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Abstract: The spectral cell method has been shown as an efficient tool for performing dynamic
analyses over complex domains. Its good performance can be attributed to the combination of
the spectral element method with mesh-independent geometrical descriptions and the adoption of
customized mass lumping procedures for elements intersected by a boundary, which enable it to
exploit highly efficient, explicit solvers. In this contribution, we introduce the use of partition-of-unity
enrichment functions, so that additional domain features, such as cracks or material interfaces, can be
seamlessly added to the modeling process. By virtue of the optimal lumping paradigm, explicit time
integration algorithms can be readily applied to the non-enriched portion of a domain, which allows
one to maintain fast computing simulations. However, the handling of enriched elements remains
an open issue, particularly with respect to stability and accuracy concerns. In addressing this, we
propose a novel mass lumping method for enriched spectral elements in the form of a customized
moment-fitting procedure and study its accuracy and stability. While the moment-fitting equations
are deployed in an effort to minimize the lumping error, stability issues are alleviated by deploying
a leap-frog algorithm for the solution of the equations of motion. This approach is numerically
benchmarked in the 2D and 3D modeling of damaged aluminium components and validated in
comparison with experimental scanning laser Doppler vibrometer data of a composite panel under
piezo-electric excitation.

Keywords: spectral cell method; spectral element method; partition-of-unity enrichment; mass matrix
lumping; moment-fitting

1. Introduction

The dynamic analysis of damaged domains is essential in several engineering appli-
cations, such as the study of impacts [1,2], seismic and hydraulic engineering [3,4], and
structural health monitoring with guided waves [5,6]. Despite the progress accomplished in
the last few decades, these technologies still involve a substantial computational cost, which
limits their reach [5]. Typically, the necessity of representing high-frequency eigenmodes
of a structure calls for high-resolution models, i.e., a fine discretization in both time and
space. The discontinuous and/or singular character of features such as cracks or voids
exacerbates these issues by complicating the modeling process, impacting the performance
of traditional finite element (FE) models and severely affecting the conditional stability
of explicit solvers [7–9]. In tackling these challenges, the engineer must adopt strategies
pertaining to three main aspects of a model, which, as expressed by the underlying physics
of wave propagation, are inevitably interlinked. These are: (i) a solution space appropriate
for the dynamic phenomena of interest (space discretization); (ii) an efficient and versatile
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method to represent localized features such as defects; and (iii) an efficient and stable
solution to the equations of motion (time discretization/integration).

For time integration, explicit solvers [10–12] can often outperform unconditionally
stable, implicit [13–15] ones, due to their higher efficiency in terms of both memory storage
usage and the number of operations. They require, however, the enforcement of stability
conditions [16], as well as a diagonal mass matrix [17]. Although stability conditions in
the form of a critical time step are coherent with the need for a fine time discretization,
severe restrictions leading to excessive computational costs can arise from the introduction
of very small elements in the meshing of details, as well as from discontinuities related to
damage or interfaces. Since these features are often localized, possible remedies involve the
adoption of leap-frog [18,19] or implicit–explicit (IMEX) [20–22] solvers. These strategies
allow one to restrict the use of smaller time steps and implicit algorithms, respectively, to
selected regions of the mesh, thus maintaining good performance for the majority of the
domain, where explicit solvers with larger time steps can still be used. Secondly, mass
lumping is a key aspect of explicit algorithms, as analysts are often willing to dispense
with the variationally consistent formulation of the mass matrix in favor of accelerated
solutions. With the exception of optimal lumping [23–25], it should be kept in mind that
these methods cannot guarantee the convergence properties associated with the variational
formulation and must therefore be intensively scrutinized.

Concerning space discretization, efficient methods for problems with smooth solu-
tions can be achieved via high-order shape functions, as in the p-version of the FEM
(p-FEM) [26–28], isogeometric analysis (IGA) [29–31], or the time-domain spectral element
method (SEM) [25,32–34]. In the context of elastodynamics, these methods demonstrate
similar capabilities in terms of evaluating the weak form in a variationally consistent
sense [35]; however, only the SEM in a Gauss–Lobatto–Legendre (GLL) nodal configura-
tion [36–38] offers a diagonal mass matrix within this formulation: an instance of optimal
lumping, which is achieved via the nodal quadrature method [17,23,24]. This enables the
deployment of explicit solvers without compromising accuracy, thus resulting in substantial
performance gains. For these reasons, the SEM in conjunction with an explicit solver has
seen widespread adoption in dynamic analysis [25,34,37,39,40].

Despite the effectiveness of high-order methods, when modeling damage, holes, or ma-
terial interfaces, one is faced with the limitations of meshing software and the unsuitability
of polynomial shape functions in approximating phenomena of a singular and/or discontin-
uous nature. Extended or generalized FE methods (XFEMs/GFEMs) [41–44] have enabled
to overcome these issues by deploying mesh-independent geometrical descriptions [45] of
these features, which are then used to locally supplement the solution space with partition-
of-unity (PU) enrichment functions [46–48] and to generate appropriate quadrature rules
for the evaluation of the weak form (e.g., [49,50]). In the presence of voids, the spectral cell
method (SCM) [51–56] combines this kind of integration with a mass lumping procedure
and a GLL spectral element (SE) mesh in order to perform dynamic analysis explicitly.
On the other hand, the adoption of an XFEM in this context has been mainly driven by the
study of dynamic crack propagation, which at first involved the use of IMEX [57] or fully
implicit [58] solvers. This was due to the absence of mass lumping strategies for enriched
elements and the near-zero mass coefficients [59] of nodes in the proximity of discontinu-
ities. To overcome this, Menouillard et al. developed customized mass lumping routines
for Heaviside enriched elements in 2D [7] and 3D [8] and demonstrated their excellent
stability properties. This formulation, which assumed the conservation of discrete kinetic
energy for rigid-body modes, was then generalized to arbitrary enrichment functions [60]
and combined with the Chebyshev version of the SEM [9]. Asareh et al. [22] explored
the possibility of enforcing energy conservation using only the standard mass coefficients;
however, this necessitated the adoption of a node-based IMEX solver [61,62] to handle the
resulting zero-valued enriched masses. It should be noted that these methods generally
lead to a loss of convergence, as they introduce a customized expression of the mass matrix.
In order to preserve optimal convergence rates, Sanchez-Rivandeira and Duarte [63] and
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Geelen et al. [64] applied Schweitzer’s variationally consistent lumping method [65], which
could deliver block-diagonal mass matrices for non-negative shape functions.

In this contribution, we aimed to provide an efficient high-order method for explicit
dynamic analysis in the presence of damage. Our main strategy consisted of extending
the SCM with local PU enrichment functions in an attempt to combine the qualities of
both approaches. Our discretization was similar to that of [9], with the difference that a
GLL grid was employed in order to achieve the optimal lumping of standard SEs. Varia-
tionally consistent lumping via [65] of enriched SEs cannot be performed, since SE shape
functions can assume negative values. Therefore, we developed a novel mass lumping
method for enriched elements, which can be summarized as a nodal quadrature with
customized weights. While integration at the element nodes delivered a (block-)diagonal
mass matrix by construction, the weights were tailored to the enrichment functions and
cut configuration of an element via moment-fitting equations. This setup is an established
and versatile framework to generate quadrature rules. It can be used to integrate general
polygons [66] and handle singular and discontinuous integrands [67–70]. To decrease the
cost of the procedure, node locations could be chosen a priori [67,69,71,72]; however, one
can also optimize them for accuracy [66,68,73]. In fictitious domain methods, moment
fitting enables a drastic reduction in the number of integration points, with important
performance implications [74,75], particularly in nonlinear applications [72,76]. In these
methods, the positiveness of the resulting weights is a prerequisite for the stability of
the models. For this reason, recent contributions have focused on non-negative moment
fitting [77,78]. In the context of this work, the block-diagonal mass matrices of enriched
elements ought to similarly be positive definite. Additionally, the Gauss points have to
match the element nodes in order to perform nodal quadrature (see also [56]). To allow for
these constraints, a residual error was allowed in the moment-fitting equations, and weights
were computed via the solution of a quadratic programming problem in order to guarantee
the properties of the mass matrix while minimizing the integration error.

The remainder of this work is organized as follows: In Section 2, the weak form of
the elastodynamics problem is reviewed. In Section 3, the novel method is presented and
studied, with a brief review of the SEM offered in Section 3.1, followed by a presentation
of the PU enrichment functions used in this work in Section 3.2. Building on the nodal
quadrature method (Section 3.4), the proposed mass lumping technique for enriched SEs is
presented in Section 3.6, and its accuracy and stability are studied. In Section 4, this method
is deployed in three numerical examples to highlight its capabilities. In Section 4.1 a cracked
panel is used to benchmark the accuracy of the method in comparison with the consistent
mass matrix (CMM) formulation. In Section 4.2 a similar comparison is offered through
the study of a riveted aluminum plate, involving multiple complex damage configura-
tions. In Section 4.3, the effectiveness of the numerical modeling is assessed by simulating
composite delaminations of a glass-fiber-reinforced polymer (GFRP) plate, for which ref-
erence experimental data were obtained via a scanning laser Doppler vibrometer (SLDV).
Concluding remarks are presented in Section 5.

2. Problem Statement and Main Strategy

In this contribution, we consider a linear elastic domain Ω in d = {1, 2, 3} dimensions
in the presence of complex geometrical features and/or damage (Figure 1a). These features
are either voids or cracks, and their boundaries are considered stress-free; however, they
are allowed to intersect. The governing equations can be expressed in weak form as

∫
Ω

ρü(t) · v dΩ +
∫

Ω
σ(u(t)) : ε(v) dΩ =

∫
Γs

ps(t) · v dΓs +
∫

Γcs
pc(t) · v dΓcs, (1)
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where �̇ denotes time differentiation; u(t) is the displacement solution at time t,

Ut =

{
u(t)|u(t) ∈

(
H1(Ω)

)d
, u(t) = ū on Γu

}
, (2)

conforming to Dirichlet boundary conditions u(t) = ū defined on Γu; v is the test or
weighting function [17],

V0 =

{
v|v ∈

(
H1(Ω)

)d
, v = 0 on Γu

}
; (3)

ρ is the material density; σ is the Cauchy stress tensor; and ε is the linear strain. In order to
facilitate the modeling process, mesh-independent geometrical descriptions of the domain
details and damage are introduced so that, in the ideal case, a structured SE mesh can be
used to discretize the domain. In the finite cell method (FCM) [79–81] and the SCM, this
might also be considered as complementing the physical domain Ω with a void domain Ωv,
which can become relevant in addressing the poor conditioning of the system of equations.

Ω

Γu

Ω

pc(t)
s1

s2

(a)

Ω

Ωv

Γcr

Γu

Ω

pc(t)

Γcs

Γc

s1

s2

(b)

Figure 1. (a) Generic physical domain Ω with geometrical details (e.g., rivet holes), damage (crack),
and time-dependent surface excitations. (b) SE model consisting of a structured mesh and implicit
descriptions of the void (Γc), crack (Γcr), and loading surfaces (Γcs).

3. Moment Fitting for Enriched Spectral Elements
3.1. The Spectral Element Method

While low-order standard Lagrangian FE schemes have seen widespread adoption due
to their robustness and simplicity, Gibbs (or Runge) phenomena (see, e.g., [82] Chapter 4.2
and [83] Chapter 3) must be overcome as the polynomial order is increased in pursuit of
more efficient discretizations. In this context, the SEM might be considered as a version
of the FEM with more sophisticated choices of interpolating polynomials, which are pro-
duced by embedding additional properties in the determination of their supporting nodes.
For instance, a Chebyshev nodal distribution [32,84,85] can be derived by minimizing
the interpolation error. With two nodes fixed at the boundaries of the domain, internal
Gauss–Lobatto–Legendre (GLL) nodes can be derived as optimal quadrature points in one
dimension [17,23]. It can also be shown that the node location corresponds with the maxi-
mum of the respective shape function, with a value of one [83,86]. We refer the interested
reader to [33,83] for these derivations and their applications in the SEM. For reasons that
are highlighted in Section 3.4, the GLL version of the SEM has been extensively applied in
structural dynamics [25,34,87], including previous versions of the SCM [54,56,88], and is
also adopted herein.

Consider a generic one-dimensional GLL SE of order p > 1 with n = p + 1 nodes.
While the two vertices delimit the element boundaries in the reference system ξ ∈ [−1, 1],
the remaining nodes are chosen as the roots of the Lobatto polynomial Lp−1 of order p− 1.
Thus, the element nodes can be defined as the solution of(

1− ξ2
)

Lp−1(ξ) = 0, (4)
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which is known as the completed Lobatto polynomial [89]. Then, shape functions can be
constructed as Lagrangian interpolations supported at these nodes:

Ni(ξ) =
p+1

∏
j=1,j 6=i

ξ − ξ
p
j

ξ
p
i − ξ

p
j

, (5)

where i is the node number. The local coordinates and shape functions for quadrilateral and
hexahedral elements can be generated by applying Equations (4) and (5) in each dimension
of the reference system and taking the sparse products of the respective results. For a
generic element in d dimensions, the unknown displacement field u(ξ, t) at a given time t
is interpolated from its nodal values ui(t), which are collected in the vector ue(t):

u(ξ, t) =
n

∑
i=1

Ni(ξ) ui(t) = N(ξ) ue(t), (6)

with
N(ξ) =

[
N1Id N2Id . . . NnId

]
(7)

and Id being the identity matrix.

3.2. The Extended Finite Element Method

In the extended or generalized FEM (XFEM/GFEM) [41,90], the polynomial solution
space of the underlying mesh is supplemented by additional enrichment functions, thus
enabling one to model the singular and/or discontinuous character ofdamage [41,42] and
material interfaces [45,91]. Herein, only damage in the form of cracks and delaminations is
considered; thus, enrichment is limited to discontinuous and singular functions. Within the
XFEM framework, cracks are typically represented implicitly by means of two level-set
functions:
• The normal level set φ, representing the signed distance from the crack surface:

φ(x) = min
x̄∈Γc
‖x− x̄‖sign

(
n+ · (x− x̄)

)
, (8)

where n+ is the outward normal to the crack surface and sign(�) denotes the sign
function.

• The tangential level set ψ, representing a signed distance function satisfying the
conditions

∇φ · ∇ψ = 0, (9)

φ(x) = 0
ψ(x) = 0

}
∀x ∈ Γ f , (10)

where Γ f represents the crack front/tips.
Using these functions, a polar coordinate system, with its origin at the crack tip/front,

can be defined:

r =
√

φ2 + ψ2, θ = arctan
(

φ

ψ

)
. (11)

It is common practice for level-set functions to only be evaluated at nodal points and
FE shape functions to be used to interpolate these values in element interiors. Since this
provides a relationship between the level sets/polar coordinates and the local element
coordinates ξ, in what follows, these terms will be used interchangeably. Then, enrich-
ment functions can be defined using the level sets of polar coordinates. For cracks and
delaminations, two types of enrichment are necessary: discontinuous functions to represent
displacement jumps along crack/delamination faces; and asymptotic functions to represent
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the singularities at the crack tips/fronts. For the former, the Heaviside function is typically
used:

H(φ) =

{
−1 if φ < 0
1 if φ ≥ 0.

(12)

For the latter, a set of four [41] or twelve asymptotic functions [92] are typically used
for strong discontinuities in homogeneous materials or bimaterial interfaces, respectively.
Although there is a vast body of research that applies these principles in the study of
composite delamination (e.g., [93–97]), the present contribution is concerned with modeling
small areas of damage at minimal cost, rather than studying the phenomena of fracture
mechanics in detail. Therefore, the asymptotic behavior in the immediate vicinity of the
crack/delamination is not of interest. It has been shown [98] that acceptable accuracy can
also be obtained using only the first singular enrichment function or even with enrichment
functions that do not include singularities [99]. For these reasons, a single enrichment
function is used herein, which also allows us to simplify the mass lumping process:

Fasy(r, θ) =
√

r sin
(

θ

2

)
. (13)

To facilitate the assignment of different enrichment functions to nodes, the following
nodal sets are defined:

N j is the set of nodes enriched with the discontinuous function (Equation (12)). This set
includes all nodes belonging to elements that are split in two by cracks but not those
that contain crack tips/fronts.

N t is the set of nodes enriched with the asymptotic function (Equation (13)). This set
includes all nodes belonging to elements that contain crack tips/fronts.

The above definition implies a topological enrichment scheme, as opposed to geo-
metrical enrichment, where all nodes within a certain distance from the crack tips/fronts
would be enriched [100]. While geometrical enrichment can recover optimal convergence
rates in static problems, topological enrichment is preferred herein, since the proposed
mass lumping method is not variationally consistent, and thus we wish to minimize the
number of enriched elements in order to benefit from optimal lumping over the largest
possible portion of the domain. Moreover, since the nodal sets defined above are disjointed,
only one enrichment function Fi(ξ) is assigned to each node i:

Fi(ξ) =

{
H(ξ) if i ∈ N j

Fasy(ξ) if i ∈ N t.
(14)

Then, the displacement approximation presented in Equation (6) is extended as follows:

u(ξ, t) =
n

∑
i=1

Ni(ξ) ui(t) +
ne

∑
j=1

Nj(ξ)Fj(ξ) aj(t), (15)

where ne is the number of enriched nodes within the element, i.e., nodes belonging toN j or
N t; Fj is the (only) enrichment function applied to node j; and aj(t) collects the unknown
enrichment parameters relating to Fj, which now appear in ue(t) and in the solution vector
us(t). We should underline that aj(t) is not established a priori, rather it results from the
solution of the discretized equilibrium Equations (17) or (21), which will be introduced
shortly. We refer the interested reader to the aforementioned references. According to
Equation (15), the element shape function matrix (Equation (7)) is modified as follows:

N(ξ) =
[
IdN1 IdN1F1 IdN2 . . . IdNnFn

]
. (16)
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3.3. Discretized Equilibrium Equations

Upon the substitution of Equation (15) in the weak form (Equation (1)), the discretized
equilibrium equations are obtained:

M üs(t) + K us(t) = fs(t). (17)

The mass matrix M, the stiffness matrix K, and the system’s force vector fs are assem-
bled form the respective element contributions [17]:

Me =
∫

Ωe
ρNTN dΩe (18)

Ke =
∫

Ωe
BTDB dΩe (19)

fe(t) =
∫

Γs
NTps(t) dΓs +

∫
Γcs

NTpc(t) dΓcs (20)

where the expression in Equation (19) implies the application of Hooke’s constitutive law,
with B collecting the nodal displacement derivatives and matrix D governing the stress–
strain relations. Finally, the element loads result from integrating tractions ps, pc on domain
boundaries Γs and implicitly defined loading surfaces Γcs, respectively.

For materials such as composites, a damping term C u̇s(t) might be added to the
equations of motion:

M üs(t) + C u̇s(t) + K us(t) = fs(t). (21)

As the physics described by the damping matrix C is complex, Rayleigh’s
assumption [101,102] is often applied in order to simplfy the computations:

C = αM + βK (22)

where α, β ∈ R+ are material-dependent constants. Since matrix C has the same sparsity
structure as K, a substantial increase in the memory requirements of the model and the
number of operations necessary for time integration ensues. In explicit dynamics, this can
be overcome by performing mass-proportional damping, i.e., setting β = 0, thus producing
a diagonal damping matrix.

3.4. Mass Lumping for Standard Spectral Elements

In addition to the construction of an effective Ansatz space, GLL nodes can also be
used as evaluation points within the Lobatto, or Gauss–Lobatto, integration rule [103].
This is an important prerequisite of the nodal quadrature technique [23–25], which con-
sists in applying an integration rule defined at the element nodes for the evaluation of
Equation (18), thus enforcing the variational formulation whilst producing a diagonal
mass matrix. In contrast with other mass lumping techniques, this approach has the great
advantage of preserving the order of convergence of the SEM, provided that the quadrature
is of sufficient accuracy. The effectiveness of the GLL configuration stems from the fact
that, for an SE of degree p, the order of the corresponding rule is 2p− 1: two degrees less
than the Gauss–Legendre (GL) rule (which is a ne plus ultra in one dimension [104]) but
far better than what can be achieved with Newton–Cotes formulae [86,103] relying on
equally spaced nodes. Still, this approach leads to a slight under-integration of the stiffness
and mass matrices, and thus to some loss of convergence in the computation of distorted
elements [105]. For this reason, we employ a GL rule for the evaluation of Equation (19),
while nodal quadrature is applied only to the mass matrix (Equation (18)) for the purpose of
lumping. It has been shown in several studies [25,86,106] that this is effective in preserving
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the convergence rates related to SE interpolation. To briefly review the method, let us
denote ∫

Ωe,GLL
f (ξ)dΩe,GLL (23)

as the numerical evaluation of the integral of a function f over the GLL-SE domain Ωe
by means of a quadrature rule that employs its nodes. This technique exploits the fact
that the shape functions are rendered orthogonal by the Kronecker delta property (i.e.,
Nj(ξk) = δjk), as long as their support nodes coincide with the quadrature nodes in
evaluating the following integral:∫

Ωe
Nj(ξ) Nk(ξ) dΩe ≈

∫
Ωe,GLL

Nj(ξ) Nk(ξ) dΩe,GLL = δjk wj

∣∣∣Je(ξ j)
∣∣∣, (24)

where the approximation sign (≈) highlights the aforementioned slight under-integration
of the product N2

j (ξ), ξ j are the reference nodal coordinates in the GLL configuration,
wj are the corresponding integration weights, and

∣∣Je
∣∣ is the determinant of the element

Jacobian. By combining the above with Equations (7) and (18), a diagonal mass matrix with
the following coefficients is produced:

mjk ≈
n

∑
i=1

wi ρ(ξi) Nj(ξi) Nk(ξi)
∣∣Je(ξi)

∣∣ = δjk wj ρ(ξ j)
∣∣∣Je(ξ j)

∣∣∣. (25)

It is important to note that the application of this strategy is restricted to elements
with a sufficiently smooth mass density and displacement field. When discontinuous
integrands appear in Equation (18), customized quadrature rules must be employed (see
Section 3.5), which lead to a fully populated mass matrix. When dealing with voids
(ρ(ξ) = 0), this can be overcome by additionally performing the diagonal scaling of this
matrix [52,88] or using moment-fitting equations to adapt the weights wi to the element’s
cut configuration [56]. In addition, when enrichment functions are present, one is faced
with the task of establishing appropriate diagonal mass coefficients for the enrichment
parameters (see Equations (15) and (16)). For this, a procedure based on the conservation
of kinetic energy has often been used [7,8,60]. This approach has also been combined with
the Chebyshev version of the SEM [9]. In this contribution, we follow the indications of Żak
and Krawczuk [34] in choosing a GLL nodal distribution instead, which makes optimal
lumping available for standard SEs.

3.5. Element Partitioning

The approach described in Figure 1b as well as in Section 3.2 effectively shifts the
burden of modeling some discontinuities (voids and cracks in our case) from the meshing
phase to the integration of the weak form. In other words, the integrals described by
Equations (18)–(20) are now discontinuous and/or singular, and thus they must be evalu-
ated by an appropriate integration rule. This subject has seen substantial research interest
and progress in the last few decades (see, e.g., [49,69,72,107–109]). The solution used in this
contribution is documented in [56] for the case of voids. For the present work, the same
algorithm is applied recursively for each level set in order to produce crack-conforming
element partitions.

3.6. Mass Lumping for Enriched Spectral Elements

In this section, a mass lumping method for enriched elements is derived by combining
nodal quadrature with a moment-fitting procedure that tailors the integration weights to
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the character of the integrand. The starting point is to combine Equations (16), (18) and (24).
In one dimension, the mass coefficients of an enriched node i are then given by:

Mi =

[
mi,11 mi,12

mi,12 mi,22

]
≈
∫

Ωe,GLL
ρ(ξ)

[
Ni

2(ξ) Ni(ξ)Fi(ξ)

Ni(ξ)Fi(ξ) Ni
2(ξ)F2

i (ξ)

]
dΩe,GLL, (26)

i.e., although not fully diagonal, the mass matrix of enriched elements assumes an advan-
tageous block-diagonal structure. In the spirit of nodal quadrature, our goal is now to
evaluate Equation (26) with the best possible accuracy. For this, the three mass coefficients
mi,jk, with j, k ∈ {1, 2}, can be considered as distinct integrals of functions fi,jk:

mi,jk ≈
∫

Ωe,GLL
fi,jk(ξ) dΩe,GLL =

n

∑
l=1

fi,jk(ξl) wl,jk = fi,jk(ξi) wi,jk, (27)

where n is the number of coinciding element and quadrature nodes, and thus the Kro-
necker delta property can be applied to achieve the last expression on the right side.
As these nodes (ξi) are necessarily fixed, it only remains to establish three independent
weight sets wjk that are best-suited to integrate the respective function sets

Fjk =
{

f1,jk, f2,jk, . . . , fn,jk

}
. For this task, we first decompose these integrands into m

basis functions Gjk =
{

g1,jk, g2,jk, . . . , gn,jk

}
, such that, in the ideal case,

fi,jk ∈ span
{

g1,jk, g2,jk, . . . , gm,jk

}
∀i. (28)

Then, by applying the above to Equation (27), the relation between a set of weights
wjk and basis functions Gjk can be expressed in terms of the moment-fitting equations

g1,jk(ξ1) g1,jk(ξ2) . . . g1,jk(ξn)

g2,jk(ξ1) g2,jk(ξ2)
...

...
. . .

...

gm,jk(ξ1) . . . . . . gm,jk(ξn)




w1,jk

w2,jk
...

wn,jk

 =



∫
Ωe

g1,jk(ξ) dΩe∫
Ωe

g2,jk(ξ) dΩe
...∫

Ωe
gm,jk(ξ) dΩe

 ⇐⇒ Ajkwjk = bjk, (29)

where the repetition of indices does not imply summation, and the choice of basis functions
Gjk is reported in Table 1. Three considerations are due at this point. Firstly, we should
note that the number of basis functions m is limited by the number of nodes n, as the
system would be overdetermined for m > n. This is in contrast to most other instances of
this method, which exploit an under-determined system [71,77]. For this reason, only the
basis monomials up to order m are considered, and the higher-order terms appearing in
the diagonal integrands F11,F22 will be under-integrated, as they are not represented in
Equation (29). For standard SEs, however, this choice still leads to weights that match the
GLL rule, and thus to only minor under-integration of the mass matrix [56]. Secondly, we
should mention that, in this work, ρ is considered constant within the physical portion of
the element, and the effect of voids is accounted for by evaluating the vector of moments
(bjk) in a consistent sense, according to one of the procedures described in Section 3.5. If no
voids are present, then w11 corresponds to the standard GLL weights.

A third important remark is that a positive definite mass matrix is required for ex-
plicit solvers to converge; therefore, negative weights must be avoided when j = k in
Equation (29). Similarly, certain values of the off-diagonal weights w12 might lead to com-
plex eigenvalues for some of the blocks Mi. These issues call for the application of box
constraints on the weights, which cannot be applied directly to Equation (29). To overcome
this, a residual is allowed in its evaluation:

rjk = Ajkwjk − bjk. (30)
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Table 1. Definition of basis functions Gjk for three instances of the moment-fitting Equation (29),
whose results are applied in the integration of the respective function sets Fjk. ρ is assumed as
constant within Ωe.

jk 11 12 22

Fjk ρ×
{

N1
2, N2

2, . . . , Nn
2
}

ρF× {N1, N2, . . . , Nn} ρF2 ×
{

N1
2, N2

2, . . . , Nn
2
}

Gjk
{

1, ξ, ξ2, . . . , ξm} F×
{

1, ξ, ξ2, . . . , ξm} F2 ×
{

1, ξ, ξ2, . . . , ξm}
Then, the computation of the weights can be expressed as an optimization problem,

seeking to minimize the L2 norm of this residual, leading to the following quadratic
programming problem:

minimize
w

1
2

wTĀw−wTb̄ (31)

where Ā = ATA and b̄ = ATb. In Ref. [56], we discussed appropriate constraints for the
set w11 that are necessary in the presence of voids. Constraints for the fitting problem in
enriched elements are formulated herein. From the evaluation of Equation (26), we have

Mi ≈ ρ

[
wi,11 wi,12Fi

wi,12Fi wi,22F2
i

]
, (32)

where Fi = F(ξi). To ensure the positive definiteness of this block, its eigenvalues λ1,2 must
be positive [110]. They can be computed as

λ1,2 =
ρ

2

[
wi,11 + wi,22F2

i ∓
√
(wi,22F2

i − wi,11)2 + 4w2
i,12F2

i

]
. (33)

Due to their impact on stability and the properties of the mass matrix, we wish to
formulate the constraints for Equation (31) in terms of a smallest admissible eigenvalue
λmin ∈ R+. From Equation (33), the following condition for λ1,2 > λmin is derived in
Appendix A:

wi,22 >
λ2

min − λminρwi,11 − ρ2w2
i,12F2

i

ρF2
i (λmin − ρwi,11)

, (34)

where wi,11 is readily available, and wi,12 can be computed with Equation (29). The natural
upper bound for λmin is λmin < ρwi,11, thus, appropriate values can be computed as
follows:

λmin = ελ ρ min
0<i≤n

{wi,11}, (35)

where a tuning parameter ελ ∈ [0, 1), which will be established in Sections 3.6.1 and 3.6.2,
is multiplied by the mass density and the smallest weight of the set w11. In essence,
Equations (30), (34) and (35) aim at a compromise between an advantageous mass matrix
structure and an accurate evaluation of Equation (18) within the aforementioned restrictions.
As long as the ordering of standard and enriched DOF related to a node is contiguous
(see Appendix B), the mass matrix has a 2× 2 block structure in enriched regions of the
domain and is diagonal elsewhere. In linear elastodynamics, Equations (18)–(20) can be
assembled once and then reused; thus, the computational cost overhead introduced by the
moment-fitting procedure is negligible.

These advantages, however, come with several caveats. This method is restricted to
the use of one enrichment function per node, as the emergence of additional interaction
coefficients in Equation (26) quickly complicates the formulation of constraints. Using
different enrichment functions within an element is still possible, as long as these are applied
on different nodes. Secondly, commonly used shifted enrichment functions [111,112] cannot
be applied, since they would lead to zero mass coefficients. In general, it should be noted
that the variational formulation is abandoned by introducing a residual in Equation (30).
For this reason, the accuracy of the novel procedure will be studied at both the element
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level (in the upcoming Section 3.6.1) and the system level (in Section 4.1)). Finally, we
expect the presence of discontinuities and the manipulation of the mass matrix to have an
important impact on stability, which is studied in Section 3.6.2.

3.6.1. Accuracy

Figure 2 displays the reference system of a jump-enriched 1D element of unit density
and order p = 5, along with the standard (N3(ξ)) and enriched (N3(ξ)H(ξ)) interpolation
functions related to its third node. In this section, we study the accuracy of the proce-
dure in its intended application, namely the integration of the terms mi,12 and mi,22 (see
Equation (27)). To this end, the integration error εI is computed with respect to a reference
value Iref, which is evaluated with a boundary-conforming quadrature rule, according to
Section 3.5:

εI =

∣∣∣∣∣ fi,jk(ξi)wi,jk − Iref

Iref

∣∣∣∣∣. (36)

Np,i

ξ

1

−1

ξ6ξ1

lc
Γc

ξ2 ξ3 ξ4 ξ5

Figure 2. 1D enriched element for the benchmarks presented in Figure 3. Exemplary plot of a
standard shape function (N3(ξ)) and enriched interpolation function (N3(ξ)H(Φ)) for p = 5.

In Figure 3, εI is reported for different element orders p, integrands fi,jk = (Np,i H)j,
crack locations lc, and a fixed value of ελ = 1− 10−4. We should note that, by choosing
H as an enrichment function, the integrands (as well as the moments in Equation (29))
are discontinuous only for the case with j = 1. In general, it can be observed that the
procedure is less successful whenever the discontinuity lies near an element node: an effect
that is most pronounced in the interaction terms for p = 3 (Figure 3a). With this exception,
the accuracy achieved in the off-diagonal terms is satisfactory, as shown in Figure 3b,c.
For diagonal terms, however, (Figure 3d–f) the errors are extremely elevated. In this
context, we should underline that this strategy is first and foremost a mass lumping method,
and secondarily an integration method. In other words, the quality of the weight set w22
is heavily restricted by the constraints expressed by Equation (34), which are necessary
in order to maintain a positive definite mass matrix. We should also note that, with few
exceptions [25], several mass lumping strategies provide little to no a priori guarantees in
terms of accuracy, and the validity of the resulting model will be studied in Sections 4.1–4.3.
In Figure 4, the convergence of the integration error is studied with integrands of the form
H(ξ)j(1 + ξ pI) and a fixed discontinuity at lc = 1/3. Although errors in the order of 10−10

are not as low as machine precision, Figure 4a suggests that an integration order of p
can be achieved for the weight set w12. This is consistent with the performance of other
moment-fitting procedures that do not optimize the Gauss point location [69,75] and thus
perform similarly to Newton–Cotes quadrature rules [86,103]. In comparison, the error
convergence for the weight set w22 (Figure 4b) is modest, and, given the simplicity of the
integrand, can be again attributed to the presence of constraints, as the incompleteness of
the fitting basis G22 (see Table 1) should not play a role in this case.
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(a) p = 3, j = 1, integration with w12
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(b) p = 4, j = 1, integration with w12
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(c) p = 5, j = 1, integration with w12

0 0.28 0.72 1

100

10−1

10−2

10−3

lc [-]

ε I
[-

]

(d) p = 3, j = 2, integration with w22
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(e) p = 4, j = 2, integration with w22
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(f) p = 5, j = 2, integration with w22

(Np,1H)j (Np,2H)j (Np,3H)j (Np,4H)j (Np,5H)j (Np,6H)j

Figure 3. Integration of mass coefficients for a unit-size enriched bar element with the procedure
presented in Section 3.6 and ελ = 1− 10−4. Different element orders p and crack locations lc are
studied. Element nodes are marked at the abscissa. The exponent j assumes a value of two for
enriched diagonal terms (d–f) and a unit value for interaction terms (a–c). Accordingly, weight sets
w22 and w12 are used.
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(a) j = 1, integration with w12

2 3 4 5 6 7 8
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ε I
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(b) j = 2, integration with w22

H(ξ)j(1 + ξ) H(ξ)j(1 + ξ2) H(ξ)j(1 + ξ3)

H(ξ)j(1 + ξ4) H(ξ)j(1 + ξ5) H(ξ)j(1 + ξ6)

Figure 4. Integration of discontinuous polynomials with the procedure presented in Section 3.6.
Cracked element with lc = 1/3, ελ = 1− 10−4.

To gain further insight into this issue, we study the impact of the minimum mass
eigenvalue λmin on the accuracy of the weight set w22. Figure 5 displays the integration
error εI [-] by varying ελ for a selection of cases from Figure 3. For crack locations unfavor-
ably near a node (cases (a) and (b)), this parameter has no significant impact, while in more
favorable configurations (cases (c) and (d)), smaller values of ελ allow for a better solution
of Equation (31). Some local minima of εI [-] are sporadically detected for ελ ∈ [0.1, 1) (e.g.,
case (e)), which are likely related to the nonlinear character of Equation (34).
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10010−110−210−310−4
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(a) p = 3, (N3,1 H)2, lc = 0.28

(b) p = 4, (N4,2 H)2, lc = 0.15

(c) p = 4, (N4,3 H)2, lc = 0.35

(d) p = 5, (N5,3 H)2, lc = 0.85

(e) p = 5, (N5,1 H)2, lc = 0.75

Figure 5. Effect of the parameter ελ on fitting accuracy for selected configurations from Figure 3d–f.
See Equations (34) and (35).

3.6.2. Stability

By intervening in the mass matrix, mass lumping methods have an impact on element
eigenmodes and thus on the stability of explicit schemes. This concern is particularly
relevant in the presence of discontinuities, which can lead to a large increase in eigenvalues,
the extent of which we wish to quantify in this section. For central difference methods
(CDMs), the Courant–Friedrichs–Lewy (CFL) condition is given conservatively by the
smallest value of [113]:

∆te =
2

ωmax
(37)

across all elements. In Equation (37), ∆te is the element critical time step, and ωmax is the
element spectral radius, i.e., its biggest eigenvalue obtained from [113]:

det
(

Ke −ω2
e Me

)
= 0. (38)

We study the stability of the procedure by considering a two-dimensional, unit-size
SE traversed by a straight discontinuity parallel to the y axis and enriched by a modified
Heaviside step function, similar to Figure 2. In Figure 6a,b, results are reported for different
crack locations lc, comparing the CMM formulation with the proposed lumping method,
where a fixed value of ελ = 10−1 is chosen based on Figure 5. All results are scaled by
∆te,0, i.e., the critical time step of a standard SE with p = 5. While for the CMM the value
of ∆te remains in the same order of magnitude as ∆te,0, the proposed procedure can lead
to values that are from one to two orders of magnitude smaller. If the CDM were used
for time integration, this would proportionally multiply the cost of a simulation, risking
the negation of the benefits of mass lumping. However, if a leap-frog solver is employed,
then this issue will affect only the enriched portion of the domain, which is usually rather
small. It was shown in Ref. [56] that, with the CDM, a performance only slightly worse
than that of the SEM could be achieved. It should also be noted that Figure 6a does not lead
to a performance gain, since this formulation would require the use of an implicit solver.
In Figure 6c the effect of ελ is studied for a fixed configuration (lc = 0.3). These results
indicate that the constraint expressed in Equation (34) is active, as the spectral radius can be
controlled by λmin. Finally, even if a leap-frog solver is used, setting ελ < 10−3 will lead to
prohibitively expensive simulations for negligible accuracy gains (see Figure 5). For these
reasons, we recommend using ελ ∈

[
10−2, 10−1], and a value of ελ = 10−2 will be used in

the following numerical examples.
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(a) CMM
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(b) Fitted mass, ελ = 10−1
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(c) Fitted mass, lc = 0.3
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Figure 6. Critical time step ratios ∆te
∆te,0

for Heaviside-step enriched SEs of different orders. Different
locations lc of the discontinuity (see Figure 2) are studied for (a) the CMM and (b) the fitted lumping
procedure with ελ = 10−1. In (c), stability can be improved by increasing ελ, which constrains the
fitting problem via Equations (34) and (35).

4. Numerical Examples

In this section, three problems of increasing complexity are studied to assess the va-
lidity of the proposed method, which we label the extended spectral cell method (XSCM)
for the remainder of this work. As mentioned previously and documented in Ref. [56], we
deploy a second order leap-frog solver [18,19] whenever we use the (X)SCM. In the first 2D
example (Section 4.1), a cracked panel in plane stress is considered, and the performance of
the fitted mass lumping procedure is compared with a variationally consistent alternative.
A true instance of the XSCM, involving both ’cut’ cells and enrichment functions, is then
displayed in the 3D modeling of an aluminium plate with several details and complex dam-
age configurations (Section 4.2), where a qualitative comparison with the SEM is offered.
Finally, we propose an experimental validation of the method in Section 4.3, where our nu-
merical model is compared with scanning laser Doppler vibrometer (SLDV) measurements
of a glass-fiber-reinforced polymer (GFRP) panel under piezo-electric excitation. We refer
the interested reader to [19] for a version of the leap-frog solver accounting for damped
waves that is applied to the solution of this last example.

4.1. Example 1

Figure 7 displays an aluminum panel in plane stress with parameters E = 70 GPa,
ν = 0.33, and ρ = 2700 kg/m3. Fixed boundary conditions are applied on its left end, while
on the right-hand side the transient load

ps(x, t) = p(x) sin (ωt) sin2
(

ωt
2n

)
, t ∈

[
0;

n
f

]
(39)

is applied. In Equation (39), a spatially uniform load is given by p(x) ≡ pex,
with ex = [1, 0]T and p = 106 N/m, while time modulation is produced by a Hann
window of circular frequency ω = 2π f . The excitation window n/ f is determined by the
carrier frequency f = 200 kHz and the number of cycles n = 5. This use of a smoothed
signal is effective in producing narrow frequency band waves and thus limiting the dis-
persive effects [114]. The damage consists of an oblique, planar crack of length

√
2a,

(a = 5 cm), which is discretized according to Section 3.2. In this benchmark, the pro-
posed method is compared to a CMM formulation paired with the implicit version of the
Newmark algorithm [115]. For this, the displacement time history is recorded at sensors
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s1 and s2 positioned according to Figure 7, which are used to measure the accuracy of a
simulation as follows:

εh,t =

√√√√√√√
nt
∑

i=0
[uh(i∆t)− uref(i∆t)]2

nt
∑

i=0
u2

ref(i∆t)
, (40)

where nt is the number of time steps; uh is the numerical solution at a sensor; and uref is a
reference solution computed with the CMM formulation, discretized with 3.2× 106 DOF,
p = 6, and ∆t = 10−10. The simulation time measures 0.1 ms and, for all models to be
tested, a fixed time step of ∆t = 10−9 s is used, which roughly represents the CFL condition
of the finest meshes.

l1 = 0.8

l y
=

0.
1

h
ps(t)

x

y

z

a

a

l2 = 0.1 l2

s1

s2

Figure 7. Cracked aluminium panel in plane stress: 2D SE mesh of generic element size h, crack with
a = 0.05, and sensors s1,2. The unit is m.

The convergence of εh,t at both sensors is reported for models of third to sixth orders
with respect to the number of DOF in Figure 8a–d and the amount of time necessary
for the solution of Equation (17) in Figure 8e–h. In the former set, the proposed method
performed similarly to the CMM formulation; however, some loss of convergence emerged
for the largest models. This likely coincided with the stage at which the integration errors
discussed in Section 3.6 exceeded those of the SE interpolation and, thus, created an
accuracy bottleneck. In the latter set (Figure 8e–h), the proposed approach increased the
speed by roughly one order of magnitude for p = 3, 4 and more modestly for p = 5, 6.
Although the CMM formulation paired with an implicit solver prevailed in terms of
maximum accuracy, one should keep in mind that this required substantial additional
memory storage for the factorization of the effective stiffness matrix. Finally, the same
formulation was used for the reference solution, and thus the accuracy of the CMM could
have been overstated for the largest models presented here.
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(b) p = 4

Figure 8. Cont.
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Figure 8. Cracked aluminium panel in plane stress (see Figure 7). Topological enrichment scheme.
Time history L2 error norm convergence for h-refinement with respect to model size (a–d) and
simulation time (e–h).

4.2. Example 2

The aluminium plate illustrated in Figure 9a presents 34 cylindrical holes of radius
rh = 5 mm, whereas damage is represented by two planar cracks orthogonal to the xy
plane. The bottom crack has a length of 21.2 mm and an inclination of 45◦, while the
vertical, 10 mm long crack is connected to one of the holes. Piezo-electric excitation was
modeled as a circular loading surface of diameter 2r` = 10 mm. The loading followed a
radial distribution in space with a maximum of p at the outside edge of the actuator and a
value of zero at its center:

p(x) =
p
r`

r(x), ‖r(x)‖ ≤ r` (41)



Appl. Sci. 2023, 13, 10367 17 of 27

where r(x) points from the center of the circle to x, ‖r(x)‖ is its Euclidean norm, and
p = 2.5× 109 Pa is the loading magnitude for ‖r(x)‖ = r`. This assumption is similar to
the pin-force model typically used in this context [116], where the loading is, however,
applied only along the circumference of the actuator. Modulation in time was achieved
via Equation (39) with f = 200 kHz and n = 5. Given a plate thickness of t = 1.5 mm,
with these parameters we expected to observe the first symmetric and anti-symmetric Lamb
wave modes. It should also be noted that a high number of cycles n is effective in limiting
wave dispersion, albeit at the cost of expanding the excitation window. This example
highlights the benefits offered by the XSCM in the modeling of complex components and
damage configurations. For the purpose of comparison with the SEM, a setup was chosen
that still allowed for discretization with a conforming mesh. In both cases, a second-order
mesh was produced with Gmsh [117] and then converted into a third-order GLL SE mesh
via the shape functions of the original elements, leading to a sub-parametric representation
of the domain. The differences between the meshes are shown in Figure 9b,c. With the
SEM, a strucutred nonorthogonal mesh was employed in order to successfully discretize
load surfaces, cracks, and holes with hexahedral elements. This required the use of a highly
customized Gmsh script and would not be feasible in an automatized fashion should the
location of a detail change. With the XSCM, an orthogonal mesh could be used instead,
and all domain details, including loading surfaces, were defined at run-time. This enabled
the optimal choice of the element size and automatized simulations for, e.g., damage
detection applications [118–122]. In both cases, the plates were one element thick and had
an element size of h = 2.6 mm in the x and y directions, leading to 31 nodes per wavelength
of the asymmetric mode. As reported in Table 2, the resulting models had a size of 1.1× 106

DOF for the SEM and 9.3× 105 DOF for the XSCM. This difference, in spite of the additional
enrichment parameters in the latter model, was due to the fact that, in the former model,
the element size had to be frequently reduced to resolve the complex geometry of the
modeled structure (see Figure 9b). An undamaged version of the plate, which was added
for comparison (’SEM pristine’) enabled us to exploit the symmetry of the model along
the x axis, thus halving its size. All solutions employed a time step of ∆t = 5× 10−9 [s].
This is well below the critical time step of the conforming meshes to promote accurate time
integration. The enriched model had a relatively small ∆tc, which was expected given the
results of Figure 6b. In order to accommodate for this, the leap-frog solver [18,19] was
deployed with a local time refinement ratio of pt = 34 [56].

Table 2. DOF and critical time steps ∆tc for the models presented in Figures 9 and 10. A time step of
∆t = 5× 10−9 was used to ensure good accuracy. In the XSCM, a local time refinement of pt = 34
enabled us to comply with the CFL condition [56].

Discretization SEM Pristine SEM Damaged XSCM Damaged

∆tc (10−8 s) 1.5 1.5 0.015
ndofs (106) 0.54 1.08 0.93

Figure 10 collects the time histories of the vertical displacements at the sensors.
The simulation with the SEM in the absence of cracks (dotted line) was included for
context. For the damaged case, good agreement between the XSCM and the SEM could
be observed, despite the differences in these models: enrichment functions and a mass
lumping error were introduced in the proposed method, while explicitly meshed details
and some element distortion were encountered in the SEM. In light of the complexity of
this problem, and of these fundamental modeling differences, these results speak of the
quality of both approaches.
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Figure 9. Example (Section 4.2). (a) Aluminium plate with rivet holes, circular loading surface,
and two planar through-thickness, cracks. (b) Conforming discretization of holes, load surfaces,
and cracks for the SEM; node duplication was employed along the crack surfaces, highlighted by
red lines. (c) Orthogonal mesh for the XSCM; mesh-independent element partitions were used to
model the aforementioned details. (d) Close-up for the XSCM; pristine SEs versus crack- and and
hole-conforming element partitions. (e) Scaled crack and hole deformations produced using the
XSCM.
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Figure 10. Time history response of the vertical displacement at the sensors (see Figure 9a). For the
damaged cases, it is shown that the proposed approach ("XSCM") was comparable to the SEM, in spite
of the substantially different discretization strategies employed (see Figure 9b,c).

4.3. Example 3

In this section, we study a glass-fiber-reinforced polymer (GFRP) panel with di-
mensions of 500 × 500 mm and a thickness of about 2 mm. The specimen consisted
of twelve layers of VV192T/202 prepregs designed by G. Angeloni with orientations of
[0/90/0/90/0/90]s. The glass fiber fabric had a twill weave with a density of 202 g/m2.
Delaminations were artificially introduced at the manufacturing stage using Teflon inserts
between layers of prepregs. In this particular case, the inserts were located in the middle of
the cross-section, i.e., between the sixth and seventh laminae. Four delaminations with dif-
ferent shapes and locations were introduced according to Table 3. Their positions differed
slightly with respect to the specifications provided by the manufacturer—all delamination
centers were designated to be 125 mm from the edge of the plate and aligned with the center
of the plate. The actual delamination locations were identified through signal processing
using wavenumber damage imaging (see Figure 11a).

Table 3. Delamination shapes and locations with origin in the center of the plate.

Shape a (mm) b (mm) x (mm) y (mm)

Ellipse 30 20 −125 1
Circle 20 20 2.45 −125
Square 20 20 126 −1.5

Rectangle 30 20 1 126

A piezoelectric transducer (Noliac, NCE51) of diameter 10 mm and thickness 0.5 mm
located at the center of the plate was used for the excitation of guided waves. A Hann
windowed signal with a central frequency of 50 kHz and 5 cycles was applied to the
piezoelectric transducer (20 Vpp). An SLDV was used to acquire Lamb wave signals on a
uniform spatial grid (497 × 497 points) on the surface of the plate. The measured area was
496× 496 mm, because a 2 mm margin along the plate edges was omitted. Out-of-plane
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particle vibration velocities were measured using one laser head (Polytec PSV-400) [123]
placed perpendicularly to the surface of the plate.
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Figure 11. (a) Delaminations identified through wavenumber damage imaging. The color bar repre-
sents the wavenumbers scaled by the thickness in mm. (b) Cross-sections through 3D FFT of experi-
mental wavefield data showing dispersion curves. (c) Mesh detail: loading surface (blue), bottom and
left delaminations, sensor locations s1−6 (red) at the abscissae and ordinates {0,−35,−50,−100}mm
for numerical solution.

The plate was modeled in 3D by a single layer of SEs of order p = 3 and element
size of h = 5 mm. The time integration step measured ∆t = 1.8× 10−7 s, corresponding
to the CFL condition of the standard portion of the mesh. A local time refinement ratio
of pt = 31 was used in order to ensure the stability of the enriched regions of the model.
Establishing appropriate parameters for the GFRP material was not a straight-forward task.
After assuming an orthotropic material law, the elastic constants of the GFRP lamina were
identified using the inverse method described in Ref. [124], and are reported in Table 4.
A layered integration technique based on laminae-conforming element partitions was used
to correctly evaluate Equation (19), which was also discontinuous across laminae [125].
For simplicity, the square and rectangular delaminations were modeled by circular and
elliptic level sets, respectively. The mass and stiffness of the piezo-electric actuator were also
neglected, along with the piezo-electric effect (the mass of the sensor represented roughly
0.03% of the panel mass). Instead, the same loading conditions as in the previous example
were applied, with p = 7.2 × 107 [Pa]. This value, as well as the mass-proportional
damping coefficient α, was established empirically by matching the amplitudes of the
measured and simulated wave velocities. Finally, this material introduced some additional
uncertainty with respect to the plate thickness, which could have presented some significant
variation from the specified value.

Table 4. Model parameters for numerical simulation of composite panel. Unit is GPa unless speci-
fied otherwise.

Parameters C11 C22 C33 C12 C13 C23 C44 C55 C66 α (1/s) ρ (kg/m3)

GFRP 44.82 27.97 3.26 14.13 6.97 1.26 4.91 4.22 3.03 8000 1750

In Figure 12, the time histories of the vertical velocities are reported for the locations
described in Figure 11c. The initial wave packet could be reproduced at most sensors,
with s2,3 showing the most pronounced differences in phase and amplitude. These sensors
represent velocities purely in x and y directions, respectively, and show the limitations
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of the aforementioned assumptions. Reflections from the damaged area and/or panel
boundaries could realistically be reproduced in most cases, with only s3,6 showing a
significant difference in time of flight. Overall, given all the aforementioned limitations,
these results can be considered satisfactory.
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Figure 12. Time histories of velocities u̇1−6 at the respective sensors s1−6, positioned according to
Figure 11c.

5. Conclusions

When the SEM is complemented with PU enrichment functions in pursuit of fast
simulations, high-oder accuracy, and relief from meshing issues, preserving and combining
all these qualities hinges on the effectiveness of the mass lumping of enriched SEs. In this
contribution, a novel method based on the moment-fitting framework and the nodal
quadrature method was presented: while a block-diagonal mass matrix was produced
by evaluating its integral at the element nodes, integration weights were delivered by a
nonlinear moment-fitting procedure. This was intended to minimize the mass lumping
error under the constraints of a positive definite mass matrix. Due to these constraints,
the mass matrix was under-integrated, and the variational formulation was violated by a
degree that was quantified in Figures 3–5. This approach offered some room to balance
accuracy and stability thanks to Equation (34); however, some further research could be
devoted to improving its stability (Figure 6b,c).

The method yielded an accuracy that was comparable to that of the CMM formula-
tion for several models, with convergence loss emerging only for relatively large models
(5× 105 DOF in two dimensions) (Figure 8a–d). By alleviating stability issues via a leap-
frog solver [18,19,56] and leveraging the fact that only a portion of the domain was cut or
enriched, this approach resulted in efficient explicit dynamics simulations (Figure 8e–h).
The XSCM applied in Section 4.2 stemmed from enhancing the SCM [51–56] with PU
enrichment functions and enabled the automatic generation of complex damage configura-
tions (Figure 9c) while delivering comparable results to the conforming SEM, thus saving
meshing effort. These damage modeling capabilities were finally applied to composite
delamination, where good agreement between the model and experimental data could be
achieved.
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Appendix A. Constraints for the Quadratic Programming Problem

The constraints for the nonlinear moment fitting of enriched diagonal weights w22
(Equation (34)) were derived by setting a lower bound λmin for the block eigenvalues λ1,2
(Equation (33)):
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(A1)

where it was assumed that λmin < ρwi,11.

Appendix B. Definition of Shape Function Matrix in Multiple Dimensions

Consider rod, plane, and solid models with d ∈ {1, 2, 3}, respectively. With Id being
the d× d unit matrix, a direct generalization of Equation (15) would be

N(ξ) =
[
N1Id N1F1Id N2Id . . . NnFnId

]
. (A2)

However, upon the application of Equations (18) and (24), this would lead to sparse
mass matrix blocks of size 2d. The better-structured dense blocks of size 2 shown in
Equation (26) could be constructed by changing the indexing used in assembly (or matrix
N itself) so as to reflect the following ordering (e.g., d = 2):

N(ξ) =

[
N1 N1F1 0 0 N2 . . . 0 0
0 0 N1 N1F1 0 . . . Nn NnFn

]
. (A3)
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