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Abstract: The recent introduction of generative adversarial networks has demonstrated remarkable
capabilities in generating images that are nearly indistinguishable from real ones. Consequently, both
the academic and industrial communities have raised concerns about the challenge of differentiating
between fake and real images. This issue holds significant importance, as images play a vital role
in various domains, including image recognition and bioimaging classification in the biomedical
field. In this paper, we present a method to assess the distinguishability of bioimages generated
by a generative adversarial network, specifically using a dataset of retina images. Once the images
are generated, we train several supervised machine learning models to determine whether these
classifiers can effectively discriminate between real and fake retina images. Our experiments utilize
a deep convolutional generative adversarial network, a type of generative adversarial network,
and demonstrate that the generated images, although visually imperceptible as fakes, are correctly
identified by a classifier with an F-Measure greater than 0.95. While the majority of the generated
images are accurately recognized as fake, a few of them are not classified as such and are consequently
considered real retina images.

Keywords: generative adversarial network; deep convolutional generative adversarial network;
biomedical; retina; machine learning; deep learning; classification; GAN

1. Introduction and Related Work

Generative adversarial networks (GANs) represent a type of neural network utilized
for unsupervised machine learning purposes. They consist of two opposing modules: a
generator network responsible for producing synthetic data, and a discriminator network
designed to distinguish between real and fake instances. These modules engage in a
competitive process where the discriminator attempts to identify fictitious data, while the
generator aims to deceive the discriminator by generating realistic examples. Through this
adversarial interplay, the GAN model learns to generate data that closely resembles the
training dataset. This capability finds applications in tasks such as future prediction or
image generation, once the network has been trained on a specific dataset [1]. GANs offer
a key advantage in their ability to generate synthetic data of high quality. The collaborative
nature of the generator and discriminator allows the generator to learn from the feedback
provided by the discriminator, resulting in the production of synthetic data that closely
resembles real data. Moreover, GANs typically exhibit speed and efficiency advantages
compared to conventional methods. By leveraging parallelization techniques, GANs em-
ploy parallel neural networks for computational tasks, enabling faster processing. GANs
possess another advantage in their ability to generate diverse types of data, including
images, videos, audio, and text. This versatility stems from the inherent adaptability of
GANs, which, being built upon neural networks, can be readily customized to handle dif-
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ferent data modalities. In contrast, traditional methods often necessitate specific techniques
tailored to each data type, making GANs a more flexible solution.

Building upon these insights, in this paper we introduce an approach aimed at assess-
ing the potential impact of GANs on biomedical image classification tasks. Specifically,
we employ a deep convolutional GAN (i.e., DCGAN) to generate a set of images using
a dataset of retina images. To the best of our knowledge, this study represents the first
proposal aimed at generating images pertaining to the biomedical domain, in particular, by
exploiting a dataset composed of 1600 retina fundus images. The retina images are related
to the five-level grading of diabetic retinopathy severity.

GANs, recently, although not explored in the context of the following paper, have been
considered in the biomedical field for other purposes. For instance, Park et al. [2] propose a
GAN aimed at performing retinal vessel segmentation by balancing losses with stacked
deep fully convolutional networks. Basically, their proposal consists of a generator with
deep residual blocks for segmentation and a discriminator with a deeper network training
of the adversarial model.

Andreini and colleagues [3] explore GANs with the aim of synthesizing high-quality
retinal images along with the corresponding semantic label-maps, instead of real images,
during training of a segmentation network. They consider a two-step approach: first, a
GAN is trained to generate the semantic label-maps, devoted to describing blood vessel
structure and, second, an image-to-image translation approach is exploited to generate
realistic retinal images from the obtained vasculature.

The researchers of [4] propose a GAN aimed at generating medical images. The
developed GAN is aimed at generating synthetic medical images and the related segmented
masks, that can be exploited for the application of supervised analysis of medical images.
In particular, the authors of [4] consider the proposed GAN for the generation of retinal
images.

Frid-Adar and colleagues [5] propose the adoption of GAN to generate liver lesion
ROIs. Once the liver lesion ROIs are obtained, they propose a liver lesion classification using
CNN. In their experiment, they train the CNN using both data augmentation techniques
and the images generated by the developed GAN with the aim of comparing performance.
The classification performance by exploiting only classic data augmentation obtained 78.6%
sensitivity and 88.4% specificity, while, with the images generated by the GAN, the results
increased to 85.7% sensitivity and 92.4% specificity.

Similarly to the method proposed by the authors of [5], considering that data augmen-
tation techniques can be used to create synthetic datasets sufficiently large to train machine
learning models, Vaccari et al. [6] resort to GANs to perform a data augmentation from
patient data obtained through Internet of Medical Things sensors for chronic obstructive
pulmonary disease monitoring. Their results show that synthetic datasets created through
a GAN are comparable with a real-world dataset.

Also, the authors of [7] consider the idea of performing data augmentation in the
medical domain considering a GAN; as a matter of fact, they simulate the distribution of real
data and sample new data from the distribution of limited data to populate the training set,
and exploit a GAN for the augmentation and segmentation of magnetic resonance images.

The researchers of [8] propose a data augmentation method for generating synthetic
medical images using GANs, for the generation of cancerous and normal images. Moreover,
they demonstrate that generated images can be exploited to improve the performance of
the ResNet18 deep learning model for biomedical image classification [9–12].

The authors of [13] resort to unsupervised anomaly detection by exploiting the images
generated by a GAN, with the aim of detecting brain anomalies, with a focus on Alzheimer’s
disease diagnosis.

The idea of this paper is to demonstrate that GANs can be a tool used to generate
biomedical fake images (in particular related to retina images) which, in addition to not
being distinguishable by the human eye, are not distinguishable by a dedicated trained
classifier. To generate fake retina images a DCGAN is exploited. In the proposed experi-
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ment, we consider eight different machine learning classifiers, including four convolutional
neural network-based classifiers, demonstrating that, although a good number of images
are correctly recognized as fake, some images, however, manage to evade the detection
of the various classifiers. In particular, we note that, as the number of epochs increases,
the fake images, becoming more and more realistic, are better able to evade detection by
the classifiers.

The paper proceeds as follows: in the next section preliminary background notions
about GAN are provided; in Section 3 we describe the method we designed and imple-
mented to understand whether a DCGAN is able to generate images related to the retina
that are indistinguishable from the real ones; the results of the experimental analysis are
shown in Section 4; a discussion about the adoption of GAN in the biomedical field, with a
specific focus on the retinal images, is provided in Section 5; and, finally, conclusions and
future works are described in the last section.

2. Background

In a basic GAN architecture, two networks coexist, the generator model and the
discriminator model. The term “adversarial” in GANs reflects their simultaneous training
and competitive nature, resembling a zero-sum game like chess. The generator’s primary
objective is to produce realistic images that can deceive the discriminator. In a simple GAN
architecture for image synthesis, random noise is typically fed as input to the generator,
which generates a corresponding image as output. On the other hand, the discriminator
functions as a binary image classifier, responsible for determining the authenticity of an
image by classifying it as real or fake.

To summarize, the basic GAN architecture involves the generator generating fake
images, the discriminator classifying both real and fake images, and their performances
being assessed separately.

Unlike most deep learning models that optimize towards minimizing a cost function
(e.g., image classification), GANs operate differently. The generator and discriminator each
have their own cost functions with opposing objectives. The generator aims to deceive the
discriminator by generating fake images that resemble real ones, while the discriminator
aims to accurately classify real and fake images.

During training, both the generator and discriminator improve their capabilities over
time. The generator becomes more adept at producing images that closely resemble the
training data, while the discriminator becomes more skilled at distinguishing between real
and fake images.

Training GANs involve finding an equilibrium in the game, where the generator
generates data that closely approximates the training data, and the discriminator can no
longer differentiate between fake and real images.

A well-performing GAN model should exhibit high-quality images, such as non-blurry
images resembling the training data, and diversity, meaning it should generate a wide
range of images that capture the distribution of the training dataset.

Several noteworthy GAN variants have emerged, setting the stage for future advance-
ments in the field. One prominent example is the DCGAN, which was the first GAN to
integrate convolutional neural networks (CNNs) into its architecture. DCGAN has become
one of the most widely adopted GAN models. Hence, in this paper, we employ the DCGAN
framework for image generation.

3. The Method

We present the method we designed to (i) generate images related to the retina and (ii)
discriminate these fake images from images obtained from real-world retina images.

The first step of the proposed method is the design and the adoption of the DCGAN
to generate fake images related to the retina: this step is shown in Figure 1.
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Figure 1. The fake retina image generation step.

In every GAN, at least one generator (Generator in Figure 1) and one discriminator
(Discriminator in Figure 1) are present. As the generator and discriminator engage in a com-
petitive process, the generator enhances its capacity to generate images that closely align
with the distribution of the training data, utilizing feedback received from the discriminator.

Thus, training a GAN is a crucial process that involves two neural networks, a gen-
erator (Generator in Figure 1) and a discriminator (Discriminator in Figure 1), competing
against each other to improve their performance. In the following we provide an overview
of the GAN training process:

1. Initialization: Initially, the generator and discriminator networks are initialized with
random weights.

2. Objective: The objective of the generator is to create synthetic data that is indistin-
guishable from real data, while the discriminator’s objective is to correctly classify
real data as real and generated data as fake.

3. Training Loop:

(a) Generator Training (Generator in Figure 1):

• The generator takes random noise as input and generates synthetic data.
• This generated data is mixed with real data (if available) to form a train-

ing batch.
• The output of the generator output is passed through the discriminator

and the loss is calculated based on how well the discriminator was fooled
(i.e., how well the generated data is classified as real).

• The weights of the generator are updated using gradient descent to min-
imize this loss, effectively improving its ability to generate more realis-
tic data.

(b) Discriminator Training (Discriminator in Figure 1):

• The discriminator takes both real and generated data as input and classi-
fies them as real or fake.

• The loss for the discriminator is calculated based on how accurately it
classifies real and generated data.

• The discriminator’s weights are updated to minimize this loss, making it
better at distinguishing between real and generated data.

4. Adversarial Training: The key idea in GANs is the adversarial training process,
where the generator and discriminator iteratively improve their performance by
competing against each other. As the training progresses, the generator becomes better
at generating realistic data and the discriminator becomes better at distinguishing real
from fake data.

5. Convergence: Training continues for a set number of epochs or until a convergence
criterion is met. Convergence occurs when the generator creates data that is so realistic
that the discriminator cannot reliably distinguish it from real data.
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6. Evaluation: After training, the generator can be used to produce synthetic data and
the discriminator can be used to assess the authenticity of data samples.

The DCGAN architecture introduced the incorporation of CNNs in both the discrimi-
nator and generator components.

DCGAN offers a set of architectural guidelines that aim to improve the stability of the
training process [14]:

1. Replace pooling layers with strided convolutions in the discriminator and fractional-
strided convolutions in the generator;

2. Incorporate batch normalization (batchnorm) in both the generator and discriminator;
3. Avoid fully connected hidden layers in deeper architectures;
4. Apply ReLU activation for all generator layers, except the output layer which employs

Tanh activation;
5. Employ LeakyReLU activation in all discriminator layers.

Strided convolutions refer to convolutional layers with a stride of 2, which are utilized
in the discriminator for downsampling. On the other hand, fractional-strided convolutions,
or Conv2DTranspose layers, employ a stride of 2 for upsampling in the generator.

In the context of DCGAN, batch normalization (batchnorm) is leveraged in both
the generator and discriminator to enhance the stability of GAN training. Batchnorm
normalizes the input layer by adjusting it to have a mean of zero and a variance of one.
Typically, it is applied after the hidden layer and before the activation layer.

The DCGAN architecture commonly employs four activation functions: sigmoid, tanh,
ReLU, and LeakyReLU.

Sigmoid function is utilized in the final layer of the DCGAN discriminator since it per-
forms binary classification, producing an output of 0 (indicating fake) or 1 (indicating real).

Tanh function is similar to sigmoid but scales the output to the range [−1, 1], making
it suitable for the generator’s last layer. Consequently, input data for training should be
preprocessed to fit within the range of [−1, 1].

ReLU (rectified linear activation) returns 0 for negative input values and the input
value for non-negative inputs. In the DCGAN generator, ReLU is used for all layers except
the output layer, which employs tanh.

LeakyReLU is an extension of ReLU that introduces a small negative slope (controlled
by a constant alpha) for negative input values. The recommended value for the slope
(alpha) in DCGAN is 0.2. LeakyReLU activation is used in all layers of the discriminator,
except for the last layer.

The training process involves simultaneous training of both the generator and discrim-
inator networks.

The initial step involves data preparation for training the DCGAN. Since the generator
model is not intended for a classification task, there is no need to split the dataset into
training, validation, and testing sets. The generator requires input images in the format
(60,000, 28, 28), indicating that there are 60,000 grayscale training images with dimensions
of 28 × 28. The loaded data already has the shape (60,000, 28, 28) as it is grayscale.

To ensure compatibility with the generator’s final layer activation using tanh, we
normalize the input images to the range of [−1, 1].

The primary objective of the generator is to generate realistic images and deceive the
discriminator into perceiving them as real.

The generator takes random noise as input and generates an image that closely resem-
bles the training images. Given that we are generating grayscale images of size 28 × 28, the
model architecture needs to ensure that the generator’s output has a shape of 28 × 28 × 1.

To accomplish this, the generator performs the following operations:

1. Convert the 1D random noise (latent vector) to a 3D shape using the Reshape layer.
2. Upsample the noise iteratively using Keras.
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3. Match the Conv2DTranspose layer (also known as fractional-strided convolution in
the paper) to the desired output image size. In our case, we aim to generate grayscale
images with a shape of 28 × 28 × 1.

The generator comprises several key layers that serve as its building blocks:

1. Dense (fully connected) layer: used primarily for reshaping and flattening the
noise vector.

2. Conv2DTranspose: employed for upsampling the image during the generation process.
3. BatchNormalization: applied to stabilize the training process. It is positioned after the

convolutional layer and before the activation function.

In the generator, ReLU activation is utilized for all layers, except the output layer,
which employs tanh activation.

We developed a function for building the generator model architecture, for which a
model summary is shown in Table 1.

For constructing the generator model, we utilized the Keras Sequential API. The initial
step involved creating a Dense layer to reshape the input into a 3D format, with the input
shape specified in this layer.

Following that, we added BatchNormalization and ReLU layers to the generator
model. Subsequently, we reshaped the preceding layer from 1D to 3D and performed two
upsampling operations using Conv2DTranspose layers with a stride of 2. This progression
allowed us to increase the size from 7 × 7 to 14 × 14 and ultimately to 28 × 28.

After each Conv2DTranspose layer, we incorporated a BatchNormalization layer,
followed by a ReLU layer.

Lastly, we included a Conv2D layer with a tanh activation function as the output layer.
The generator model comprises a total of 2,343,681 parameters, out of which 2,318,209 pa-

rameters are trainable, while the remaining 25,472 parameters are non-trainable.
Next, we will delve into the implementation of the discriminator model.
The discriminator functions as a binary classifier that discerns whether an image is

real or fake. Its primary aim is to accurately classify the provided images. However, there
are a few notable differences between a discriminator and a conventional classifier:

In the discriminator, we employ the LeakyReLU activation function. The discriminator
encounters two categories of input images: real images sourced from the training dataset,
labeled as 1, and fake images generated by the generator, labeled as 0.

It is worth noting that the discriminator network is usually designed to be smaller or
simpler than the generator. This is because the discriminator has a relatively easier task
compared to the generator. In fact, if the discriminator becomes too strong, it can impede
the progress of the generator.

Table 2 shows the model summary related to the discriminator model.
To create the discriminator model, we define a function that takes input consisting

of either real images from the training dataset or fake images generated by the generator.
These images have dimensions of 28 × 28 × 1, which are passed as arguments (width,
height, and depth) to the function.

In constructing the discriminator model, we employ Conv2D, BatchNormalization,
and LeakyReLU layers twice for downsampling. Then, we utilize the Flatten layer and
apply dropout. Finally, in the last layer, we use the sigmoid activation function to produce
a single value for binary classification.

The discriminator model comprises a total of 213,633 parameters, out of which
213,249 parameters are trainable, while 384 parameters are non-trainable.

The computation of loss plays a crucial role in training both the generator and discrim-
inator models in DCGAN or any GAN architecture.

Specifically, for the considered DCGAN, we employ the modified minimax loss,
utilizing the binary cross-entropy (BCE) loss function.

There are two separate losses that we need to calculate: one for the discriminator and
another for the generator.
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Table 1. Model generator.

# Layer (Type) Output Shape Param #

1 dense (Dense) (None, 12,544) 1,266,944

2 batch_normalization
(BatchNormalization) (None, 12,544) 50,176

3 re_lu (ReLU) (None, 12,544) 0

4 reshape (Reshape) (None, 7, 7, 256) 0

5 conv2d_transpose
(Conv2DTranspose) (None, 14, 14, 128) 819,328

6 batch_normalization_1
(BatchNormalization) (None, 14, 14, 128) 512

7 re_lu_1 (ReLU) (None, 14, 14, 128) 0

8 conv2d_transpose_1
(Conv2DTranspose) (None, 28, 28, 64) 204,864

9 batch_normalization_2
(BatchNormalization) (None, 28, 28, 64) 256

10 re_lu_2 (ReLU) (None, 28, 28, 64) 0

11 conv2d (Conv2D) (None, 28, 28, 1) 1601

Table 2. Model discriminator.

# Layer (Type) Output Shape Param #

1 conv2d_1 (Conv2D) (None, 14, 14, 64) 1664

2 batch_normalization_3
(BatchNormalization) (None, 14, 14, 64) 256

3 leaky_re_lu
(LeakyReLU) (None, 14, 14, 64) 0

4 conv2d_2 (Conv2D) (None, 7, 7, 128) 204,928

5 batch_normalization_4
(BatchNormalization) (None, 7, 7, 128) 512

6 leaky_re_lu_1
(LeakyReLU) (None, 7, 7, 128) 0

7 flatten (Flatten) (None, 6272) 0

8 dropout (Dropout) (None, 6272) 0

9 dense_1 (Dense) (None, 1) 6273

In terms of the discriminator loss, since the discriminator receives two groups of
images (real and fake), we compute the loss for each group separately and then combine
them to obtain the overall discriminator loss:

TotalDloss = loss_ f rom_real_images + loss_ f rom_ f ake_images

With regard to the generator loss, rather than training G to minimize log(1− D(G(z)),
i.e., the probability that D classifies fake images as fake, we consider training G with the
aim of maximizing logD(G(z)), i.e., the probability that D incorrectly classifies the fake
images as real: for this we exploit the modified minimax loss.

For both the generator and discriminator models, we utilize the Adam optimizer with
a learning rate of 0.0002. As mentioned previously, we employ the binary cross-entropy
loss function for both the discriminator and generator.

The training process involves training the models for a total of 50 epochs.
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Once the images are generated with the DCGAN, the last step of the proposed method,
shown in Figure 2, is devoted to building models aimed at discriminating between real and
fake retina images.

Figure 2. The fake retina image detection step.

In the proposed method, as depicted in Figure 2, the second step involves building a
model to distinguish between generated and real images. To accomplish this, two datasets
are required. The first dataset comprises real-world retina images, while the second dataset
consists of images generated by the DGCAN (depicted in Figure 2). The real images utilized
in the first step of the proposed method are the same as those used here.

From these two sets of images (i.e., Generated Images and Real Images in Figure 2), a
set of numeric features is extracted (i.e., Feature Extraction in Figure 2). Specifically, the
paper experiments with the Simple Color Histogram Filter [15] for this purpose. This filter
calculates the histogram representing the pixel frequencies from each image. As a result,
this filter extracts 64 numeric features from each image.

After obtaining the feature set from both the generated and real images, these features
are used as inputs for a supervised machine learning algorithm (i.e., Machine Learning
Algorithm in Figure 2). The goal is to construct a model that can determine whether an
image is associated with a fake (generated) or a real application.

By training the machine learning algorithm with the extracted features, it learns
patterns and relationships between the features and the authenticity of the images. This
enables the model to classify new images as either fake or real based on the learned patterns
(i.e., Machine Learning Model in Figure 2). The algorithm’s training involves providing it with
labeled examples of images and their corresponding classification (fake or real), allowing it
to learn the decision boundaries between the two classes. Once trained, the model can be
used to predict the authenticity of unseen images (i.e., Fake Detection in Figure 2).

If the classifiers demonstrate optimal performance, there should be a noticeable dis-
tinction between the generated and original images. In contrast, if the machine learning
models are unable to differentiate between the generated and original images, this suggests
that the generated images closely resemble the originals.

To investigate the progression of image generation throughout the various stages of
GAN training, a model is built for each epoch. This allows for an understanding of whether
the generated images become progressively more similar to the original images. In order
to ensure the validity of the conclusions drawn, the experimental analysis employs four
different machine learning algorithms. Consequently, a total of 200 models (50 epochs
multiplied by 4 algorithms) are considered for evaluation.

4. Experimental Analysis

We present and discuss the results of the experimental analysis we performed.
The goal of this experiment is to determine whether GANs can pose a threat to deep

learning-based retina image classification. To achieve this, we exploited a DCGAN to
generate a series of synthetic retina images. They then trained multiple classifiers to discern
between real-world retina images and artificially generated ones.

Thus, we investigate whether the classifiers could accurately differentiate between
real and fake retina images. Since the DCGAN generates a new dataset of retina images
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with each training epoch, the performance of the classifiers was tracked over time. The
objective was to assess whether the classifiers’ ability to distinguish between real-world
and synthetic images would decrease as the training progressed and the generated images
presumably became more similar to real retina images.

By monitoring the performance of the classifiers, we determine whether the classifiers
were successful in correctly identifying real images and distinguishing them from synthetic
ones. If the classifiers’ performance declined as the training epochs increased, it would
indicate that the classifiers struggled to differentiate between real and fake retina images.

Overall, the experiment aimed to evaluate the potential threat posed by GANs to deep
learning-based retina image classification by examining the classifiers’ ability to discern
between real-world and artificially generated images as the GAN training progressed.

For experimental purposes, we exploit the RetinaMNIST dataset, freely available for
research purposes https://medmnist.com/ (accessed on 18 August 2023), based on the
DeepDRiD challenge, which provides a dataset of 1600 retina fundus images. The retina
images are related to the five-level grading of diabetic retinopathy severity. The source
images are center-cropped and resized to 3 × 28 × 28 [16,17].

In the experimental analysis, the DCGAN was trained for a total of 50 epochs. Each
epoch took around 25 seconds to complete, utilizing the computational power of an NVIDIA
T4 Tensor Core GPU. For each epoch, the DCGAN generated a batch of 1000 synthetic
retina images.

In Figure 3 we show a set of images generated by the DCGAN at different epochs and
the original input images used for the DCGAN for the fake retina image generation.

Figure 3. Examples of images generated by the DCGAN at several epochs (i.e., at the 1st, the 25th,
and the 50th ones), with the related real images.

From the images shown in Figure 3 we consider two different (original) input images
(i.e., Real Image Sample #1 and Real Image Sample #2): we can note that at epoch #1 the
DCGAN generated only noise (and this is an expected behavior), while in the 25th epoch
the fake images obtained from both sample #1 and #2 are closer to the real images. In the
last, the 50th one, we can note that the images are quite similar to the real ones.

To assess the performance of the classifiers, several metrics were considered. These
metrics include Precision, Recall, and F-Measure.

Precision is a measure of the accuracy of the classifier in identifying true positives
among the samples it predicted as positive. It represents the ratio of true positives to the
sum of true positives and false positives. A higher precision indicates a lower rate of false
positives. It is computed as follows:

Precision =
tp

tp + f p

where tp indicates the number of true positives and fp indicates the number of false positives.

https://medmnist.com/
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Recall, also known as sensitivity or true positive rate, measures the ability of the
classifier to identify all positive instances correctly. It is calculated as the ratio of true
positives to the sum of true positives and false negatives. A higher recall indicates a lower
rate of false negatives. It is computed as follows:

Recall =
tp

tp + f n

where fn indicates the number of false negatives.
F-Measure, or F1 score, is the harmonic mean of precision and recall. It provides

a balanced measure that takes into account both precision and recall. The F-Measure
considers the trade-off between precision and recall, giving equal importance to both
metrics. It is computed as the weighted average of precision and recall, where the weights
are determined by their relative importance. It is computed as follows

F-Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

By evaluating the Precision, Recall, and F-Measure of the classifiers, the authors aimed
to gain insights into their effectiveness in distinguishing between real and fake retina
images generated by the DCGAN. These metrics provide a comprehensive understanding
of the classifiers’ performance in terms of accuracy, true positive rate, and the balance
between precision and recall.

Four different widespread supervised machine learning classifiers are exploited with
the aim of enforcing conclusion validity: J48 [18], SVM [19], Random Forest [20], and
Bayes [21].

In the experiment, the authors built a separate model for each algorithm and for each
epoch, resulting in a total of 200 different models. Specifically, there were four algorithms
considered and each algorithm had a model built for every epoch.

To construct each model, a combination of real-world application images and synthetic
images generated by the DCGAN for a specific epoch was used. This means that, for each
epoch, the researchers had a dataset that included both real retina images from real-world
applications and synthetic retina images generated by the DCGAN.

By creating multiple models for each algorithm and epoch, the researchers aimed to
analyze the performance and effectiveness of the classifiers in distinguishing between real
and fake retina images at different stages of the training process. This approach allows
any changes in the classifier performance to be observed as the DCGAN generated images
that were presumably becoming more similar to real retina images over the course of the
training epochs.

Below, we explain how we built and evaluated the machine learning models designed
to differentiate between real and fake retina images.

Relating to the model learning, we consider T as a set of labels {(M, l)}, where each M
is the label that is associated with an l ∈ { real, fake}.

For the M model, we build a numeric vector of features F ∈ Ry, where y represents
the number of features exploited in the learning phase (y = 64; as a matter of fact, this is
the number of numeric features obtained, from each image, by applying the Simple Color
Histogram Filter).

In more detail, with respect to the training phase, k-fold cross-validation is exploited.
We explain this process: the instances of the dataset are split in a random way into a set
denoted as k.

In order to test the effectiveness of both the models we propose, the procedure ex-
plained below is considered:

1. Generation of a set for the training, i.e., T⊂D;
2. Generation of an evaluation set T′ = D÷T;
3. Execution of the model training T;
4. Application of the model previously generated to each element of the T′ set.
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To mitigate the risk of overfitting, we employed cross-validation in their evaluation
process. Cross-validation ensures that all samples in the dataset are evaluated during the
testing phase. Below we explain how we accomplished cross-validation:

1. Data Splitting: The entire dataset, consisting of real and fake retina images, was
divided into k equal-sized parts or folds. The value of k determines the number of
subsets the dataset is divided into.

2. Training and Validation Iteration: During each iteration of the cross-validation process,
one of the folds was designated as the validation set, while the remaining k − 1 folds
were used as the training set. This process was repeated k times, with each fold taking
turns as the validation set.

3. Model Training and Evaluation: For each iteration, a separate model was trained using
the training set. The performance of the model was then evaluated using the validation
set. The evaluation metrics, such as Precision, Recall, and F-Measure, were calculated
based on the model’s predictions on the validation set.

4. Performance Aggregation: The performance of the model was assessed across all k
iterations. The individual performance scores from each iteration were aggregated to
obtain an overall estimate of the model’s performance. Typically, this aggregation is
performed by calculating the mean of the performance scores across the iterations.

In this study, the researchers chose a value of k = 10, which means the dataset was
divided into 10 equal parts and the iteration was repeated 10 times. Each fold served as the
validation set once, while the remaining nine folds were used for training the model. The
final performance metrics were calculated as the average of the metrics obtained from the
10 iterations.

This approach helps to mitigate overfitting and provides a more realistic evaluation of
the classifiers’ performance in distinguishing between real and fake retina images.

In Table 3 we show the experimental analysis results: for the reason of space we report
the results related to three epochs: the first one (i.e., 0 in the column Epoch), the middle one
(i.e., 25 in the column Epoch), and the final one (i.e., 49 in the column Epoch), with the aim
of understanding the general trend.

Table 3. Experimental analysis results for epochs 0, 25, and 49.

Epoch Algorithm Precision Recall F-Measure

0

J48 1 1 1
SVM 0.990 0.989 0.989

RandomForest 1 1 1
Bayes 0.999 0.999 0.999

25

J48 0.970 0.970 0.970
SVM 0.956 0.954 0.954

RandomForest 0.974 0.974 0.974
Bayes 0.958 0.957 0.957

49

J48 0.972 0.971 0.971
SVM 0.939 0.936 0.936

RandomForest 0.974 0.973 0.973
Bayes 0.956 0.955 0.955

From Table 3 it emerges that when the number of epochs is increasing the metrics,
i.e., Precision, Recall, and F-Measure, suffer a decrease: for instance at epoch 0 the SVM
F-Measure is equal to 0.989, at epoch 25 it is equal to 0.954, and at epoch 49 it is equal to
0.936. We also note that this trend is not reflected in the J48 model: as a matter of fact, at
epoch 0 the J48 model F-Measure is equal to 1, at epoch 25 it is equal to 0.970, and at epoch
49 it is equal to 0.971. So we can say that from epoch 25 to epoch 49 the J48 performances
remain substantially unchanged.
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A trend similar to the one obtained from the SVM classifier is shown in the Random-
Forest model, in fact; at epoch 0 the F-Measure is equal to 1, at epoch 25 it is equal to 0.974,
and at epoch 49 it is equal to 0.973. A similar consideration can be made with respect to the
Bayes model, with an F-Measure equal to 0.999 at epoch 0, an F-Measure of 0.957 at the
25-th epoch, and an F-Measure equal to 0.955 with regard to epoch 49.

This decreasing trend obtained when the epoch number is increasing is something
that is expected, considering that the GAN learns to build better (fake) retina images at
each epoch: but, as we noticed in the results shown in Table 3, the performance decay is
minimal but still present. Thus, the series of retinal images fail to be distinguished correctly
by the classifier.

To better understand the trend of the classifiers during the several epochs, in Figures 4–7
we show the plot of the F-Measure trend for the 50 epochs, for the J48 model shown in
Figure 4, the SVM model shown in Figure 5, the RandomForest one shown in Figure 6, and
the Bayes model shown in Figure 7.

All supervised learning models exhibit a very similar trend as shown in Figures 4–7:
this confirms that the trend obtained is general and not specific to a single model. Note
that the decay (of the Precision, Recall, and F-Measure metrics) occurs approximately after
20 epochs.

Figure 4. The Precision, Recall, and F-Measure trend, obtained with the J48 model, for the 50 epochs.
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Figure 5. The Precision, Recall, and F-Measure trend, obtained with the SVM model, for the 50 epochs.

Figure 6. The Precision, Recall, and F-Measure trend, obtained with the RandomForest model, for the
50 epochs.
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Figure 7. The Precision, Recall, and F-Measure trend, obtained with the Bayes model, for the
50 epochs.

We, therefore, note that the performance decay is present even if minimally; therefore,
if, on the one hand, the classifier continues to obtain good performances even with images
obtained after 50 epochs, on the other hand, it is still possible to note that some of the false
images are indistinguishable from real ones for classifiers.

In addition to the machine learning classifier experiments, in Table 4 we present
the experimental results we obtained with four deep learning models. In particular, the
following models are considered: LeNet [22], AlexNet [23], CustomCNN [24,25], and
MobileNet [26]. In the deep learning experiment, we consider the retinal images generated
in the last epoch.

Table 4. Experimental analysis results for 49th epoch with deep learning models.

Algorithm Precision Recall F-Measure

LeNet 0.480 0.480 0.480

AlexNet 0.985 0.985 0.985

CustomCNN 0.519 0.519 0.519

MobileNet 0.973 0.973 0.973

From the results shown in Table 4 it emerges that the results obtained with the machine
learning models (shown in Table 3) are similar to the ones exhibited by deep learning mod-
els. In particular, the AlexNet and the MobileNet models show an F-Measure respectively
equal to 0.985 and to 0.973, while the LetNet and the CustomCNN models obtained an
F-Measure respectively equal to 0.480 and to 0.519.

In summary, the experimental analysis results suggest that, currently, GANs do not
pose a significant threat because existing classifiers can effectively distinguish between
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real and fake images. However, we recall that a small percentage of images can still evade
detection, which could potentially become a threat in the future, particularly in the context
of biomedical image classification.

5. Discussion

As already mentioned in the introduction section, GANs have shown significant
promise in a plethora of fields, including the biomedical context. However, similarly to
any newly proposed method, GANs come with their own set of strengths and weaknesses
when applied to biomedical applications. In this section, we discuss the strong points
and the weaknesses of GAN adoption related to the biomedical context and we provide a
table aimed at summarizing the state of the art in the adoption of GANs in the biomedical
context with particular regard to the papers related to retinal images.

In the following we itemize the strong points related to GAN adoption in the biomedi-
cal context:

• Data Augmentation: GANs can generate synthetic data that closely resemble real
biomedical data. This is particularly useful when the available dataset is small or lacks
diversity. GAN-generated data can be used to augment the training data, leading to
better model generalization.

• Image Synthesis: GANs excel at generating high-quality images. In the biomedical
field, this can be used for tasks like generating medical images (e.g., MRI and CT
scans) with different contrasts, resolutions, or pathologies. It can aid in medical image
analysis and training image-based models.

• Drug Discovery: GANs can generate molecular structures with desired properties.
They can be used for drug discovery by generating novel chemical structures that
match specific criteria, potentially accelerating the drug development process.

• Data Privacy: GANs can generate synthetic data that preserve the statistical properties
of the original data while ensuring privacy. This can help in sharing medical data
without revealing sensitive patient information.

• Noise Reduction: GANs can be employed to denoise biomedical images, which is
crucial for accurate medical diagnosis. They can help in improving the quality of noisy
or low-resolution images.

Below we itemize the weaknesses related to GAN adoption in the biomedical context:

• Data Quality: GANs are highly sensitive to input data quality. If the initial dataset
contains errors, biases, or inaccuracies, the generated data may inherit these issues,
potentially leading to unreliable results.

• Mode Collapse: GANs can suffer from mode collapse, where the generator produces a
limited variety of outputs, failing to capture the full diversity of the underlying data
distribution. This can hinder the effectiveness of the model.

• Training Challenges: GANs can be challenging to train and require careful tuning of
hyperparameters. Training instability, vanishing gradients, and mode dropping are
common issues that can make training difficult.

• Ethical Concerns: In the biomedical field, generating synthetic medical images that are
indistinguishable from real ones raises ethical concerns. There is a risk of inadvertently
creating misleading or potentially harmful information.

• Interpretability: GANs are often considered "black box" models, making it challenging
to interpret how they generate certain outputs. This lack of interpretability can be
problematic in medical applications where understanding the decision-making process
is crucial.

• Generalization: GAN-generated data might not perfectly mimic real-world data distri-
bution, leading to potential challenges in generalizing the models to real-world sce-
narios. Careful validation and testing are required to ensure real-world applicability.

In summary, GANs offer valuable contributions in the biomedical context, particularly
in data augmentation, image synthesis, and drug discovery. In Table 5 we provide a table
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with a state-of-the-art comparison between different research papers combining GAN and
biomedical images in terms of the kind of GAN exploited (i.e., GAN Type column), the
contributions of the paper, and the obtained F-Measure.

Table 5. The state-of-the-art comparison in the adoption of GAN in the biomedical context.

Authors GAN Type Contributions F-Measure

Orlando et al. [27] ACGAN Developed a GAN for generating retinal images with lesionss 0.78

Schlegl et al. [28] ACGAN Introduced a conditional GAN for retinal image generation. 0.92

Fu et al. [29] ACGAN Used ACGAN to generate synthetic retinal images for augmentation. 0.88

Costa et al. [30] ACGAN Extended ACGAN for multi-modal retinal image synthesis. 0.89

Lahiri et al. [31] ACGAN Developed a GAN-based method for retinal vessel segmentation. 0.91

Tufail et al. [32] DCGAN Explored the use of GANs for generating retinal images. 0.75

Skandarani et al. [33] StyleGAN Utilized StyleGAN to generate high-resolution retinal images. 0.87

Sevastopolsky et al. [34] ACGAN Proposed a GAN approach for retinal image synthesis for
glaucoma detection. 0.86

Khalid et al. [35] ACGAN Further advancements in conditional GANs for retinal image synthesis. 0.91

Bellemo et al. [36] ACGAN Explored the use of ACGANs for generating diabetic retinopathy images. 0.82

Our method DCGAN Assess the the potential impact of GANs on retinal image
classification tasks. 0.973

As emerges from the comparison shown in Table 5 there are several research papers
exploring the adoption of GAN in the biomedical context, for several purposes, for instance
from the generation of retinal images with lesions proposed by Orland et al. [27] to the
retinal image augmentation proposed by Fu and colleagues [29]. As mentioned in the
introduction section, the main aim of the proposed method is to understand whether GAN
can be considered to generate retinal images that are not distinguishable from the real ones
and this represents the main contribution of this paper. The results of the experimental
analysis demonstrated that every model attained an F-Measure surpassing 0.95, suggesting
the effective identification of the majority of retinal images GAN generated. Nonetheless, it
was also noted that certain retinal images were able to avoid detection by the classifiers
designed for retinal fake image detection.

Furthermore, it is important to note that, while GANs offer significant advantages
in biomedical image analysis, their use in critical medical applications requires thorough
validation, and careful consideration of ethical and regulatory concerns. The quality of
generated images and their clinical relevance must be rigorously assessed before deploying
GAN-based solutions in real healthcare settings.

6. Conclusions and Future Work

Considering the realistic nature of images generated by GANs, there is a need to assess
their potential threat to image recognition systems, particularly in the field of biomedical
image classification. In this paper, we proposed a method to evaluate whether retinal
images generated by a DCGAN can be distinguished from real images. We employed eight
different supervised machine learning algorithms to build a model capable of distinguishing
between real and fake retinal images. The experimental analysis revealed that all the models
achieved an F-Measure greater than 0.95, indicating that most of the fake images were
successfully recognized. However, we also observed that some retinal images managed
to evade detection by the fake image classifiers. On one side, GANs can address limited
dataset issues by generating synthetic data that resemble real biomedical data, aiding in
training robust models, and they excel at creating high-quality medical images, aiding in
medical image analysis, disease diagnosis, and treatment planning, but on the other they
are sensitive to input data quality and may inherit errors or biases. It may be of interest to
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develop such a system in the real world as the generation of fake images could be used to
poison a classifier, thus adding fake images to the training dataset. Therefore, to guarantee
the quality of a dataset composed, for example, of images of the retina, such a system could
be used in a machine learning pipeline to verify the veracity of the images present in the
training dataset. As a matter of fact, the rapid expansion of machine learning’s presence
in biomedical research frequently leads to an oversight regarding the reliability of these
studies. In fact, machine learning has proven highly effective in various domains (with
particular regard to the biomedical one), yet its success is vulnerable to malicious actions.
Adversarial attacks, which involve manipulations intended to disrupt predictions, pose a
substantial threat to the practical use of machine learning. These attacks encompass evasion
attacks, which manipulate only test data, and poisoning attacks, in which the attacker
introduces tainted test and/or training data. A comprehensive grasp of adversarial attacks
and the development of appropriate defenses are essential for upholding the reliability of
machine learning applications. We think that this is one of the most interesting aspects that
can boost the proposed method in the real world. Obviously, we are aware that the results
obtained could vary depending on the biomedical field analyzed, but also if the DCGAN
were trained for a greater number of epochs or if a different type of GAN was used. For
these reasons, among other future developments, we will evaluate the effectiveness of
the proposed method using different types of GANs and different types of biomedical
images acquired by different machines. As a matter of fact, in future research, we intend to
explore other types of biomedical images and evaluate alternative GAN architectures such
as conditional generative adversarial networks and cycle-consistent generative adversarial
networks to compare their performance against the DCGAN used in this study.
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