals is relatively poor, then the adjustment of an individual orientation should
be more significant. As the group gradually tends to be highly aligned, the smaller ad-
justment of an individual orientation is enough to achieve group stability. On the other
hand, the second mechanism we focused on, the credit evaluation mechanism, also comes
from the observations of biological groups in nature. As the literature reveals, individuals
are capable of evaluating the reliability or credibility of their neighbors through long-term
group life and experience [38]. In some scenarios, some individuals’ orientations maybe
not be beneficial to achieving orientation consistency in groups. Therefore, the individual’s
evaluation of neighbors needs to be weighted according to their credibility, and the orienta-
tions of the neighbors with high credibility should be more valuable [39]. In our second
model, the CEM, credit evaluation refers to the individual’s evaluation of the credibility of
his or her neighbor’s orientation, where credibility characterizes the alignment between
the neighbor and his or her neighbors.

In both models, a common and key parameter is the alignment degree between
individuals and their neighbors, which we call local consistency. Local consistency is
one of the state attributes of individuals, and our proposed models, the SIM and CEM,
are able to describe well the two interaction mechanisms of self-introspection and credit
evaluation, respectively. We provide a detailed analysis of the two proposed models and
determine the optimal parameters through numerical simulations. It is proven that both
the group with the SIM and the group with the CEM achieve global consistency of the
orientations more quickly than the group with the well-known Vicsek model (VM) and also
have better performance against uncertain noise. Furthermore, mixed groups with these
two different interaction mechanisms show better performance than that with a single
behavior represented by the SIM in achieving the consistency of collective orientation. This
is consistent with a common conclusion in nature, which is that behavioral differences
between individuals play a fundamental role in promoting the movement and function of
animal groups [40].

The rest of this paper is organized as follows. In Section 2, after introducing the well-
known Vicsek model, we propose two novel mathematical models corresponding to two
interaction mechanisms based on local consistency. Then, Section 3 carries out simulation
calculation and analysis of the flocking, while Section 4 concludes this paper.

2. Models

In this section, we first briefly review the original Vicsek model. Then, the concept of
local consistency is introduced, and two mathematical models, the SIM and CEM, which
correspond to two interaction mechanisms are proposed.

2.1. Vicsek Model (VM)

The original Vicsek model [17] is a multi-particle swarm model, where N particles
are initially distributed randomly within an L× L square with a periodic boundary. All
particles have the same magnitude of velocity, and for every particle, its orientation is
determined by the average orientation of all the particles in its neighborhood, which is
defined by a circle with a radius r around this particle. Thus, the position of the ith particle
~xi is updated according to

~xi(t + ∆t) = ~xi(t) + ∆t ·~vi(t), i = 1, 2, · · · , N, (1)
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where ∆t > 0 represents the time step increment and ~vi = v0(cos θi, sin θi)
T is the velocity

of the ith particle at time t. It has a constant speed v0 > 0 and an orientation θi(t), which is
updated according to the following rule:

θi(t + ∆t) = arctan
∑j∈Di(t) vj sin(θj(t))

∑j∈Di(t) vj cos(θj(t))
+ ∆θi, (2)

where Di(t) = Ni(t) + {i} and Ni(t) represents the set of neighbors of the ith particle at
time t; that is, Di(t) refers to the set of i’s neighbors together with the ith particle itself.
∆θi is the noise randomly distributed in the interval [−η/2, η/2], whose amplitude is
determined by η > 0. In particular, in Equation (2), if η = 0, then the system is regarded
as noiseless.

In the original Vicsek model, global consistency is used to measure the alignment
degree of all particles [17]. The specific expression can be expressed as

φ =

∣∣∣∣∣ ∑N
i=1~vi

∑N
i=1|~vi|

∣∣∣∣∣, 0 ≤ φ ≤ 1. (3)

It can be seen from Equation (3) that if all the individuals are moving in the same
orientation, then φ goes to one, and if the orientations of all the individuals are randomly
distributed, like at the beginning, then φ tends toward zero. In ref. [17], Vicsek et al.,
concluded that, through the rule in Equation (2), all the individuals driven by Equation (1)
will move in the same orientation (i.e., φ→ 1) after a period of time under the condition
of high density (quantity divided by area) and insignificant noise. In other words, in the
original Vicsek model, the consistency of orientation is achieved through the simple rule of
average orientation.

2.2. Two Models Based on Local Consistency

Based on the original Vicsek model and the inspiration of biological behavior, we
introduce two interaction mechanisms among individuals, according to which we propose
two mathematical models to describe the individuals’ behaviors in flocking.

2.2.1. Interaction Mechanisms under Local Consistency

Generally, individuals in a group cannot observe the global situation. Therefore, indi-
viduals need to rely on perceiving surrounding environments to make decisions that suit
the orientation of the group. The Vicsek model skillfully describes this process, which can
achieve group alignment only through a simple interaction mechanism between individu-
als. Each individual tries to achieve alignment with the neighbors via Equation (2), and
finally, global consistency is achieved; in other words, this is a transition process from local
consistency to global consistency. Therefore, the achievement of local consistency is the
premise for the group to achieve global consistency. Considering this, we define a specific
metric of local consistency as

φi(t) =

∣∣∣∑j∈Di(t)~vj

∣∣∣
∑j∈Di(t)

∣∣~vj
∣∣ , i = 1, 2, · · · , N. (4)

It is clear that φi(t) indicates the consistency degree of the ith individual with all the
individuals in its neighborhood within a radius r. Obviously, this value is between 0 and 1
(0 ≤ φi(t) ≤ 1).

In fact, local consistency will also have an impact on the individual’s update rule.
Biologists have confirmed that local consistency will directly affect the information trans-
mitted between individuals and the synergistic benefits [41]. Local consistency can not only
be used to measure the differences between individuals and their neighbors for making
decisions but can also be regarded as a measure of credibility to evaluate neighbors. In
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order to investigate the roles of local consistency in the interaction mechanisms between
individuals and then analyze how the interaction mechanisms affect the flocking behaviors,
we introduce two interaction mechanisms with local consistency as the key factor, which
are self-introspection and credit evaluation.

The first type is self-introspection, in which the individual constantly measures the
difference in orientation between him or herself and the surrounding neighbors. The differ-
ence is not only used to generate the expected orientation but also as a key factor to decide
how much effort the individual should take. Such differences are accurately depicted by
local consistency in our work. The significance of the self-introspection mechanism allows
the individual to adjust his or her orientation according to the local environment instead of
blindly following the average rule. Specifically, under the self-introspection mechanism,
when the consistency between the individual and its neighbors is high, the individual just
makes smaller changes compared with the average orientation to make the group more sta-
ble, whereas if the consistency is poor, then the individual intends to make larger changes
to obtain the best orientation in the sense of speeding up the progress of group alignment.

While another type is based on credit evaluation, where the individual evaluates
his or her neighbors and then decides how much he or she can believe them, Giorgio
Parisi et al. [42–44] conducted extensive research on the impact of predators on collective
behavior, encompassing both quantitative and qualitative descriptions of the formation
of wave systems within flocks of birds. Their work also emphasizes that the behavior
of a group is based on individual models, even though studying individual behavior
can be both challenging and intricate. While the cognitive capabilities of an individual
were understood well, the evaluative abilities were intricate. Collective behavior is the
result of interactions between individuals, and such interactions may include mimicking
the forward tendency of neighbors and gauging the distance with neighbors to avoid
collisions. By the same token, the evaluative capability possessed by an individual can
also be understood as the heterogeneity in the interaction between the individual and
its neighbors (i.e., the sensitivity to changes in the neighbor’s direction and speed) [45].
For instance, the capability for credit evaluation can also be perceived as the individual
being more sensitive to neighbors with better alignment and being more inclined to mimic
their speed tendencies. As such, this behavior is more conducive to aligning the group’s
direction. According to different measurements, individuals evaluate their neighbors in
various ways. For example, biological individuals are generally more willing to imitate the
behaviors of their closer neighbors, which is a way to evaluate neighbors based on distance.
Aside from that, biologists have found that individuals in a swarm have varying strengths
of interaction with their neighbors [46]. In animal groups, some individuals are more
skillful and talented, and thus others prefer to believe in and imitate them. In the scenario
considered in this work, where individuals in a flock want to keep the same orientation,
it is natural to evaluate the credibility of an individual by its local consistency; that is,
the local consistency of an individual is an effective index for showing the individual’s
credit. Since local consistency reflects the degree of alignment between an individual and its
neighbors, the better the local consistency of an individual, the more credible and valuable
the orientation of this individual, whereas if the local consistency of an individual is poor,
then the orientation of the individual is not worth referring to for the one who wants to be
aligned with all other individuals. This kind of credit evaluation interaction mechanism
encourages individuals to accurately identify the information of their neighbors and thus
to try to follow the orientation that may be most correct.

2.2.2. Two Models

To fully explore the roles of local consistency in the above two interaction mechanisms,
we propose two novel models, the self-introspection model (SIM) and credit evaluation
model (CEM), which endow two interaction mechanisms between individuals. These two
models both exploit local consistency as the local information for individuals to take action.
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(1) Self-introspection model (SIM)

In the original Vicsek model, the orientation of the individual is obtained by averaging
the orientations of all neighbors within the interaction radius. Based on this rule, we
introduce the key factor of local consistency and consider a weighted model for adjusting
the orientation; that is, individuals need to make real-time judgments based on their
alignment with their neighbors (i.e., local consistency) to make suitable decisions. Therefore,
we propose the self-introspection model (SIM):

θi(t + 1) = θi(t) + e
1
2 [1−φi

α(t)][θ̂i(t)− θi(t)
]
+ ∆θi, (5)

where θi(t) is the orientation of the ith individual at time t, θ̂i(t) is the average orientation
of its neighbors, and ∆θi is the noise randomly distributed in the interval [−η/2, η/2],
whose amplitude is determined by η > 0. Additionally, φi(t) is the local consistency
defined in Equation (4), and α ≥ 0 is an adjusted index. It is worth pointing out that if
α = 0, then the self-introspection model (SIM) degenerates into the original Vicsek model,
while if α→ +∞, then this model is a fixed-weight model, and the characteristics of this
type of model can be found in [18]. The specific relationship among these orientations in
Equation (6) is shown in Figure 1.

Figure 1. Illustration of the self-introspection model (SIM), where R represents the interaction radius
of the ith individual, θi(t) is the orientation of the ith individual at this moment, θi(t + 1) is the
orientation of the ith individual at the next moment, and e

1
2 [1−φi

α(t)] is the weight of the difference
between the average orientation θ̂i(t) and the current orientation θi(t).

One can conclude from the model that, at the initial stage of flocking where the local
consistency is usually poor, individuals must make great efforts to cooperate with the
group behavior. But along with the stabilization of the flocking orientation, the changes
in individuals’ orientations will be gradually decreased until the group moves forward
steadily in the same direction. When the group is gradually stablized, smaller changes in
orientations are more conducive to the formation of this steady state, while larger changes,
at this time, may drive the system to deviate from the steady state.

On the other hand, when an individual is a neighbor of others, his or her influences
will also vary with the local consistency. In this sense, the local consistency of the individual
can be regarded as his or her credibility. An example is shown in Figure 2, where j and k
are two neighbors of individual i. From the perspective of the degree of alignment within
their own neighborhood, namely the local consistency, for individual i, neighbor j is more
reliable than neighbor k on the orientation. The SIM is equivalent to the traditional Vicsek
model with uniform weights, while the CEM uses varying weights.
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Figure 2. Illustration of interactive relationships between individuals in the credit evaluation model
(CEM). Di(t) represents the set of neighbors of the ith individual at time t, while j and k are two
neighbors of i in Di(t).

(2) Credit Evaluation Model (CEM)

Considering these, we take the local consistency as credibility and integrate it into the
original Vicsek model in the form of weight. If the credibility of the neighbor is better, then
the weight of the impact on the individual is greater.

Now, we propose the second model, which is the credit evaluation model:

θi(t + 1) = arctan
∑j∈Di(t)(Wij × sin(θj(t))

∑j∈Di(t)(Wij × cos(θj(t))
+ ∆θi, (6)

where Wij is the weight of the jth individual in the average orientation algorithm of the
ith individual and Di(t) the set of i’s neighbors together with the ith individual him or
herself. If individual i has no neighbor at time t (i.e., Di(t) = {i}), then the orientation does
not change. When employing local consistency, Wij is obtained according to the following
formula:

Wij =
φj

β(t)

∑j∈Di(t) φj
β(t)

, (7)

where φj(t) is the local consistency of individual j and is given by Equation (4), β ≥ 0 is
the exponential adjustment index of the local consistency, and ∑j∈Di(t) φj

β(t) is used to
make a normalization of the weight. In this paper, β < 0 is not taken into consideration
because the system in this case is no longer convergent after calculation verification. In
addition, β = 0 means each neighbor has the same weight, and at this time, the model in
Equation (6) degenerates to the original Vicsek model.

The significance of this model is that if one neighbor of an individual has better local
consistency, then this neighbor contributes more to the average orientation of the individual,
rather than all of the neighbors contributing identically. As previously mentioned, in bio-
logical swarms, interactions between individuals are diverse. The intensity or sensitivity of
interactions depends on the behavior of the neighbors. If a neighbor’s behavior is beneficial
to the collective behavior (such as alignment), then an individual is more sensitive to such
a neighbor. In the CEM model, we represent whether or not this is conducive to group
alignment through the local consistency. Overall, using terms related to local consistency to
represent the interaction strength between individuals and their neighbors (i.e., the weight
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of the reference direction for velocity updates) will contribute to efficient alignment of the
group. This mechanism is more consistent with natural biological law.

The above two models depict two different interaction mechanisms, which may have
different effects on flocking behaviors. To make it clear, we refer to α and β in these two
models as model parameters and refer to (v, r, N, η) as flocking parameters. Next, the models
are analyzed in depth based on different metrics.

3. Simulations and Discussions

To investigate the effects of our proposed two models, the SIM and CEM, on flocking,
we carried out numerical simulations without and with noise and compared them with the
original Vicsek model. Furthermore, we investigated the performance of the mixed group
consisting of two types of individuals using the SIM and CEM.

In each scenario, N individuals moved in the two-dimensional L× L plane with a
periodic boundary. Their initial positions and orientations were randomly assigned, and the
individuals’ speeds were fixed and identical. In this paper, we characterize the collective
behaviors in the simulations using the following four metrics:

The global consistency φ, as defined in Equation (3), was used to evaluate the degree of
consistency of all individuals’ orientations within the system.

The convergence time T is the time required for the global consistency φ of all individuals’
orientations to reach the critical threshold φthre, which was set to judge whether the system
converges or not.

Cumulative global consistency S is defined as the accumulation of the area between
global consistency and discrete time throughout the flocking process. This metric was
used to measure the convergence efficiency of the flocking throughout the process and was
calculated as follows:

S(Γ) =
1
2 ∑Tmax

t=1 [(φ(Γ, t− 1) + φ(Γ, t)]∆t, (8)

where Tmax is the maximum simulation time, Γ = (α, β, v, r, N, η)T represents the model
parameters (α, β) and flocking parameters (v, r, N, η) that affect the global consistency φ,
α and β are derived from Equations (5) and (7), respectively, v and r are the speed and
the interaction radius of the individual, respectively, N is the total number of individuals,
and η is the noise of the system. If the flocking motion converges faster during the same
time period, then S(Γ) will be larger.

The final global consistency φη is the average value in the last period of time of a
simulation, and it was used to indicate the final performance of the group with noise, since
the group with noise usually could not achieve φ ≈ 1 like the one without noise. We
calculated the final global consistency in t ∈ [ 2

3 Tmax, Tmax] as follows:

φη =
3

Tmax
∑Tmax

t= 2
3 Tmax

φ(t). (9)

To obtain the above four metrics, we carried out many simulations with different
initial configurations. Specifically, we first generated various initial configurations of N
individuals and packed them into a set P. Then, for every simulation, we assigned a set of
initial positions and orientations to N individuals and started the simulation. The positions
and orientations of the individuals were updated using different models (i.e., the VM,
SIM, and CEM), and φ was calculated at every time step. If φ < φthre, then the simulation
iteration would continue, and if φ ≥ φthre, then the simulation was terminated, and the
convergence time was recorded as the time of this moment T. If φ < φthre until the
maximum simulation step, then the maximum simulation step (Tmax) was taken as the
convergence time. The specific algorithm is shown in Algorithm 1.
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Algorithm 1:
Step 1. Randomly assign the position (xi, yi) and velocity (vi, θi) for ith

individual, i = 1, 2, · · · , N, with (xi, yi, θi) ∈ P, vi = v is a constant.
Step 2. for t = 1 to Tmax do

Update the position and orientation of each individual using Equation (1) and
orientations of the VM, SIM, and CEM represented by Equations (2), (5), and (6),
respectively;

Calculate the current global consistency φ(t) using Equation (3);
if φ(t) ≥ φthre then

break
t = t + 1;

Step 3. Set T = t.

3.1. Noise-Free Calculation and Analysis

Our two proposed mathematical models mainly include two types of parameters,
namely model parameters (α, β) and flocking parameters (v, r, N), which together affect
the collective behavior. Using different metrics, the VM, SIM, and CEM without noise are
analyzed comprehensively. We first investigate the influence of these parameters on the
performance of the proposed models. Then, we explore the optimal model parameters
of the two proposed models under different metrics. Finally, we illustrate the different
influences of different interaction mechanisms on flocking behaviors by comparing these
three models using different metrics.

3.1.1. Influence of Parameters on the Convergence Time T

The collective system can be seen as a complex social network, where the flocking
parameters r and N under a fixed speed v directly affect the connectivity of the network.
Otherwise, different speeds of individuals affect the frequency of information exchange
in complex networks. Therefore, the flocking parameters (v, r, N) and model parameters
(α, β) jointly determine the interaction mechanisms of individuals. The impact of the model
parameters and flocking parameters on the collective behavior were analyzed qualitatively
and quantitatively with the convergence time T as the metric. We kept L fixed and changed
N to change the density ρ, where ρ = N/L2. The convergence time T has been described
before, and we set a threshold of φthre = 0.95.

We first kept the speed of flocking individuals fixed as a constant and analyzed the
influence of the density in the system and the interaction radius r on the convergence time
T. It can be seen from Figure 3 that the convergence time of the two models decreased as
the interaction radius and density increased, which is similar to the original Vicsek model.

The main reason for this is ρ and r are not only the main parameters affecting the
local consistency φi but also the main factors of the topology network of the group. If the
flocking density ρ is kept as a constant, then increasing the interaction radius r within
a certain range is equivalent to increasing the connectivity of the network, thus adding
more references (neighbors) to each individual. Therefore, the time from disorder to order
of the collective will be greatly reduced. On the other hand, if the interaction radius r is
fixed, and the density ρ is increased, then the connectivity of the local network will be
increased, the local information obtained by the individual will be more valuable, and the
convergence time of the group will also be reduced. It is obvious that reducing the flocking
density or the interaction radius will gradually lead to a less connected network, and thus
the convergence time will increase. To sum up, the density and interaction radius are both
the main flocking parameters that affect the complex network of a group.
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(a) (b)
Figure 3. Convergence times T under different individual numbers N and interaction radii r for
(a) SIM (α = 1) and (b) CEM (β = 1). N individuals move into the square 2D area (L = 5).
The number of individuals N increases from 50 to 550, and the interaction radii r increases from 0.5
to 1.5. The convergence time T is obtained from the average of 500 independent noise-free runs.

Next, the speed was selected as the main parameter and combined with the interaction
radius to further analyze the impact of the flocking parameters on collective movement.
Through the simulation analysis, we found that the amplitude of the individual speed
also affected the convergence time of the flocking. Figure 4 shows a comparison of the
convergence times T for the VM, SIM, and CEM under different flocking parameters (v,
r). Within a certain range, increasing the speed can significantly reduce the convergence
time of flocking, as shown in Figure 4. This is because increasing the speed is equivalent to
increasing the frequency of information exchange between individuals.

Figure 4. Convergence times under different speeds v and interaction radii r for three models.
From top to bottom are the VM, CEM (β = 1), and SIM (α = 1). Here, 300 individuals move
into the square 2D area (L = 5). The speed v of individuals increases from 0.03 to 1.03, and the
interaction radius r increases from 0.4 to 1.4. The convergence time was obtained from the average of
500 independent noise-free runs.

Through the above analysis, it can be known that the flocking parameters (v, r, N)
determined the convergence time T of the group, given that the model parameter α = β = 1.
In order to further explore the quantitative relationship between the two parameters r
and N that affected the connectivity of the topology network, the model parameters (α,
β), and the convergence time T, extensive numerical simulations were performed with a
fixed velocity amplitude (v = 0.03). The results are shown in Figure 5, and the relationship
between them was found to be

T ∼
(

r2 ln N
)m

, (10)

where m is the slope of the double logarithmic linear fitting, which is mainly determined
by the model parameter α or β. However, as the model parameters increased, this linearity
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became worse, especially when α > 3 and β > 3. Meanwhile, we also verified the above
conclusion from Figure 5 again that the convergence time will decrease along with the
increase in the number of individuals N and their interaction radius r.

(a) (b)

Figure 5. Convergence time T as a function of r2 ln N. The different parameters α of the (a) SIM and
β of the (b) CEM can be fitted well in the double logarithmic coordinate. Speed is fixed at v = 0.03,
and control parameters r and N vary from 0.5 to 1.5 and from 50 to 550, respectively. Each point is
obtained from the average of 500 independent noise-free runs.

It can also be seen from Figure 5a,b that within a certain range, if the flocking parame-
ters were fixed, then the convergence time decreased with the increase in model parameters
α or β. However, the fitting slope shows different trends. The fitting slope in Figure 5a
increases with the increase in α, while the variation shown in Figure 5b is exactly the
opposite, and the fitting slope decreases with the increase in β. This is because the increase
in α weakened the effect of local consistency in the SIM, gradually tending toward a change
in orientation with a fixed weight, as well as weakening the influence of parameters N
and r on the convergence time. In sharp contrast to the SIM, as the model parameter β
of the CEM increased, the effect of local consistency would not be weakened due to the
introduction of weight normalization in Equation (7), and thus the fitted slope merely
decreased slightly.

To show the relationship between m and α and β more clearly, further numerical
simulations were performed, and the results are shown in Figure 6. Based on the metric of
the convergence time, there were linear relationships between the model parameters and m
in Equation (10); that is, m = 0.0714α, and m = −0.0417β. Therefore, Equation (10) can be
rewritten as Equations (11) and (12) to represent the relationships among the convergence
time T, flocking parameters (r, N), and model parameters (α, β) of the SIM and CEM,
respectively.

T ∼
(

r2 ln N
)0.0714α

, (11)

T ∼
(

r2 ln N
)−0.0417β

. (12)

However, as the individual’s speed increased, these relationships were no longer valid.
The relationships between m and α, β are nonlinear and irregular when v is large.

In summary, the model parameters and flocking parameters affected the flocking
behavior together in a certain range of parameters. Specifically, the connectivity of the
network whose main parameters were the interaction radius and density as well as the
interaction mechanisms of individuals jointly affected flocking.



Appl. Sci. 2023, 13, 10361 12 of 20

Figure 6. Exponent m as a function of model parameters α and β. The range of model parameters
is from 0∼5, and other parameters are the same as in Figure 5. Each point was obtained from the
average of 500 independent noise-free runs.

3.1.2. Optimal Values of the Model Parameters

Although the quantitative relationship among the parameters in the models was
explored from the perspective of the convergence time, Figure 5 also shows that the
convergence times for specific flocking parameters and model parameters did not always
follow such a quantitative relationship.

In order to find the optimal values of α and β, we carried out simulations with
different values of α and β in the range of [0, 5] using the SIM and CEM respectively.
By comparing the convergence time T and cumulative global consistency S, the optimal
values of α and β, denoted by αopt and βopt, respectively, were determined under different
flocking parameters.

We first investigated the optimal values under the metric T. Figure 7a shows that under
the constant density and interaction radius of the group, the optimal model parameter
αopt of the SIM gradually decreased as the individual speed v increased. In particular,
the optimal parameter α = 0 when the speed v ≥ 1.2, which is exactly the same as the VM.
This means that the Vicsek model has more advantages in terms of convergence time when
the speed v is higher, while the model parameter βopt of the CEM slightly decreased with
the increase in v.

The interaction radius of an individual also affects the optimal value of the model,
which can be drawn from Figure 7b. When the density and speed of the group were
constant, the optimal model parameter α of the SIM increased first and then decreased with
the growth of the individual interaction radius r. Conversely, the optimal parameter β of
the CEM decreased first and then increased with the increase in the interaction radius r. We
tried to understand these two different trends from the perspective of the mechanisms of the
two models. Under the condition of a small interaction radius, the interaction mechanism
of self-introspection (SIM) made the individual have fewer neighbors to refer to, and the
average orientation of the neighbors was not particularly reliable. Therefore, it is not
necessary for the individual to use the interaction mechanism of self-introspection to move;
instead, individuals adopt a fixed-weight interaction mechanism, which means α is large.
A larger interaction radius increased the number of neighbors, and reliable information
about the neighbors made individuals interact with neighbors in a more introspective way
(αopt became smaller). Especially when r increased to a certain extent (r > 1.8), individuals
were more inclined to the average orientation of the neighbors (α = 0, Vicsek model).
For βopt of the CEM, when r was small, there were fewer neighbors, and an individual
could not give much credit to a neighbor even if he or she was more reliable, and thus
βopt was usually under two. In the case of larger r values, this means that the increase
in neighbors would make individuals pay more attention to the neighbors with better
alignment, and thus βopt was large and usually around three. As for the density of the
individuals, as shown in Figure 7c, if the speed v and the interaction radius r of flocking
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were fixed, then the increase in density would barely affect the optimal parameters of the
SIM, which only fluctuated around 2.5∼3.5. However, the optimal parameter βopt of the
CEM would increase first and then decrease slightly.

(a) (b) (c)

Figure 7. Variation in αopt, βopt measured by convergence time T against N, v, and r. Selected
flocking parameters: N = 300, v = 0.03, and r = 1. In the subgraph, two parameters are fixed,
and another parameter changes within a certain range. Each point was obtained from the average of
500 independent noise-free runs.

On the other hand, the optimal parameters of the proposed models were measured by
the cumulative global consistency S, as shown in Figure 8. By comparing Figures 7 and 8,
it can be seen that the optimal parameters of the models were slightly different, but the
change trends were similar. Figure 8a shows that the optimal values of α and β decreased
overall, which is similar to Figure 7a. The trends between the results of Figures 7b and 8b
are similar as well. The most obvious difference is the influence of the density on the
optimal model parameters. Compared with Figure 7c, the optimal parameters of the SIM
in Figure 8c slightly decreased, while βopt for the CEM in Figure 8c was a little different in
terms of amplitude and change trend from Figure 7c. Therefore, the optimal parameters
αopt and βopt of the two models obtained by the two metrics behaved similarly in the
relationship with the flocking parameters (v, r, N), which also verifies the reliability of
the results.

(a) (b) (c)

Figure 8. Variation in αopt, βopt measured by cumulative global consistency S against N, v, and r.
Selected flocking parameters: N = 300, v = 0.03, and r = 1. In the subgraph, two parameters are
fixed, and another parameter changes within a certain range. Each point was obtained from the
average of 500 independent noise-free runs.

In summary, the optimal values of α and β changed under different flocking parameters
(v, r, N). Using different metrics T and S, the overall trends of αopt and βopt were similar,
although some slight differences existed. The studies in this subsection will be used to
select the optimal parameters of the two models, the SIM and CEM, according to different
flocking parameters.

3.1.3. Model Comparison

Our two proposed models not only depict the interaction mechanisms of individuals
in detail but also show advantages in the convergence efficiency. In the absence of noise,
the convergence time T, global consistency φ, and cumulative global consistency S are
discussed to compare the proposed models with the Vicsek model.
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As shown in Figure 5, there is the remarkable fact that within a certain parameter
range, both of the proposed models were superior to the original Vicsek model in terms of
the convergence time when the number of individuals and their interaction radius were
the same; that is, by using the SIM or CEM, the convergence was accelerated.

This conclusion can also be drawn from the previous discussion of the relationship
between the optimal parameters of the models and the flocking parameters. For instance,
Figures 7a and 8a show that the two proposed models had more advantages in terms of
convergence time and the cumulative global consistency than the original Vicsek model
(α = β = 0), except for v ≥ 1.2. Figures 7b and 8b can also lead to similar conclusions.
In particular, as shown in Figures 7c and 8c, the advantages of the proposed model can be
reflected in the case of a fixed speed and interaction radius, regardless of the density of
the group.

In order to compare the convergence efficiency of different models more intuitively,
we carried out specific simulations of different models under a set of flocking parameters,
where the SIM and CEM were under their optimal model parameters, and the global
consistency φ was used as the metric. The flocking parameters v = 0.03, N = 300, and
r = 1 were selected, and then the optimal model parameters of the SIM and CEM were
α = 1.7 and β = 1.4, which could be obtained from Figure 8. The result is shown in Figure 9.
This result shows that under the above parameter conditions, the two proposed interaction
mechanisms were superior to the Vicsek model in terms of global consistency φ, and the
self-introspection was superior to that of the credit evaluation.

Figure 9. Global consistency φ evolves with t for three models with different parameters without
noise. Initial speed v = 0.03, number of individuals N = 300, and interaction radius r = 1. Global
consistency φ was obtained from the average of 500 independent runs, and the convergence threshold
is 0.95.

Here, we want to emphasize the changes in the convergence efficiency of the three
models in Figure 9. In the first 3∼4 s, the convergence efficiency of the CEM was the
highest, and that of the SIM was the lowest. However, the SIM caught up with the other
two models after 4 s, which is one of the reasons why the model had different performance
under the two metrics T and S. The threshold φthre obviously not only determined the
convergence time but also affected the value of the cumulative global consistency. Therefore,
the convergence time T reflects the final performance of a model, while the cumulative
global consistency S focuses on the comprehensive performance of the whole process.

From Figure 9, it can be seen that the individuals with self-introspection (SIM) could
not find a superior way of adjusting the orientation for themselves in the early stage,
but with the narrowing of the difference between the movement orientation and the aver-
age orientation of their neighbors, they gradually adapted to the orientation consistency of
the group and effectively corrected the orientation. The individuals with credit evaluation
(CEM) chose to refer to the orientations of the neighbors efficiently, and thus the conver-
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gence efficiency was excellent in the first 3∼4 s. In the later stage, with the convergence of
the group orientation, the effect of this evaluation mechanism was no longer obvious, and
thus it was slightly inferior to that of the self-introspection (SIM) individual.

In order to provide a clearer exposition of the impact of the SIM and CEM on the
cluster system, a comparative analysis was conducted between these two models and
the original model, as depicted in Table 1. The individual speed for the cluster system
was chosen to be v = 0.03, and the convergence time was obtained from the average over
500 independent simulations. The outcomes aligned with those presented in Figure 9.

Table 1. Comparison of model convergence effects.

Simulation Settings Convergence Time T

Number of Individuals N Models r = 0.5 r = 1 r = 1.5

100
VM 139.08 18.80 5.42

SIM 112.81 14.38 5.18

CEM 135.22 15.60 4.35

300
VM 93.82 14.16 4.74

SIM 57.39 9.07 4.30

CEM 86.12 10.78 3.75

500
VM 84.93 12.93 4.70

SIM 43.65 8.33 4.38

CEM 78.51 10.45 3.82

From the perspective of the convergence time, in cases with smaller interaction radii
(r ≤ 1), the SIM model had certain advantages, and as the interaction radius increased, and
the number of individuals grew, the convergence time of the swarm was reduced. However,
in situations with larger interaction radii (r = 1.5), the CEM model exhibited the shortest
convergence time. From this, it can be inferred that individuals with a larger perception
range are better suited to models with varying weights, which facilitates alignment within
the swarm. Conversely, individuals with a smaller perception range tend to adjust their
directions continuously from their own perspectives.

In summary, only under a specific parameter configuration (such as v > 1.2 and
r > 1.9, shown in Figures 7 and 8) can the Vicsek model have certain advantages in terms of
the convergence efficiency or convergence time, while in most cases, the proposed models
are more advantageous.

3.2. Simulations with Noise

All the previous simulation calculations were based on the noise-free case. The group
would eventually achieve global consistency, and the value of the global consistency φ
would be close to one. However, groups are generally influenced by noise from individ-
uals, which reflects the uncertainty and the errors of the individuals’ motions. In order
to show the robustness of the two proposed models, noise was taken into account for
further analysis.

For the purpose of testing the performances of the proposed models and comparing
them to that of the Vicsek model, noise with the same amplitude, where ∆θ ∈ [−η/2, η/2],
was added to Equations (2), (5), and (6). The noise was selected to be as strong as η = 0∼4.5
to test the stability of these models. Using Equation (9), the final global consistency values
φη of the VM, SIM, and CEM are shown in Figure 10.
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(a) (b) (c) (d)

Figure 10. Final global consistency φη evolves with η for three models of optimal parameters with
noise added. Initial speed v = 0.03, interaction radius r = 1, while number of individuals (a) N = 50,
α = 2.5, β = 1.6, (b) N = 100, α = 2.3, β = 2, (c) N = 300, α = 1.7, β = 1.4, and (d) N = 850,
α = 1.6, β = 2.8. Final global consistency φη was obtained from the average of 500 independent runs.

In the noise-free case, it can be known from the above discussions that the flocking
would eventually achieve a global consistency φ = 1. However, after adding noise, the final
global consistency would be less than one. Figure 10 shows the effects of different noise
amplitudes on φη with different densities for the three models (VM, SIM, and CEM). Here,
we chose the flocking parameters (v = 0.03, r = 1), and the model parameters here (α, β)
were selected from the results in Figure 8c. In the case of lower noise, the global consistency
could be maintained between 0.9 and 1. As discussed above, the SIM has advantages in
terms of convergence time in the noise-free case, but it can be seen from Figure 10 that the
final global consistency φη of the SIM with noise was somewhat poor. In particular, when
the noise was larger (e.g., η = 2∼4.8), the ability of the SIM to resist noise was significantly
weaker than the VM and CEM, regardless of the number of individuals. For a large number
of individuals (Figure 10c,d), in the case with more noise, the performances of the VM and
CEM against the noise were similar.

As mentioned above, individuals in a group may have heterogeneous features. We
now investigate the case where the individuals in the group behave differently. We as-
sumed that the group included two kinds of individuals behaving according to the SIM
and CEM, whose numbers were NI and N − NI , respectively. We focused on the global
consistencies and stabilities against noise for the groups with different NI values under
specific parameters. We set the flocking parameters to v = 0.03, r = 1, and N = 300,
and the model parameters were α = β = 1. The noise amplitude increased from 0 to 4.8 in
the simulation. Numerical simulations were performed based on the above parameters,
and the final global consistency φη was recorded.

The flocking behavior showed characteristics different from those of a single type of
group under the influence of noise, as shown in Figure 11. Meanwhile, the groups with
different proportions of behaviors showed different noise resistance abilities. Although the
given model parameters were not optimal, the trend of the final global consistency of
the group system was similar to Figure 10 in that when the amplitude of the noise was
identical, the final global consistency of the group containing only the SIM (NI/N = 1)
was slightly lower than that of the group containing the CEM (NI/N = 0). When under
the lower amount of noise (η < 1), the final global consistency φη of the mixed group
could be maintained at about 0.9∼1. With the increase in the number of introspective
individuals, the stability of the group system against noise would decrease. This is because
the interaction mechanism of credit evaluation represented by the CEM is more inclined to
refer to the orientations of neighbors in a weighted way, which will weaken the influence
of noise on an individual orientation. This result is also shown in Figure 10. As the number
of individuals under the interaction mechanism of self-introspection represented by the
SIM increased, the robustness of the group became weaker, and the final global consistency
φη became smaller.
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Figure 11. Final global consistency φ evolves with noise η and individual faction of self-introspection
NI/N. N = 300 individuals move in a 2D plane with L = 5, with a fixed speed of v = 0.03
and interaction radius of r = 1. Final global consistency φη was obtained from the average of
500 independent runs.

4. Conclusions

In this paper, we explored two mechanisms that are ubiquitous in natural herds and
human society. The mechanism of self-introspection reveals that an individual will take
different efforts to catch up with others according to different gaps, while the mechanism
of credit evaluation reflects the fact that an individual may assign different credits to
different neighbors based on its evaluation. To evaluate these two mechanisms, we took
the Vicsek model as the raw model and proposed two novel models, the SIM and CEM,
by introducing the concept of local consistency. Using the SIM, the individuals decide the
degree of effort to make turns according to their own local consistency. Using the CEM,
the individuals determine the reference orientation by assigning different weights to their
neighbors’ orientations.

In order to show the effectiveness of the two proposed models, numerical simulations
were carried out for different models in both noise-free and noisy environments. We
designed three metrics—the convergence time, the global consistency, and the cumulative
global consistency—to evaluate the proposed models. It was found that there exists
a quantitative relationship between the convergence time and the flocking parameters,
and we further investigated the relationship between them and the model parameters.
Based on the selected flocking parameters, the convergence time and cumulative global
consistency were used as metrics to determine the optimal model parameters of the two
proposed models. Then, under the optimal model parameters, the advantages of the two
proposed models in terms of convergence efficiency were analyzed from the perspective
of global consistency. However, when there was noise, the two models both showed
poorer performance than that of the original Vicsek model. Furthermore, it was found
through numerical simulations that the groups with mixed behaviors of the two proposed
models had better performance compared with the groups with the single behavior of self-
introspection.

The findings obtained from this research may be valuable for the study of the mecha-
nisms of individuals’ behaviors in flocking in biology communities. Furthermore, this con-
clusion could also be applied to a distributed cluster of robots. Robotic swarms represent a
distinct domain of entities. Both robotic swarms and biological swarms exhibit collective
behaviors that self-organize through local perception among individuals, sharing many
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similarities in formation and behavior. While biological systems display higher complexity
across multiple levels (from molecules to organ systems) and possess a certain evolutionary
capacity, robots can mimic the behaviors of biological entities, responding to and making
decisions based on the surrounding individuals or the environment. The individual behav-
ior model proposed in this study can also be applied to robots, allowing the group to exhibit
enhanced adaptability and robustness when adapting to their environment. Future work
will concentrate on the more effective ways to combine these two mechanisms together to
simulate flocking behaviors.
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